
Building AMD ROCm from Source on a
Supercomputer

Cristian Di Pietrantonio
Pawsey Supercomputing Research Centre

Perth, Western Australia
cdipietrantonio@pawsey.org.au

Abstract—ROCm is an open-source software development
platform for GPU computing created by AMD to accompany
its GPU hardware that is being increasingly adopted to build the
next generation of supercomputers. We argue that the fast-pacing
evolution of their software platform and the complexities of
installing software on a supercomputer mandate a more flexible
installation process for ROCm than the available installation
methods.

ROCm-from-source is a set of Shell scripts developed at
Pawsey to configure and build ROCm in a way that is not
possible with the provided with the pre-built binaries, nor with
the installer script found in the repository of each ROCm
project. For instance, ROCm-from-source does not require root
privileges, and a custom install location, possibly on a parallel
filesystem, can be specified. It can do so by building ROCm
and all its dependencies from source. The challenge in this task
is represented by the substantial number of projects ROCm is
made of as well as their dependencies, the intricate interplay
between them, and the continuous changes in the structure of
the projects.

Pawsey would like to share the knowledge acquired while
developing ROCm-from-source so that other supercomputing
centres can benefit from it.

I. INTRODUCTION

The widespread and rapid adoption of the AMD Graphics
Processing Unit (GPU) as an accelerator for computational
workloads by major supercomputing centres across the globe
brought changes in the software stack as well as in the
hardware. With many of the supercomputers equipped with
AMD GPUs (and CPUs) coming online within the next few
years, attention must now be turned towards the provisioning
of the companion software development platform: ROCm.

The aim of this paper is to present a new, reliable, re-
producible, and convenient method of deploying the ROCm
software platform on a supercomputer, as envisioned by the
Pawsey Supercomputing Research Centre. Its implementation
consists of Shell scripts that tackle the daunting task of
building ROCm from source, which we aptly refer to as
ROCm-from-source. The topic is of greatest importance to
all the supercomputing applications teams that must make
available ROCm to thousands of users in a time when said
software is still rapidly evolving.

The article is structured as follows. Section II introduces the
reader to GPU development platforms, and gives an overview
of ROCm. Section III articulates the reasons why Pawsey
decided to undergo a months-long effort of developing ROCm-
from-source, and why other centres should take advantage

of it. Section IV offers an overview of similar projects and
explains why they have not been adopted, and why ROCm-
from-source should be preferred. Section V presents ROCm-
from-source, its main components and the challenges it solves.
Section VI discusses deployment on a HPE Cray EX system,
and section VII provides instructions on how to create ROCm
containers. Section VIII is about testing and in section IX the
author concludes and hints at future work.

II. BACKGROUND

Graphics Processing Units are a compute hardware accel-
erator dominating the computing landscape because of their
ability to perform a large number of operations per second
in a energy-efficient manner1. While their compute power
is impressive, their widespread use is undoubtedly due to
the companion software development platform, which makes
programming them relatively easy.

A. GPU software development platforms

Even though NVIDIA has set the de facto standard for
low-level GPU programming with its the GPU development
platform, CUDA, in the last couple of years AMD has risen
to a direct competitor by providing valuable products at a
great price. This is especially true in the HPC market where
they achieved great success in delivering hardware for the
most powerful supercomputer in the world (as of 2022)2.
The Pawsey Supercomputing Research Centre, the institution
the author of this paper works for, purchased a HPE Cray
EX supercomputer with AMD technology too. AMD provides
its own development platform, called ROCm, that heavily
borrows from the well-established CUDA programming model
and APIs. Clearly, design choices were made to facilitate the
transition of the HPC community from what was effectively
a industry monopoly to multiple competing GPU vendors.
Unlike CUDA, ROCm is open source. The two main im-
plications are that contributions from external developers are
welcomed, accelerating its development, and that binaries can
be independently compiled if needed.

1The AMD MI250X delivers around thirty times more TFLOPS than a Intel
Xeon Platinum CPU, while being thirteen times more power efficient. The
MI250X achieves 47.5 TFLOPS FP64, TDP: 500W. A Intel Xeon Platinum
8376 peaks at 1.5 TFLOPS FP64, TDP: 205W.

2https://www.top500.org/lists/top500/list/2022/11

ROCm is a very complex ecosystem of more than fifty
projects comprising drivers, libraries and tools. Figure 1 cap-
tures essential parts of it. Close to the hardware level, ROCK-
Kernel-Driver enables communication between the AMD GPU
and the Linux kernel. The corresponding software interface
executing in the user space of the operative system is ROCT-
Thunk-Interface. It provides the fundamental building blocks
to develop a runtime system executing on the host platform
(that is, the CPU). ROCR-Runtime implements the Hetero-
geneous System Architecture (HSA) API enabling kernel
programs submission, memory management and device syn-
chronisation. It is equivalent to the CUDA Runtime API.
Completing the low-level components of the AMD software
stack, ROCm-Device-Libs implements the runtime and li-
braries executing on the GPU hardware.

