
Porting a large cosmology code to GPU,
a case study examining JAX and
OpenMP.
Cray User Group 2023

1

Nestor Demeure1, Theodore Kisner2, Reijo Keskitalo2, Rollin Thomas1,
Julian Borrill2, and Wahid Bhimji1
1 National Energy Research Scientific Computing Center, Berkeley CA, United-States
2 Computational Cosmology Center, Berkeley CA, United-States

Who am I?

I am a NESAP Postdoctoral Researcher at NERSC with a focus on high
performance computing, numerical accuracy and artificial intelligence.

I specialize in helping teams of researchers make use of high performance
computing environments.

I am currently working to help port the TOAST software framework to the new
Perlmutter supercomputer and, in particular, port it to graphic processors (GPU).

2

https://github.com/hpc4cmb/toast

Can we have good GPU
performance, portability and

productivity?

3

Porting a Python code to GPU

4

Pros and cons of the current approaches

Using off-the-shelf kernels

Call a library providing off-the-shelf kernels:

■ Numpy ➡ Cupy
■ Scipy ➡ Cupy
■ Pandas ➡ RAPIDS CuDF
■ Scikit-learn ➡ RAPIDS CuML

■ Very easy to use,
■ perfect if you find what you need,
■ cannot write your own kernel,
■ performance loss:
➖ allocating intermediate values,
➖ more data transfers to the GPU.

5

https://numpy.org/
https://docs.cupy.dev/en/stable/reference/routines.html
https://scipy.org/
https://docs.cupy.dev/en/stable/reference/scipy.html
https://pandas.pydata.org/
https://docs.rapids.ai/api/cudf/stable/
https://scikit-learn.org/stable/
https://docs.rapids.ai/api/cuml/stable/

Writing a kernel in a low-level language

Write a kernel in CUDA / HIP / SYCL / OpenMP Target Offload / etc and link it in
Python.

You can use PyOpenCL or PyCuda to link your kernel.

■ Perfect control of performance,
■ hard to reuse numerical building blocks (PRNG, FFT, linear algebra),
■ usually requires a lot of expertise:
➖ to write correct code,
➖ to write code that is actually performant,
➖ to compile and link the result into Python.

6

https://documen.tician.de/pyopencl/
https://documen.tician.de/pycuda/

Writing a kernel in Python

Write a kernel in Python using:

■ Numba,
➖ limited Numpy support,
➖ low-level CUDA-like syntax,

■ Taichi
➖ focus on graphics,
➖ requires implementing most of the operations you need from scratch,

■ Triton
➖ no library support,
➖ low-level unique syntax.

■ Full Python codebase,
■ can still be very low-level,
■ very limited building blocks. 7

https://numba.readthedocs.io/en/stable/cuda/index.html
https://www.taichi-lang.org/
https://github.com/openai/triton

Using a deep-learning library

Use a deep-learning library:

■ Pytorch
■ Tensorflow
■ JAX

■ Great for deep-learning,
■ easy to use and well documented,
■ support for most numerical building blocks,
■ usually, a large overhead:
➖ gradient computation,
➖ intermediate values.

8

https://pytorch.org/
https://www.tensorflow.org/
https://jax.readthedocs.io/en/latest/

Can we have good GPU
performance, portability and

productivity?

Examining OpenMP Target Offload and Jax.

9

Introducing OpenMP Target Offload

10

High-level introduction to OpenMP Target Offload

What is OpenMP Target Offload?

OpenMP is the classical shared memory parallelism framework. Since
version 4.0 it includes target commands to run code on device.

It promises:

■ Portability,

■ high-level code,

■ building on existing OpenMP expertise and infrastructures.

11

OpenMP Target Offload’s limitations

■ Limited compiler support,

■ reduced access to optimization,

■ default, automatic, data management can be costly.

Lower level than might appear at first.

12

Introducing JAX

13

High-level introduction to JAX

What is JAX?

JAX is a Python library to write code that can run in parallel on:

■ CPU,
■ GPU (Nvidia and AMD),
■ TPU,
■ etc.

Developed by Google as a building block for deep-learning frameworks. Seeing
wider use in numerical applications including:

■ Molecular dynamics,
■ computational fluid dynamics,
■ ocean simulation,
■ cosmology. 14

https://github.com/google/jax
https://github.com/google/jax/issues/2012
https://github.com/google/jax-md
https://github.com/google/jax-cfd
https://arxiv.org/abs/2203.13760
https://veros.readthedocs.io/en/latest/
https://github.com/eelregit/pmwd

What does JAX look like?

It has a Numpy-like interface:

15

from jax import random
from jax import numpy as jnp

key = random.PRNGKey(0)
x = random.normal(key, shape=(3000, 3000), dtype=jnp.float32)
y = jnp.dot(x, x.T) # runs on GPU if available

How does JAX work?

Calls a just-in-time compiler when you execute your function with a new
problem size:

16

JAX’s limitations

■ Compilation happens just-in-time, at runtime,
easily amortized on a long running computation

■ input sizes must be known to the tracer,
padding, masking and recompiling for various sizes

■ loops and tests are limited inside JIT sections,
JAX provides replacement functions

■ no side effects and no in-place modifications,
one gets used to it, it actually helps with correctness

■ focus on GPU optimizations rather than CPU.
there is growing attention to the problem

17

JAX’s strengths

18

■ Focus on the semantic, leaves optimization to the compiler,

■ single code base to deal with CPU and GPUs,

■ immutable design is actually nice for correctness,

■ easy to use numerical building blocks inside kernels.

Case study

19

Porting the TOAST codebase to GPU

TOAST

TOAST is a large Python application used to study the cosmic microwave
background.

It is made of pipelines distributed with MPI and composed of C++ kernels
parallelized with OpenMP.

