

Porting a large cosmology code to GPU, a case study examining JAX and OpenMP. Cray User Group 2023

Nestor Demeure¹, Theodore Kisner², Reijo Keskitalo², Rollin Thomas¹, Julian Borrill², and Wahid Bhimji¹ ¹ National Energy Research Scientific Computing Center, Berkeley CA, United-States

² Computational Cosmology Center, Berkeley CA, United-States

I am a **NESAP Postdoctoral Researcher at NERSC** with a focus on high performance computing, numerical accuracy and artificial intelligence.

I specialize in helping teams of researchers make use of high performance computing environments.

I am currently working to help port the <u>TOAST software framework</u> to the new Perlmutter supercomputer and, in particular, port it to graphic processors (GPU).

Can we have good GPU performance, portability and productivity?

Porting a Python code to GPU

Pros and cons of the current approaches

Call a library providing off-the-shelf kernels:

- $\blacksquare \underline{\text{Numpy}} \Rightarrow \underline{\text{Cupy}}$
- Scipy ⇒ Cupy
- Pandas ➡ RAPIDS CuDF
- <u>Scikit-learn</u> ➡ <u>RAPIDS CuML</u>
- Very easy to use,
- perfect if you find what you need,
- cannot write your own kernel,
- performance loss:
 - allocating intermediate values,
 - more data transfers to the GPU.

Write a kernel in CUDA / HIP / SYCL / OpenMP Target Offload / etc and link it in Python.

You can use <u>PyOpenCL</u> or <u>PyCuda</u> to link your kernel.

- Perfect control of performance,
- hard to reuse numerical building blocks (PRNG, FFT, linear algebra),
- usually requires a lot of expertise:
 - to write **correct** code,
 - to write code that is *actually* performant,
 - to compile and link the result into Python.

Write a kernel in Python using:

Numba,

- limited Numpy support,
- low-level CUDA-like syntax,
- Taichi
 - focus on graphics,
 - requires implementing most of the operations you need from scratch,

Triton

- no library support,
- low-level unique syntax.
- Full Python codebase,
- can still be very low-level,
- very limited building blocks.

Use a deep-learning library:

- Pytorch
- Tensorflow
- <u>JAX</u>
- Great for deep-learning,
- easy to use and well documented,
- support for most numerical building blocks,
- usually, a large overhead:
 - gradient computation,
 - intermediate values.

Can we have good GPU performance, portability and productivity?

Examining **OpenMP Target Offload** and **Jax**.

Introducing OpenMP Target Offload

High-level introduction to OpenMP Target Offload

OpenMP is *the* classical shared memory parallelism framework. Since version 4.0 it includes target commands to run code on device.

It promises:

- **Portability**,
- high-level code,
- building on existing OpenMP expertise and infrastructures.

- Limited compiler support,
- reduced access to optimization,
- default, automatic, data management can be costly.

Lower level than might appear at first.

Introducing JAX

High-level introduction to JAX

<u>JAX</u> is a Python library to write code that can run in parallel on:

- CPU,
- GPU (Nvidia and <u>AMD</u>),
- TPU,
- etc.

Developed by Google as a building block for deep-learning frameworks. Seeing wider use in numerical applications including:

- Molecular dynamics,
- <u>computational</u> <u>fluid dynamics</u>,
- ocean simulation,
- <u>cosmology</u>.

It has a Numpy-like interface:

```
from jax import random
from jax import numpy as jnp
```

```
key = random.PRNGKey(0)
x = random.normal(key, shape=(3000, 3000), dtype=jnp.float32)
y = jnp.dot(x, x.T) # runs on GPU if available
```


Calls a *just-in-time compiler* when you execute your function with a *new problem size*:

- Compilation happens just-in-time, at runtime, easily amortized on a long running computation
- input sizes must be known to the tracer, padding, masking and recompiling for various sizes
- loops and tests are limited inside JIT sections, JAX provides replacement functions
- no side effects and no in-place modifications, one gets used to it, it actually helps with correctness
- focus on GPU optimizations rather than CPU. there is growing attention to the problem

- Focus on the semantic, leaves optimization to the compiler,
- single code base to deal with CPU and GPUs,
- immutable design is actually *nice* for correctness,
- easy to use numerical building blocks inside kernels.