ROCm has a compiler ecosystem to transform source code
to low-level machine code. It extends LLVM to support the
AMD GPU Instruction Set Architecture (ISA), named GCN.
It implements OpenMP offloading, and proprietary GPU and
CPU optimisations. The enhanced Clang compiler depends
on ROCm-Device-Libs to produce executables able to run on
AMD GPUs.

Several libraries expose GPU-accelerated implementations
of popular algorithms in the science domain. Examples are
Fast Fourier Transforms (rocFFT), linear algebra routines
(rocBLAS), and random number generators (rocRAND).

HIP makes available to developers a high-level program-
ming interface built on top of ROCR-Runtime, it provides
wrappers around ROCm numerical libraries, and it extends the
C++ language to enable programmers to write code that runs
on GPU. It is designed to mimic the CUDA API to facilitate
adoption and code porting. In fact, HIP can be configured
and installed to be a wrapper around CUDA, enabling code
portability. The vendor-agnostic HIP is complemented by the
hipamd project to optimally target AMD devices. Management
(roc-smi, rocinfo), debugging (rocgdb) and profiling
(roctracer, rocprof) tools are also available.

Finally, the MIOpen library implements machine learning
algorithms and primitives. It is used by frameworks such as
Tensorflow and PyTorch to enable machine learning workloads
on AMD hardware.

III. MOTIVATION

Pawsey and other centres must deploy the fast-evolving
ROCm platform in a timely manner for users to take advantage
of latest critical improvements. It is a challenging task because
of the strict requirements imposed by the administration poli-
cies of an HPC infrastructure.

ROCm documentation illustrates in details how to install
pre-built binaries on workstations or small server-like environ-
ments. In these scenarios, coupling system administration with
end-user applications management in one role with privileged
access is feasible and common. On the other hand, tens of peo-
ple distributed across different teams are needed to properly
manage every aspect of running a supercomputer, with only a

GPU

ROCK-Kernel-Driver

ROCT-Thunk-Interface

ROCR-Runtime

OpenCL

OpenMP

ROCK-Kernel-Driver
ROCm-Device-Libs

ROCclr

HIP

Libraries
(rocFFT, etc)

MIOpen (Machine Learning)

Fig. 1. A schematic and simplified representation of the ROCm software
stack. At the very bottom lies the GPU hardware. The software side starts with
components making up the ROCm runtime and low-level interface, coloured
in purple. Various programming models are provided on top for programmers
to use, complemented by highly optimised libraries. These are indicated with
the blue colour in the figure. At the highest level, advanced and complex
libraries such as MIOpen are found (green colour).

handful of them having access to root privileges. ROCm-from-
source does not require administrative rights to be executed.
This allows the applications team of a supercomputing centre
to retain control over the deployment and maintenance of a
critical user-facing component of the system.

The fast release cycle ROCm is subject to contrasts with
the slower deployment schedule of the Cray Programming
Environment (CPE) on supercomputers. This means that HPE
Cray sites cannot rely on vendor system-wide updates to
obtain the latest ROCm version within a month or two from
its release3. Hence, the task of updating the OS image just
to include a newer ROCm version alongside the officially-
provided one would fall on system admins. Unfortunately,
modifying and re-deploying a HPE Cray OS image is a
disruptive and time consuming task. Moreover, an additional
RPM ROCm installation would consume around 10 GB of
RAM when the image is loaded in memory by compute nodes.

The AMD installer places ROCm binaries within the di-
rectory /opt/rocm and, at the time when the author first
started working on ROCm-from-source, multiple installations
of ROCm were not permitted. Today AMD allows several
versions of ROCm to coexist on the same system. The in-
stallation prefix, however, remains the same and cannot be
changed. A customisable installation path would allow ROCm
to be placed on a parallel filesystem, ideally one dedicated to
software deployment. ROCm-from-source allows for it and, in
doing so, it solves the memory issue mentioned previously as
well as it enables a site-defined software hierarchies.

Several other reasons motivate building ROCm from source.

3For instance, Pawsey’s Setonix is still running cpe/22.09 featuring
rocm/5.0.2, whereas the latest ROCm release is 5.4.3.

For instance, binaries can target the architecture they will run
on; projects and features that are not enabled in the official
distribution can be included.

IV. RELATED WORK

There are several third-party projects whose objective is to
provide an alternative installation method for ROCm. They
all leverage the publicly available ROCm sources but none
of them works without requiring significant effort, hence
motivating the work presented in this paper. The AOMP
project by AMD implements scripted build of AMD LLVM
and some of the ROCm projects [3]. Besides the fact that its
scope is limited, the system is quite complex, making it hard
to adapt and execute.

