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Abstract— The Big Data Analytics Suite (BDAS) contains three 

classic machine learning codes: K-Means, Principal Component 

Analysis (PCA), and Support Vector Machine (SVM). This article 

describes how the 3 CPU codes, originally written in R, have been 

rewritten in C++ with HIP and MPI, and recast into GEMM-

centric operations, taking full advantage of the heterogeneous 

architecture of the Frontier system. The new accelerated 

implementation of K-Means is now 82% GEMM-centric, PCA is 

99% GEMM-centric, and finally, a new implementation in SVM 

will make it 20% GEMM-centric. Once completed in SVM, the 

entire machine learning suite will be GEMM driven. A discussion 

about AMD Tensile optimization of the GEMM operation adapted 

to extremely tall-and-skinny matrices in BDAS is included. The 

improvements from the original CPU R codes to the new 

accelerated versions, referenced to the same number of Frontier 

nodes in use, are 320X, 360X and 120X, respectively for K-Means, 

PCA, and SVM. Future integration with python and inclusion of 

various precision types is also briefly discussed.  

Keywords—K-Means, Principal Component Analysis, Suport 

Vector Machine, HIP, GEMM, AMD MI250X 

I. INTRODUCTION 

The Big Data Analytics Suite (BDAS) is a set of three classic 

machine learning algorithms [1] that were used as benchmarks 

for the CORAL-2 procurement2 and that lead recently to the 

first “exascale” machine, Frontier. This original BDAS code 

consist of CPU-only implementation 3  of the K-Means 

algorithm [2], the Principal Component Analysis (PCA) 

method [3], and finally, the (linear) Support Vector Machine 

(SVM) method [4]. These three codes, originally written in the 

R-language, were combined with pbdMPI [5], implying that 

they could indeed take advantage of the parallel distributed 

memory architectures of the Frontier Cray-EX machine, but 

could not use its accelerators, or in fact any accelerator (from 

AMD, Nvidia, nor Intel).  

The original BDAS R programs were not formulated to 

leverage level 2 or especially level 3 linear algebra subroutines, 

(BLAS 2 and BLAS 3, respectively). For maximal 

performance, each of the three algorithms were reformulated to 

leverage those libraries. The software was re-written to 

leverage C++ and Heterogeneous Interface for Portability (HIP) 

 
1 Now at Microsoft Azure, 
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languages as well as libraries in AMD’s open-source Radeon 

Open eCosystem Platform (ROCm™) software stack. The 

reformulation is mathematically equivalent to the original 

CPU-only benchmark but makes efficient use of the GPU 

resources. The optimization of all three programs is centered 

around General Matrix Multiply (GEMM) operations, each 

algorithm being rewritten to take advantage of the performance 

of GEMM kernels on GPUs. The GEMM dimensions in BDAS 

depart significantly from typical chemistry, engineering, or 

even synthetic benchmarks like HPL, where matrix dimensions 

are usually square, or at least somewhat square. In the 

accelerated BDAS version, matrices are extremely tall-and-

skinny, with a ratio of dimensions surpassing 4 orders of 

magnitudes between them, as further detailed in this article. 

This characteristic makes the AMD Tensile optimization tool 

[6] crucial for obtaining good performance. We devote a section 

of the article to that important component of our optimization.  

The primary step of “optimization” for the Frontier machine 

was thus to first rewrite the 3 BDAS codes to run relatively 

efficiently on AMD MI250X GPU nodes (and tested prior to 

that on MI60 or MI100 hardware). Further optimization of these 

codes was then incrementally done to get the best performance 

on the Cray-EX system. Note that we had considered other 

possibilities in this process. For example (a) the Python 

h2oai/h2o4gpu code4 as suggested in the CORAL-2 document; 

(b) CUDA/MPI versions for K-Means and SVM that we then 

“hipified”, plus a PCA Fortran/scaLAPACK version. However, 

we opted to directly translate the R codes with the goal of 

keeping all three implementations uniform. 

In each algorithm MPI is used for the communication 

between nodes of the network. The specifics of the GPU-to-

GPU MPI communication implemented in BDAS is described 

in detail in each section of the three codes. 

The BDAS benchmark uses synthetic randomly generated 

data. However, all codes and solutions are validated using the 

iris data set, comparing results with the original R with pbdMPI 

codes. 

The description in the next section is general and applies to 

all three BDAS codes. The three subsequent Sections will focus 

on the specifics of each: K-Means, PCA, and SVM. Section VI 

2 https://asc.llnl.gov/coral-2-

benchmarks  

3 https://www.r-project.org/  4https://github.com/h2oai/h2o

4gpu  
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briefly discusses the AMD Tensile optimization program used 

to optimize the tall-and-skinny matrix multiply operations 

occurring in BDAS. Section VII summarizes the performance 

gains from the original CPU-only code, and specific profiles for 

each code. We conclude in Section VIII with a short discussion 

on potential improvement and potential integrations with 

python/cython. 