Case study

Porting the TOAST codebase to GPU

<u>TOAST</u> is a large Python application used to study the **cosmic microwave background**.

It is made of pipelines distributed with MPI and composed of C++ kernels parallelized with OpenMP.

Kernels use a **wide variety of numerical methods** including random number generation, linear algebra and fast fourier transforms.

We ported **10 kernels to GPU**.

Settled on the NVIDIA NVC compiler.

Duplicated the kernel's main loops into CPU and GPU versions.

Data movement is expensive, we move data *once* at the beginning and end of each pipeline call.

Porting the code: OpenMP Target offload

```
auto& omgr = OmpManager::get();
int dev = omgr.get_device();
```

double* dev_quats = omgr.device_ptr(quats); double* dev_weights = omgr.device_ptr(weights); Interval* dev_intervals = omgr.device_ptr(intervals); double* dev_hwp = omgr.device_ptr(hwp);

Kernels were ported from C++ to Numpy to JAX and validated using unit tests.

Kernels loop on irregular intervals, we introduced a JaxIntervals type to automate padding and masking.

Kernels mutate output parameters, we introduced a **MutableJaxArray** type to box JAX arrays.

def stokes_weights_IQU_jax(quat_index, quats, weight_index, weights, hwp, intervals, epsilon, cal):

prepares inputs

intervals_max_length = INTERVALS_JAX.compute_max_intervals_length(intervals)

quat_index_input = MutableJaxArray.to_array(quat_index)

quats_input = MutableJaxArray.to_array(quats)

weight_index_input = MutableJaxArray.to_array(weight_index)

weights_input = MutableJaxArray.to_array(weights)

hwp_input = MutableJaxArray.to_array(hwp)

epsilon_input = MutableJaxArray.to_array(epsilon)

runs computation
weights[:] = stokes_weights_IQU_interval(quat_index_input, quats_input, weight_index_input, weights_input, weights_input, epsilon_input, cal, intervals.first, intervals.last, intervals_max_length)

def stokes_weights_IQU_interval(quat_index, quats, weight_index, weights, hwp, epsilon, cal, interval_starts, interval_ends, intervals_max_length):

extract interval slices

intervals = JaxIntervals(interval_starts, interval_ends+1, intervals_max_length) # end+1 as the interval is inclusive quats_interval = JaxIntervals.get(quats, (quat_index,intervals,ALL)) # quats[quat_index,intervals,:] hwp_interval = JaxIntervals.get(hwp, intervals) # hwp[intervals]

does the computation
new_weights_interval = stokes_weights_IQU_inner(epsilon, cal, quats_interval, hwp_interval)

updates results and returns
weights[weight_index,intervals,:] = new_weights_interval
weights = JaxIntervals.set(weights, (weight_index, intervals, ALL), new_weights_interval)
return weights

JAX

🛑 OpenMP CPU 🛛 😑 OpenMP Target Ofload

Number of processes

Conclusion

Overview and Perspectives

- High level framework are a viable path to good GPU performance, portability and productivity.
- OpenMP Target Offload is best used on large preexisting OpenMP kernels:
 - update existing code progressively,
 - more work to get to performant code,
 - gateway to GPU computing for C++ programmers.
- JAX is best used on new Python project:
 - design for simpler code,
 - possibility to JIT more / all code,
 - *sweet spot for research and complex numerical codes.*

This was a *proof of concept*, we can improve and simplify things significantly:

- Fix small performance bugs,
- **scale up to all kernels**, including the most complex ones,

- default to JAX arrays and pure functions,
- redesign pipelines to JIT them into single GPU kernels.

This was a *proof of concept*, we can improve and simplify things significantly:

- Fix small performance bugs,
- **scale up to all kernels**, including the most complex ones,

- default to JAX arrays and pure functions,
- redesign pipelines to JIT them into single GPU kernels.

Trust our compilers and report their shortcomings as bug?

Thank you!

ndemeure@lbl.gov