A. Spack

Spack is a software manager for supercomputers equipped
with thousands of recipes for building from source the most
common applications and libraries [6]. AMD started con-
tributing to the development of Spack recipes for ROCm
packages since Spack 0.16.0. When the author started working
on ROCm-from-source, Spack support for ROCm was very
experimental and not to be relied on. To date, the latest
stable release of Spack is 0.19.0 and its recipes for ROCm
components have vastly improved. Despite that, there are a
couple of reasons to prefer ROCm-from-source to Spack now
that ROCm is rapidly evolving. A site like Pawsey may stick
to a version of Spack, hence its recipes, for an extended period
of time (six months to one year). During this period, newer
versions of ROCm may fail to build with old recipes. For
instance, HIP 5.4.3 cannot be built the corresponding recipe in
Spack 0.19.0. Updating the single script in ROCm-from-source
taking care of installing ROCm projects is more practical
than updating several Spack recipes, either in first person or
downloading newer recipes (with may be incompatible with
the Spack version currently used). In addition to that, a matter
of convenience: ROCm projects are distributed independently,
without a “meta-recipe” being provided to install all of them
in one sitting. Finally, as it will be discussed later, the Cray
Programming Environment may expect a ROCm deployment
to follow a determined directory hierarchy, whereas Spack
installs each project on its own.

B. Scripted builds

There already exist at least two long-standing third-party
projects providing an alternative solution to the official de-
ployment procedure of ROCm [1], [7]. These efforts are driven
by the desire of independent developers and researchers to
run machine learning frameworks, namely Tensorflow and
PyTorch, on consumer-grade AMD GPU cards. All of them
build the entire stack from source. The same AMD provided
minimal instructions in the earlier documentation pages of
ROCm on how to fetch all the necessary code repositories
to be then compiled [4]. These instructions have been now
removed from the newer documentation.

Fig. 2. An example of PKGBUILD script from rocm-arch. As one can see,
it is meant to be interpreted, not executed as is. Nonetheless, the build
function shows the CMake parameters to use.

Started around the year 2020, rocm-arch implements a
build process targeting Arch Linux, a very lightweight Linux
distribution [1]. It does so by supplying PKGBUILD recipes
for the most important ROCm components. Unfortunately, the
domain-specific language those recipes are written in prevents
their use in a more general setting, even more so on a
supercomputer. Figure 2 shows an example PKGBUILD script.
The lack of complete coverage of all ROCm projects is another
problem stopping Pawsey from using this project as is.

A noteworthy effort that comes close to ROCm-from-source
is hosted in the Xu Huisheng’s GitHub repository rocm-build
[7]. It targets the Ubuntu Linux distribution. In the repository
one can find a comprehensive collections of Shell build scripts,
one for each ROCm project; their name are prefixed with a
number, establishing the order of execution. They allow for
some flexibility, such as the possibility of specifying custom
build and installation directories. The scripts, however, do not
install binaries directly but they create .deb packages. These
will have to be then installed using a packet manager. A script,
whose purpose is to install dependencies, is also present. Not
surprisingly, it delegates to the Ubuntu packet manager the
retrieval and installation of each one of them. This project
represents a basic starting point for an adaptation that would
work on a supercomputer, but much effort would have to be
dedicated before reaching that point.

V. ROCM-FROM-SOURCE

This paper introduces ROCm-from-source, a build system
for ROCm written entirely in Shell. It freely available on
GitHub at the following link: https://github.com/

https://github.com/PawseySC/rocm-from-source

PawseySC/rocm-from-source. While Pawsey uses it
to deploy ROCm on a HPE Cray EX system, ROCm-from-
source is designed to run on many Linux distributions with
only a minimal set of dependencies. It can therefore be easily
adopted by other institutions looking for a manageable way of
providing the AMD GPU development platform and runtime
to its users.

Using ROCm-from-source is easy. Listing 1 demonstrates
how Pawsey staff deployed the latest ROCm on the GPU
partition of Setonix for early adopters to try.

git clone --branch rocm5.4.3rev0 \
https://github.com/PawseySC/rocm-from-source.git
export ROOT_INSTALL_DIR=\

/software/setonix/2022.11/rocm
./rocm-from-source/install_rocm.sh

Listing 1. Executing ROCm-from-source only requires a few com-
mand lines.

Each release of ROCm-from-source is tagged with
rocm{X}.{Y}.{Z}rev{R}, where

• X, Y, Z are the major, minor and patch numbers of a
ROCm release. That is, they indicate which version of
ROCm will be built.

• R is the revision number of the build scripts for a given
ROCm version. It is increased each time an improvement
is done for the same ROCm release.