Kernels use a wide variety of numerical methods including random number
generation, linear algebra and fast fourier transforms.

We ported 10 kernels to GPU.

20

https://github.com/hpc4cmb/toast

Porting the code: OpenMP Target offload

Settled on the NVIDIA NVC compiler.

Duplicated the kernel’s main loops into CPU and GPU versions.

Data movement is expensive, we move data once at the beginning and end of
each pipeline call.

21

Porting the code: OpenMP Target offload

22

void stokes_weights_IQU(int32_t const* quat_index, double const* quats, int32_t const* weight_index,
 double* weights, double const* hwp, double const* epsilon, double cal,
 Interval const* intervals, int64_t const n_det, int64_t const n_samp,
 int64_t const n_view) {

 auto& omgr = OmpManager::get();
 int dev = omgr.get_device();

 double* dev_quats = omgr.device_ptr(quats);
 double* dev_weights = omgr.device_ptr(weights);
 Interval* dev_intervals = omgr.device_ptr(intervals);
 double* dev_hwp = omgr.device_ptr(hwp);

 #pragma omp target data device(dev) map(to: weight_index[0:n_det], quat_index[0:n_det], epsilon[0:n_det], cal, n_view, n_det, n_samp)
 #pragma omp target teams distribute collapse(2) is_device_ptr(dev_weights, dev_quats, dev_hwp, dev_intervals)
 for (int64_t idet = 0; idet < n_det; idet++) {
 for (int64_t iview = 0; iview < n_view; iview++) {
 #pragma omp parallel for default(shared)
 for (int64_t isamp = dev_intervals[iview].first; isamp <= dev_intervals[iview].last; isamp++) {
 stokes_weights_IQU_inner(cal, raw_quat_index, raw_weight_index, dev_quats, dev_hwp,
 raw_epsilon, dev_weights, isamp, n_samp, idet);
 } } } }

Porting the code: JAX

Kernels were ported from C++ to Numpy to JAX and validated using unit tests.

Kernels loop on irregular intervals, we introduced a JaxIntervals type to
automate padding and masking.

Kernels mutate output parameters, we introduced a MutableJaxArray type to
box JAX arrays.

23

Porting the code: JAX

24

def stokes_weights_IQU_jax(quat_index, quats, weight_index, weights,
 hwp, intervals, epsilon, cal):
 # prepares inputs
 intervals_max_length = INTERVALS_JAX.compute_max_intervals_length(intervals)
 quat_index_input = MutableJaxArray.to_array(quat_index)
 quats_input = MutableJaxArray.to_array(quats)
 weight_index_input = MutableJaxArray.to_array(weight_index)
 weights_input = MutableJaxArray.to_array(weights)
 hwp_input = MutableJaxArray.to_array(hwp)
 epsilon_input = MutableJaxArray.to_array(epsilon)

 # runs computation
 weights[:] = stokes_weights_IQU_interval(quat_index_input, quats_input, weight_index_input, weights_input,
 hwp_input, epsilon_input, cal, intervals.first, intervals.last, intervals_max_length)

jit compiling
stokes_weights_IQU_interval = jax.jit(stokes_weights_IQU_interval,
 static_argnames=["cal", "intervals_max_length"],
 donate_argnums=[3]) # donating weights

Porting the code: JAX

25

def stokes_weights_IQU_interval(quat_index, quats, weight_index, weights, hwp, epsilon, cal,
 interval_starts, interval_ends, intervals_max_length):
 # extract interval slices
 intervals = JaxIntervals(interval_starts, interval_ends+1, intervals_max_length) # end+1 as the interval is inclusive
 quats_interval = JaxIntervals.get(quats, (quat_index,intervals,ALL)) # quats[quat_index,intervals,:]
 hwp_interval = JaxIntervals.get(hwp, intervals) # hwp[intervals]

 # does the computation
 new_weights_interval = stokes_weights_IQU_inner(epsilon, cal, quats_interval, hwp_interval)

 # updates results and returns
 # weights[weight_index,intervals,:] = new_weights_interval
 weights = JaxIntervals.set(weights, (weight_index, intervals, ALL), new_weights_interval)
 return weights

maps over samples, intervals and detectors
stokes_weights_IQU_inner = jax.xmap(stokes_weights_IQU_inner,
 in_axes=[['detectors'], # epsilon
 [...], # cal
 ['detectors','intervals','interval_size',...], # quats
 ['intervals','interval_size']], # hwp
 out_axes=['detectors','intervals','interval_size',...])

Porting the code: Code size

26

Performance per process

27

Performance per kernel (up to x42 speed-up)

28

Conclusion

29

Overview and Perspectives

Overview

30

■ High level framework are a viable path to good GPU performance, portability
and productivity.

■ OpenMP Target Offload is best used on large preexisting OpenMP kernels:
➖ update existing code progressively,
➖ more work to get to performant code,
➖ gateway to GPU computing for C++ programmers.

■ JAX is best used on new Python project:
➖ design for simpler code,
➖ possibility to JIT more / all code,
➖ sweet spot for research and complex numerical codes.

Perspectives

This was a proof of concept, we can improve and simplify things significantly:

■ Fix small performance bugs,

■ scale up to all kernels, including the most complex ones,

■ default to JAX arrays and pure functions,

■ redesign pipelines to JIT them into single GPU kernels.

31

Perspectives

This was a proof of concept, we can improve and simplify things significantly:

■ Fix small performance bugs,

■ scale up to all kernels, including the most complex ones,

■ default to JAX arrays and pure functions,

■ redesign pipelines to JIT them into single GPU kernels.

Trust our compilers and report their shortcomings as bug?

32

Thank you!

33

ndemeure@lbl.gov

mailto:ndemeure@lbl.gov