II. GENERAL ACCELERATION SCHEME  

The BDAS implementation was validated using the 

iris dataset that contains 150 objects (3 species), and 4 

features (i.e., the sepal and petal lengths and widths). The iris 

dataset is a tall-and-skinny matrix (150 X 4), although tiny 

in size compared to the benchmark (16,000,000 X 250, 

discussed below). Once the run was validated, performance 

was tested using a large, randomly generated, dataset for the 

benchmark. The choice for the dimension of the benchmark 

is discussed in the next two paragraphs. The number of 

objects is generally several orders of magnitudes larger than 

the number of features [e.g., the few types of credit card 

transactions of millions of users]. This imbalance of matrix 

dimension has critical implications for GEMM performance 

and Tensile optimization, as further described below in 

Section VI. 

The data in BDAS is distributed across a number of 

MPI ranks, which allows to consider any size datasets 

(limited in practice only by the amount of memory available 

on the entire system). An “ensemble” run is defined by the 

total amount of data to be distributed. For performance 

comparison purposes one ensemble is chosen to be 1.024 

terabytes (TB) of distributed data (a convenient unitary unit 

of measurement used throughout the article). The number of 

input features in all benchmarks is constrained to be equal to 

250, letting the number of objects to be arbitrary large. 

 One important common optimization scheme true to 

the three BDAS codes was to increase the concentration of 

work per MPI rank that is assigned to each accelerator. For 

instance, if one ensemble of the original R code is distributed 

across 2048 MPI ranks, that means that each MPI rank can 

hold 250,000 double precision local objects. That same 

ensemble uses only 32 MPI ranks in the optimized 

implementation, corresponding to 16,000,000 double 

precision local objects. In both cases, the R codes, and the 

C++/HIP codes, 1.024TB of data are used; it’s the local 

matrices that have strongly different ratio of dimensions. 

Thus, all local matrices in the optimized codes are extremely 

tall-and-skinny compared to the original CPU-only R 

implementation; they are in fact 64 times taller and skinnier 

than in the original.  

 The initialization in BDAS is identical for all 3 

algorithms. Two components need to be initialized: MPI and 

HIP. MPI codes require few lines of MPI initialization prior 

to calling any MPI function, which essentially tell the 

compiler to prepare for communication across the nodes in 

the network. On top of this, the HIP and ROCm™ libraries 

add a new software layer requiring initialization. The HIP 

initialization essentially tells the compiler that the MPI ranks 

are to be assigned to specific accelerators on the nodes. 

Because some of this is novel to many in the target audience, 

a complete excerpt of the MPI/HIP/ROCm™ initialization is 

shown next. The HIP initialization takes values from the MPI 

environment variable ${LOCAL_RANK}. In this example, 

we use the SLURM workload manager, : 
export LOCAL_RANK=$SLURM_LOCALID  

... 

#include "mpi.h" 

#include <hip/hip_runtime.h> 

#include "hipblas.h" 

#include "rocblas.h" 

... 

int main(int argc, const char** argv){ 

 

// MPI Initialization 

MPI_Init( NULL, NULL); 
int num_ranks, rank; 
MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
MPI_Comm_size(MPI_COMM_WORLD, &num_ranks); 

 

// HIP + ROCm Initialization 

int dev, dev_count; 

char* str; 

hipError_t hip_result; 

if ((str = getenv("LOCAL_RANK")) != NULL) { 

   hipGetDeviceCount(&dev_count); 

   int local_rank = std::atoi(str); 

   dev = (local_rank % dev_count); 

} 

hip_result = hipInit(0); 

if (hip_result != hipSuccess) {return 1;} 

hip_result = hipSetDevice(dev); 

if (hip_result != hipSuccess) {return 1;} 

hipblasHandle_t handle; 

hipblasCreate(&handle); 

rocblas_initialize(); 

... 

 

This initialization is general and would apply to any 

code that performs a one-to-one assignment between an MPI 

rank and a GCD of the MI250X. The handle variable is 

used by GEMM operations and other BLAS 2 and BLAS 3 

calls. The rocblas_initialize() function usually leads 

to performance improvement in the GEMM calls, and since 

that initialization step is done only once, prior to calling the 

multiple GEMM operations, it is usually beneficial. Once 

that initialization is completed then GPU-to-GPU MPI 

communication can be utilized. In practice “on device” 

variables (that are initialized with a hipMalloc allocation) 

can directly be used as arguments to the MPI_* function calls 

(at least on a Cray-EX machine). Relevant snippets of codes 

showing these features are shown in each Section of the three 

codes. 