There are a few other parameters that can be set to customise
the ROCm build and installation, well documented within the
driver script.

A. The driver script

The install_rocm.sh script orchestrates the execution
of various other helper scripts to install ROCm. Before that
happens, sensible defaults for build and installation parameters
are set. If run on an HPE Cray supercomputer, the installation
prefix is the only information required from the user.

Other important input variables are the following ones.
• GFX_ARCHS lists GPU architectures ROCm device code

will be compiled for. The default value is gfx90a, the
one powering the MI200, MI210, and MI250X GPUs.

• ROCM_DEPS_INSTALL_DIR specifies the location
where to install ROCm dependencies. Because they are
likely not to change from one ROCm version to the next,
placing them in a dedicated location enables their reuse,
hence reducing compilation times and number of files.

• MODULEFILE_DIR sets the location where ROCm mod-
ule files are installed.

The script is also configured to use all the CPU cores
available, and to skip the build of already-installed packages
in case of re-execution.

Next, the utils.sh file containing utility Shell functions
used throughout ROCm-from-source scripts is sourced. These
are the topic of the next subsection.

ROCm-from-source can be executed on a variety of Linux
environments. A supported use case is the installation on a
Ubuntu machine. This is useful for development purposes and,

importantly, to build ROCm containers. The script will test
whether the installation is taking place on a supercomputer
or on a Ubuntu system. In the former case, the module
command is used to load the compiler and Python modules.
In the latter, it is assumed the script is run as the root user and
the apt command will be used to retrieve build dependencies
required in such scenario.

The build process is then started by sourcing, in order, the
following files:

• set_env.sh to set common Linux environment vari-
ables, such as PATH and LD_LIBRARY_PATH, as well
as ROCm specific ones like ROCM_PATH;

• install_build_deps.sh to download and install in
a temporary location build dependencies like CMake;

• install_rocm_deps.sh to install ROCm dependen-
cies; and,

• install_rocm_projects.sh to finally build and
install all the ROCm projects.

The following sections will explore each of these steps in
detail.

B. Shell functions

To simplify scripts, avoid programming mistakes, and ease
future development, repetitive sequences of Shell commands
have been wrapped in convenient high-level Shell functions.
For instance, a typical command sequence to download and
unpack source code is wget <url-to-tar>, tar xf
<tar-file>, and cd <src>. Such sequence is replaced
with a custom wget_untar_cd <url> command.

wget_untar_cd () {
url=$1
tarfile=${url##*/}
folder=${tarfile%.tar.gz}
if [-z ${BUILD_FOLDER+x}]; then

BUILD_FOLDER=".";
fi
cd ${BUILD_FOLDER}
[-e ${tarfile}] || \

run_command wget "${url}"
[-e ${folder}] || \

run_command tar xf "${tarfile}"
cd "$folder"

}

Listing 2. The implementation of the wget_untar_cd <url>

command takes care of downloading a tarball, extracting the com-
pressed folder, and changing the current work directory. Note that if
the tarball or folder is already present, the function changes directory
and nothing more.

Similarly, we abstract compilation sequences like the id-
iomatic configure, make, and make install. Eventu-
ally, ROCm-from-source can build and install from source with
a single command like configure_install <url> and
cmake_install <folder> <args>.

Within these high-level commands, logic to handle multiple
attempts at building the same source code is easily imple-
mented. For instance, if the installation process gets inter-
rupted unexpectedly, one would want to restart right before

https://github.com/PawseySC/rocm-from-source

the interruption happened, and not to rebuild everything. On
the other hand, when debugging a compilation error in a new
ROCm version, starting from a clean state is a good idea.

The collections of Shell functions in the utils.sh file
makes ROCm-from-source reliable and easy to maintain. It
also makes ROCm-from-source approachable by new users
and contributors. The author argues that the described ap-
proach is almost necessary considering the large number of
projects that must be built and installed.

C. Build environment, compiler and linker options

The build environment must be under tight control for the
installation process to be reproducible and reliable. The are
a variety of software packages, possibly multiple versions of
each, present on an HPE Cray system. The default installation
of ROCm is one of them. ROCm-from-source must ensure
that only libraries built as it proceeds are linked in the
successive steps, not the ones in other pre-existing ROCm
deployments. To pick up the right libraries at compilation time,
set_env.sh prefixes and exports the LIBRARY_PATH and
LD_LIBRARY_PATH variables with the final installation path
of ROCm projects. The RPATH field of the generated libraries
and executables is also populated with the same paths to
achieve the same behaviour during runtime. To do so, the
-rpath linker option is used within the LDFLAGS environ-
ment variable.

