
Building AMD ROCm from Source on a
Supercomputer
Cristian Di Pietrantonio
cdipietrantonio@pawsey.org.au

2023 Cray User Group

Pawsey Supercomputing Research Centre

Headquarted in Perth, Western Australia, Pawsey has a 20-year long history. Offers
critical support to radioastronomy research around the Square Kilometre Array (SKA).
The centre underwent a 70m capital refresh financed by the Australian government.
Currently employs 60+ staff.

2 / 20

The Setonix supercomputer

Australia’s most powerful research supercomputer.
HPE Cray EX system with 200’000 AMD Zen3 CPU
cores and 750+ MI250X GPUs.
50 PFLOPS, 90% coming from AMD GPUs.
15PB /scratch storage.
15th in TOP500, 4th in Green500.
Artwork by aboriginal artist Margaret Whitehurst.

3 / 20

Outline

Pawsey presents ROCm-from-source, a source build system for ROCm.
Background and motivation
ROCm: an overview
Related work
Introduction to ROCm-from-source
Deployment on Setonix (HPE Cray Ex system)
Conclusion and future work

4 / 20

Background and motivation

AMD GPUs are adopted by major supercomputers in the world. The corresponding
software development platform and runtime is ROCm.

Still in rapid development, with features added at each release.
Critical to provide researchers with the latest version.
Provided installation methods not suitable for fast deployment on supercomputers.

We want:
a non-root installation method;
custom installation path;
explicit dependency versions; and,
a method easy to execute and to update.

5 / 20

ROCm: an overview

Kernel driver & low-level API.
HSA Runtime & device libraries.
LLVM as the compiler infrastructure.
Several programming models and
libraries.
Tens of projects overall.

GPU

ROCK-Kernel-Driver

ROCT-Thunk-Interface

ROCR-Runtime

OpenCL

OpenMP

ROCK-Kernel-Driver
ROCm-Device-Libs

ROCclr

HIP

Libraries
(rocFFT, etc)

MIOpen (Machine Learning)

6 / 20

Comparison with Spack
Related work

ROCm support in Spack has come a long way since this work started. Despite that,
there are a couple of reasons to prefer ROCm-from-source to Spack now that ROCm is
rapidly evolving.

A Spack deployment might not be updated as often (hence outdated recipes).
Updating ROCm-from-source it is easier than updating many recipes.
ROCm-from-source installs all ROCm projects in one go.
ROCm-from-source tries to retain the “official” installation tree structure (might be
important for the Cray environment).
Spack may be the way to go when ROCm is mature?

7 / 20

Other scripted builds
Related work

There exist other scripted builds, motivated by
machine learning applications.
They rely on packet managers for dependencies.
Not ready to be executed as is (interpreted recipes,
extensive modification required).
Not comprehensive of all ROCm projects.
They provided a good source of information about
CMake options.
AMD provides the AOMP project, a scripted build
of AMD’s fork of LLVM.

8 / 20

ROCm-from-source

ROCm-from-source is a source build system for ROCm written entirely in Shell.
Requires only a minimal set of external dependencies (AMD kernel drivers,
common Linux commands).
No root permissions required, dependencies also built from source.
Convenient set of Shell functions make the build process easy to understand and
work on.
Can enable projects that are still experimental (e.g. rocWMMA).
Can be used to build containers (e.g. only install necessary components).
Available at https://github.com/PawseySC/rocm-from-source.

9 / 20

https://github.com/PawseySC/rocm-from-source

ROCm-from-source

Installing ROCm from source is as easy as running the following commands:

git clone --branch rocm5.4.3rev0 \
https://github.com/PawseySC/rocm-from-source.git

export ROOT_INSTALL_DIR=/software/setonix/2022.11/rocm
./rocm-from-source/install_rocm.sh

10 / 20

The driver script

The install_rocm.sh script orchestrates the execution of various other helper scripts
with the goal of installing ROCm.

Sets sensible defaults for input variables (GFX_ARCHS).
Sources all other Shell script files:

1 utils.sh: custom Shell functions.
2 install_build_deps.sh: retrieves build dependencies (for instance, CMake and

repo).
3 install_rocm_deps.sh: installs ROCm dependencies (libX11, boost, libdrm,

. . .).
4 install_rocm_projects.sh: retrieves and installs ROCm projects.

Avoids reinstalling ROCm dependencies if not necessary.
Create ROCm module file.

11 / 20

Shell functions

Repetitive sequences of Shell commands have been wrapped in convenient high-level
Shell functions.

wget <url-to-tar>, tar xf <tar-file>, and cd <src> becomes
wget_untar_cd <url>

In the same way we define cmake_install and configure_install;
the described approach is necessary considering the large number of projects that
must be built and installed.