Only the $ROCM_PATH prefix has to be added to the search
path for the ROCm binaries to be found. This is because
ROCm is migrating from deploying each project within its
own sub-directory to placing all libraries and executables
under the same filesystem location. For instance, HIP is
not installed anymore in $ROCM_PATH/hip but it can be
found in $ROCM_PATH. The old directory is still created for
compatibility reasons, but it contains placeholder headers and
symlinks to new file locations. Warnings are generated when
header files in the old location are included.

There exist ROCm environment variables that are
needed both at build time and runtime. These are
HIP_PATH, HSA_PATH, HIP_CLANG_PATH, ROCM_PATH,
and HIP_RUNTIME. The first three point to the locations of
the respective ROCm components and are notably used within
the hipcc compiler wrapper. The ROCM_PATH variable is
used by clang to find the device libraries, and has a corre-
sponding command line argument: --rocm-path. The last
variable, HIP_RUNTIME, seems to accept only "ROCclr"
as value.

The script relies on PrgEnv-gnu’s gcc to compile ROCm
dependencies and the AMD fork of LLVM. Once clang has
been compiled, it is set to be compiler for ROCm projects.
The gfortran compiler is used to compile Fortran code in
rocBLAS and other numerical libraries. The author tried to use
HPE Cray compiler wrappers for C/C++ instead of directly
executing gcc but they resulted in link errors. Compilation
with the PrgEnv-cray module has not yet been attempted,
but the author does not see any potential issue given that the
underlying compiler is Clang.

ROCm projects use CMake to define their build process.
Many of them depend on HIP and resolve such a dependency
by leveraging CMake’s built-in support for HIP. This feature is
found in CMake version 3.21 or newer. If no suitable version
of CMake is found in the system, one will be compiled from
source.

D. ROCm dependencies

ROCm depends on several software libraries that may not be
present on an HPE Cray system, or that are installed without
all the required components. Examples are libX11, libdrm,
elfutils, and gettext. For some projects, dependencies
were listed in the project description. For others, they were dis-
covered during the build process through CMake configuration
errors and inspecting CMakeLists.txt files. Discovering
and installing all dependencies from source was one of the
most time-consuming step of the development of ROCm-
from-source. Considerable effort went also towards identifying
environment variables that interfere with configure scripts. An
example is the LDFLAGS variable causing compilation errors
in elfutils, or the CPLUS_INCLUDE_PATH interfering
with the Boost build.

Interestingly, the rocprofiler project requires the closed-
source aqlprofiler library, developed by AMD. Only its binary
is distributed. In ROCm-from-source, the binary is downloaded
and placed in the appropriate lib64 directory. There have
been discussions [8] in the community on whether the source
code could be provided. Some managed to modify the code
of rocprofiler to remove the dependency altogether.

E. ROCm projects

ROCm is open source and thus all projects are available
on GitHub. One particular repository, https://github.
com/RadeonOpenCompute/ROCm, acts as index of all the
others. The repo command can download and checkout many
repositories in parallel. As a first step towards compiling
ROCm, our script downloads all the indexed repositories
by providing the repo command with the index repository.
Instructions to do so were present on a now-old documentation
page [4]. There are a couple of projects missing from the
index, as a result of refactoring processes, such as hipRAND
and Flang. Those are downloaded separately.

In the initial attempts at compiling ROCm the author tried
to download and compile one project at a time but would even-
tually hit compilation errors. It turned out that many ROCm
projects, at least in the release version 4.5.0, relied on the
presence of the other projects within the same parent directory.
Relative paths to access each other files were commonly seen
in source code and CMakeLists.txt files. While project
configurations have improved, the use of the repo tool is the
expected way of retrieving ROCm source code.

In the beginning the author’s plan was to compile HIP,
followed by the numerical libraries and, finally, supporting
tools like rocgdb. However, the order in which projects
had to be compiled was not fully documented. A reverse
engineering approach was followed during which, starting

https://github.com/RadeonOpenCompute/ROCm
https://github.com/RadeonOpenCompute/ROCm

ROCT-Thunk-
Interface ROCK-Kernel-Driver

LLVMROCR-Runtime

OpenMP

HIP hipamdROCclr

rocprofilerroctracer ROCm num. libs.

HIP libraries

Fig. 3. A simplified diagram showing direct build dependencies among
principal ROCm projects.

from a project, the author worked recursively his way towards
all the required dependencies. The discovery of the AOMP
project somewhat helped speeding up the process. It is a
scripted build of AMD’s LLVM that represents another source
of information regarding the expected configuration of some
projects [3]. Figure 3 shows a simplified dependency graph
relating major ROCm projects.

The build and installation of each ROCm project is handled
by CMake. With the cmake_install Shell function doing
the heavy lifting, such that each project can be compiled with
a single command line, what is left for the author to determine
are the correct CMake options. When ROCm-from-source
started, not every ROCm project documented CMake build
instructions. The reason still holds today. Most users install
the software using provided installer scripts, including the
developers themselves. Hence, the author scanned those scripts
to find the right combinations of build parameters. Given the
complexity of those scripts, sometimes direct help from AMD
developers was crucial [5]. One of the ROCm developers
reached out for feedback on the ROCm installation process.
The outcome of the exchange was better documentation around
the CMake options for each project.

The HIP project makes an interesting case of why building
ROCm from source is not easy. There exist two repositories
implementing HIP: HIP, also referred to as common HIP, and
hipamd. The former is a platform-agnostic implementation:
it can be compiled for either ROCm or CUDA. The latter
extends the former to provide a specialised implementation for
AMD GPUs. In addition, HIP depends on ROCclr, Radeon
Open Compute Common Language Runtime, which enables
portability across Windows and Linux. What projects to com-
pile and in which order is not easily understood. For instance,
ROCclr documentation shows how to compile the project on
its own [2]. However, HIP documentation implies ROCclr is

now built during the HIP build process, with only the path to
its source code to be provided.

The AMD fork of LLVM supplies the compiler infras-
tructure within ROCm. Several LLVM projects are required,
all are installed under the $ROCM_PATH/llvm prefix. The
Clang project results in a compiler that is used by the hipcc
wrapper script to compile HIP code. The device-side runtime
and libraries are implemented in the ROCM-Device-Libs ex-
ternal project of LLVM. Once compiled, device libraries are
present under the $ROCM_PATH/llvm/amdgcn/bitcode
directory. The hipcc compiler driver expects to find
$ROCM_PATH/amdgcn/bitcode instead, so ROCm-from-
source makes sure the required symlink is created. AMD
forked the “Classic Flang” project to provide a Fortran com-
piler with optimisations for its hardware, hence ROCm-from-
source avoids building the in-tree LLVM Flang. LLVM im-
plements OpenMP offloading (computations to GPUs) within
the libomptarget library. In AMD pre-built ROCm 4.5.0,
Clang was not compiled with this feature enabled. At the
time, ROCm-from-source offered a way of enabling and
testing OpenMP offloading. In ROCm 5.0 and later, OpenMP
offloading is available by default.

A trial and error process, combined with the guidance
provided by AOMP build scripts, gave the author knowledge
on how to compile the LLVM stack. The ROCm-Device-
Libs project is better built together with LLVM, specifying
it as external project in the CMake command line. The
OpenMP runtime, on the other hand, has to be compiled sepa-
rately. It depends on ROCR-Runtime, which in turns requires
Clang and the device libraries to be already built. Hence,
the LLVM_ENABLE_RUNTIMES CMake option is not to be
used when building LLVM. Finally, Classic Flang requires
building three different projects, in the following order: the
libpgmath dependency, Flang, and the Flang runtime.

F. Patches and bug fixes

Minor bugs in build configurations and source code are
routinely found in ROCm projects. Most likely due to the rapid
development process, these issues have to be fixed for ROCm
to be compiled successfully. Importantly, thanks to ROCm
being open source, the author contributes to the affected
projects with GitHub pull requests to patch the upstream code,
or opened GitHub issues.

An interesting example is represented by the roctracer and
rocprofiler projects in ROCm 5.3.0. There seems to be a
circular dependency between the two, whereby roctracer needs
rocprofiler headers, and rocprofiler depends on roctracer being
built and its header files being installed. The quick fix adopted
to make roctracer compile is manually copying rocprofiler
header files within the roctracer project directory.

The rocBLAS build process installs Tensile, a dependency,
within a Python virtual environment. Because previously in-
stalled Python dependencies are placed in a custom filesys-
tem location, they are not included in the newly created
environment. This causes Tensile not to work properly. The
solution adopted is to install Tensile in the same custom

location, avoiding virtual environments altogether. A patch to
the CMakeLists.txt file of rocBLAS implements the fix
using a couple of command lines.

The build configuration of the ROCm projects is such
that CMake looks for dependencies in the default ROCm
installation path, which is /opt/rocm. This behaviour can-
not be easily changed through a CMake parameter because
the path is hardcoded into the CMakeLists.txt file. A
sed command is then used to replace /opt/rocm with the
$ROCM_INSTALL_DIR value.

Other patches address wrong type casting in roctracer and
hipamd codes, wrong installation of HIPIFY binaries and HIP
CMake config files, and the removal of problematic flags in the
compilation of LLVM OpenMP. The need for these patches are
reviewed at each new ROCm release, and possibly new ones
are generated.

VI. DEPLOYMENT ON HPE CRAY EX

The author identified two aspects of deploying ROCm on
a HPE Cray EX system. The build and installation process
is one; the other is integrating it with other applications and
tools.