12 / 20

Shell functions

wget_untar_cd () {
url=$1
tarfile=${url##*/}
folder=${tarfile%.tar.gz}
cd ${BUILD_FOLDER}
[-e ${tarfile}] || \

run_command wget "${url}"
[-e ${folder}] || \

run_command tar xf "${tarfile}"
run_command cd "$folder"

}

configure_build () {
run_command cd ${BUILD_FOLDER}
wget_untar_cd $1
if [-e rfs_installed] && \

[${SKIP_INSTALLED} -eq 1]; then
echo "Package already installed. Skipping.."
else
if [$CLEAN_BUILD -eq 1]; then

echo "Cleaning build directory.."
make clean

fi
run_command ./configure --prefix="${INSTALL_DIR}"
run_command make -j $NCORES install
run_command touch rfs_installed

fi
cd ${BUILD_FOLDER}
}

13 / 20

Build environment, compiler and linker options

The build environment must be under tight control for the installation process to be
reproducible and reliable.

Makes sure other installations of ROCm are not picked up.
Done through environment variables and patches to CMakeLists.txt files.
At runtime this is achieved using RPATH.

Sets ROCm specific environment variables: HIP_PATH, HSA_PATH,
HIP_CLANG_PATH, ROCM_PATH, and HIP_RUNTIME

Using gcc to build ROCm deps and LLVM, then switch to hipcc (clang).
Cray wrappers cause some issues at the link stage during the compilation of some
packages.
Be mindful of libstdc++ / libc++

14 / 20

ROCm dependencies

ROCm depends on several software libraries that may not be present on an HPE Cray
system, or that are installed without all the required components.

Examples are libX11, libdrm, elfutils, and gettext.
Dependencies for each ROCm project were/are not documented well.
Installed dependencies as they were discovered.
Interestingly, the rocprofiler project requires the closed-source aqlprofiler library,
developed by AMD.

15 / 20

ROCm projects - dependency graph

ROCT-Thunk-
Interface ROCK-Kernel-Driver

LLVMROCR-Runtime

OpenMP

HIP hipamdROCclr

rocprofilerroctracer ROCm num. libs.

HIP libraries

ROCm is open source and thus all projects
are available on GitHub.

One particular repository,
https://github.com/
RadeonOpenCompute/ROCm acts as an
index. The repo command must be
used to download all the projects.
Had to discover the dependency graph
between projects, which was not well
documented.
LLVM is the most complex installation.
LLVM Flang vs “Classic Flang”.

16 / 20

https://github.com/RadeonOpenCompute/ROCm
https://github.com/RadeonOpenCompute/ROCm

Patches and bug fixes

Minor bugs in build configurations and source code are routinely found in ROCm
projects. Patches are generated and applied before compilation.

Avoid the use of virtual environments.
Wrong installation prefix for HIPIFY binaries and HIP CMake config files.
Hardcoded /opt/rocm path within CMakeLists.txt files.
Problematic flags in the compilation of LLVM OpenMP.
Programming errors.

17 / 20

Deployment on HPE Cray EX

Two aspects of deploying ROCm on a HPE Cray EX system.
Build and installation process. Minimal external dependencies, so not harder
than installing any other package from source.
Integration with other applications and tools

Currently installed as part of the PrgEnv-gnu software stack, like all other software.
ROCm libraries are integrated into the Spack software manager as external packages.
More work needs to be done as our installation did not work with AMD tools such as
Omniperf and Omnitrace.

Currently, several projects are using HIP and HIP libraries from our custom
installation.

18 / 20

Deployment on HPE Cray EX - continued

Pawsey staff have started exploring the way Cray Programming Environments leverage
ROCm to offload computations to AMD GPUs. We used a matrix multiplication
example using OpenACC offloading. When using our ROCm build together with
crayftn, the following error message suggests more work is to be done on our side.

Warning: Cannot find all neccessary
path for loaded rocm version!!!
lld: error: undefined symbol:
__ockl_get_num_groups
>>> referenced by [...] cce-openmp__llc.amdgpu

Seems like OpenACC directives are translated to OpenMP ones. Further investigations
running the compiler in verbose mode confirms it.

19 / 20

Conclusion and future work

This paper introduced a source build process for AMD ROCm that targets installations
on a supercomputer.

HIP and numerical libraries have been taken care of.
More work needed for OpenMP offloading to work. Especially with the Cray
compilers.
Testing with other tools such as Omnitrace and Omniperf.
Compiling machine learning libraries and containers.

20 / 20