ROCm-from-source was designed to minimise the num-
ber of dependencies coming from the external environment.
Hence, deploying ROCm on an HPE Cray system is conceptu-
ally no different, nor harder, than installing any other package
from source. Unfortunately, the compiler wrappers available in
the Cray Programming Environment disrupt the linking stage
for some of the ROCm projects and dependencies. Fortunately,
the author does not see any advantage in using them, given
that Clang will be used to compile ROCm projects in any case.

Pawsey-built ROCm complements the one already present
on the HPE Cray OS image. It is currently installed as part of
the software stack based on the GNU Programming Environ-
ment, like all other software. ROCm libraries are integrated
into the Spack software manager as external packages. In this
way, they are available to satisfy dependency requirements
during GPU-enabled software installations.

Pawsey staff have started exploring the way Cray Pro-
gramming Environments leverage ROCm to offload compu-
tations to AMD GPUs. The test case is a Fortran code that
implements matrix multiplication and uses OpenACC. The
author attempted to compile and run the program with both
the preinstalled ROCm 5.0.2 and our custom build, and with
the Cray and GNU programming environments. The GNU
environment, gfortran version 12 in particular, seems to
compile the code and link the executable to ROCm libraries.
However, computation still happens on the CPU, indicating
that perhaps one must wait the support for the gfx90a ISA in
GCC 13.

The code compiles and runs on GPU as expected when
using the Cray Programming Environment with the HPE Cray-
installed rocm/5.0.2. One must remember to also load
the craype-accel-amd-gfx90a module, otherwise GPU
offloading directives are quietly ignored. Warnings and errors

arises during the compilation with ROCm 5.4.3 built from
source, as shown in listing 1.

Warning: Cannot find all neccessary
path for loaded rocm version!!!
lld: error: undefined symbol:
__ockl_get_num_groups

>>> referenced by [...] cce-openmp__llc.amdgpu

Listing 1. Warning and error messages when compiling with custom
ROCm suggests missing libraries or incompatible ROCm version.

Without having access to internal documentation or source
code of the Cray Fortran compiler, we can only take a guess
on what those messages mean. The warning suggests the
installation directory tree does not look like it should according
to the CPE. This may be due to a project not being installed
or to a difference in the installation layout between the two
ROCm versions. The linking error might be a consequence of
the first warning.

What can also be inferred by listing 1 is that OpenACC
directives are translated to OpenMP ones. Further investiga-
tions running the compiler in verbose mode confirms it: the
cce_omp_offload_linker executable, part of the LLVM
build by HPE Cray, is called.

VII. BUILD ROCM CONTAINERS

ROCm-from-source is well suited for building custom
ROCm containers. Scripts are written in the Shell scripting
language, and the build process relies on external dependencies
only minimally. Hence, building a container is as easy as
executing the main script from within a Dockerfile or a
Singularity definition file.

%post
apt-get -y update
export ROOT_INSTALL_DIR=/opt/rocm
export CPATH=/usr/include/python3.9:$CPATH
/rocm-from-source/install_rocm.sh
rm -rf /rocm-from-source

Listing 2. Excerpt from a Singularity definition file where ROCm-
from-source is used to build a ROCm container.

The advantage of building your own ROCm container is
again found in more control over installed software, new
features enabled within ROCm projects, and possibility of
reducing the container size by choosing a lightweight operative
system image.

Within this space, Pawsey looks forward to provide its
users with Tensorflow and PyTorch containers. Currently,
the Tensorflow container distributed by AMD lacks several
required Python packages and so it is unable to run out of the
box. GPU-enabled OpenFOAM containers represent another
use case. OpenFOAM is a Computational Fluid Dynamics
(CFD) software that can be built in many different ways, and
containers are the preferred way for Pawsey to support it.

VIII. TESTING

ROCm installations produced by ROCm-from-source were
tested on a variety of systems at Pawsey. These include AMD

provided high-end servers featuring MI100 GPU cards, and
the Test and Development System (TDS) for Setonix. A fresh
installation takes less than two hours using sixty-four CPU
cores and, with the currently enabled projects, occupies around
7 GB of disk space. This figure does not include machine
learning libraries, as explained in the Future work section.
The author verified, by manual inspection, that all major
components were indeed installed. Simple HIP applications
and benchmarks were compiled and run successfully. OpenMP
offloading for the C++ language works correctly, but the
Flang offloading capabilities will only be present starting from
LLVM 16.

All was done in preparation for Setonix, the Pawsey su-
percomputer currently being brought to production. Unfor-
tunately, delays in the commissioning process meant that
source builds of ROCm could not be thoroughly evaluated
with production codes and workloads. Moreover, experiments
that involve the help of a system administrator, like a com-
parison with a RPM installation, could not be performed
due to commissioning-related tasks having higher precedence.
As discussed in previous sections, integration with the Cray
environment is still a work in progress. However, some pre-
liminary testing on Setonix has been already done. The ROCm
Validation Suite executed successfully, and results align with
the ones of the preinstalled ROCm 5.0.2. One significant issue
yet to be solved came up. The AMD GPU driver is too old
for ROCm 5.4.3 and some components might not work, like
rocgdb.

Very recently, Pawsey has granted selected research groups
access to the GPU partition of Setonix. They have available
the latest ROCm, which was built with ROCm-from-source,
and will be using it in the incoming weeks to develop highly
scalable software as part of the Pawsey Center for Extreme-
scale Readiness (PaCER) program.

IX. CONCLUSIONS AND FUTURE WORK

This paper introduced a source build process for AMD
ROCm that targets installations on a supercomputer. While
doing so, the author gave an overview of the main components
of ROCm, discussed complexities of said software and the
difficulties encountered while compiling it. Researchers will
only start testing the deployment during the incoming weeks,
but early results are encouraging and Pawsey already provides
a source build of ROCm alongside the one installed on the
HPE Cray operative system image.

All the ROCm components needed for high performance
computing, namely HIP and numerical libraries, have been
taken care of. The work is not finished yet, however, because
other projects must be compiled. Machine learning libraries
like MIOpen were also included in the build process in
early versions of ROCm-from-source. As the focus moved
to fixing issues around LLVM and numerical libraries, the
author decided to pause efforts on components of secondary
importance to Pawsey. In the near future, the work on machine
learning libraries will resume as Pawsey seeks to provide users
with optimised Tensorflow and PyTorch containers.

Future effort will be dedicated to installing ROCm outside
of a Cray Programming Environment. We would then provide
ROCm as an additional programming environment. Enabling
and testing the OpenCL runtime is another future objective
of great importance. A few research groups and third-party
applications use OpenCL as their framework of choice to
offload computations to GPUs.

To support systems whose compute nodes do not have
Internet access, ROCm-from-source could be rewritten to
work with source tarballs downloaded beforehand. At the
moment, source code for each ROCm dependency is retrieved
right before its compilation. Finally, keeping up with new
ROCm releases will be an ongoing concern for the author. In
particular, new projects may be added to ROCm, patches may
need to be revisited or removed altogether, new bugs fixed.

REFERENCES

[1] Torsten Keßler Akash Patel. ROCm for Arch Linux. https://github.com/
rocm-arch/rocm-arch (accessed: March 13th, 2023), January 2019.

[2] AMD. ROCclr - Radeon Open Compute Common Language
Runtime. https://github.com/ROCm-Developer-Tools/ROCclr (accessed
March 29th, 2023).

[3] AMD. The AOMP repository. https://github.com/
ROCm-Developer-Tools/aomp (accessed: March 28th, 2023).

[4] AMD. Getting ROCm source code. https://sep5.readthedocs.io/en/latest/
Installation Guide/Installation-Guide.html#getting-rocm-source-code
(accessed: March 13th, 2023), January 2014.

[5] Cristian Di Pietrantonio. [Bug]: wrong include statement? .
https://github.com/ROCmSoftwarePlatform/rocBLAS/issues/1255
(accessed: March 28th, 2023).

[6] Todd Gamblin, Matthew LeGendre, Michael R. Collette, Gregory L.
Lee, Adam Moody, Bronis R. de Supinski, and Scott Futral. The
spack package manager: bringing order to hpc software chaos. In SC
’15: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1–12, 2015.

[7] Xu Huisheng. rocm-build. https://github.com/xuhuisheng/rocm-build
(accessed: March 13th, 2023), December 2022.

[8] littlewu2508. Possiblity of providing the source code of libhsa-amd-
aqlprofile64. https://github.com/RadeonOpenCompute/ROCm/issues/
1781 (acccessed: April 14th, 2023).

https://github.com/rocm-arch/rocm-arch
https://github.com/rocm-arch/rocm-arch
https://github.com/ROCm-Developer-Tools/ROCclr
https://github.com/ROCm-Developer-Tools/aomp
https://github.com/ROCm-Developer-Tools/aomp
https://sep5.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#getting-rocm-source-code
https://sep5.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#getting-rocm-source-code
https://github.com/ROCmSoftwarePlatform/rocBLAS/issues/1255
https://github.com/xuhuisheng/rocm-build
https://github.com/RadeonOpenCompute/ROCm/issues/1781
https://github.com/RadeonOpenCompute/ROCm/issues/1781

	Introduction
	Background
	GPU software development platforms

	Motivation
	Related Work
	Spack
	Scripted builds

	ROCm-from-source
	The driver script
	Shell functions
	Build environment, compiler and linker options
	ROCm dependencies
	ROCm projects
	Patches and bug fixes

	Deployment on HPE Cray EX
	Build ROCm containers
	Testing
	Conclusions and future work
	References