Combining MPI with HIP adds a new layer of 

potential synchronization: one between the network and the 

CPU, and one between the GPU and the CPU. On the one 

hand, an MPI_Barrier() function call ensures 

synchronization between data that is transferred from the 

network that is to be used onto the CPU. MPI collectives 

integrate a default barrier at the end. On the other hand, the 



function hipDeviceSynchronize()has a similar purpose, 

but in this case between the GPU and the CPU. This 

synchronization ensures that all the hip “wavefronts” on the 

AMD GPU (also called “warps” on Nvidia GPU) are all 

completed at the end of the execution of the hip function. 

Note that hipblasDgemm(...) does not include a default 

synchronization at the end. The following excerpt of code 

(from K-Means) shows this kind of relationship between 

network, GPU, and CPU synchronizations: 

 
... 

double*      ClusterCentroids_OnDevice; 

hipMalloc( 

     (void**)&ClusterCentroids_OnDevice, 

     NFeatures*KClusters*sizeof(realtype) 

     ) 

... 

hipblasDgemm(handle,  

             HIPBLAS_OP_T,  

             HIPBLAS_OP_N,  

             NFeatures,  

             KClusters,  

             MObjects_rank,  

             &alpha,  

             DataMatrix_OnDevice,  

             MObjects_rank,  

             ClusterID_OnDevice,  

             MObjects_rank,  

             &beta,  

             ClusterCentroids_OnDevice,  

             NFeatures 

             ); 

hipDeviceSynchronize(); 

MPI_Allreduce(MPI_IN_PLACE,  

              &ClusterCentroids_OnDevice[0],  

              NFeatures*KClusters,  

              MPI_DOUBLE,  

              MPI_SUM,  

              MPI_COMM_WORLD); 

// The MPI_Barrier() is implicit 

... 

 

All variables ending with “_OnDevice” are defined 

through an hipMalloc, which allocates memory on the 

device. The call to hipblaDgemm is concurrently executed 

on a GCD. The subsequent hipDeviceSynchronize() 

ensures that all wavefronts on the GCD are completed at the 

end of the call, and that all data are equally available on the 

GPU. Then the MPI_Allreduce function communicates 

through the network the variable 

ClusterCentroids_OnDevice. It is important to notice 

that that variable in the arguments of the standard MPI 

interface function MPI_Allreduce is on the device. In other 

words, no intermediary transfer from GPU to CPU is 

necessary! As noted above an implicit barrier resides at the 

end of any MPI_Allreduce, ensuring that once the 

communication is complete, all data are equally available on 
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the CPU. This structure of double synchronization (network-

GPU/CPU-GPU) is used in all three BDAS codes. This 

example of double synchronization is relatively simple. 

There are no general methods for dealing with potential race 

conditions in a more complex program 5 . However, 

systematically including hipDeviceSinchronize() 

and MPI_Barrier() calls after all functions, then 

removing them incrementally, after careful analysis of the 

call structure, may give a little bit of a procedural approach 

for keeping codes functional, and at the same time, getting 

them incrementally faster in the process. 

 Double and single precision arithmetic are both fully 

integrated in the optimized BDAS. Swapping from double to 

single precision is done through a -DDATA_BYTES 

variable in the Makefile, where DATA_BYTES is defined 

by: 

 
#if (DATA_BYTES ==4) 

typedef float realtype; 

#else 

typedef double realtype; 

#endif 

 

The variable realtype is used to define all floating-point 

variables, or arrays, everywhere in BDAS.  
Half precision is currently under evaluation at the 

time of writing this article. Adding half precision implies 

adding the following library and realtype definitions:  

 
#include <hip/hip_fp16.h> 

#if (DATA_BYTES ==2) 

   typedef __half realtype; 

#if (DATA_BYTES ==22) 

   typedef __half2 realtype; 

 

This syntax is relatively new and is being tested using simple 

parallel dot product instructions on MI250X GPU, that are to 

eventually be integrated in BDAS. It is believed that future 

AMD hardware will get substantial performance benefits 

from the use of half precision arithmetic. 

 

Compiling BDAS on a Cray-EX machine requires the 

following essential modules: 

 
Either PrgEnv-cray or PrgEnv-gnu 

module load rocm 

module load craype-accel-amd-gfx90a 

 

Once loaded, the Makefile requires using the following 

libraries from rocm and hipblas: 

 
CXXFLAGS= -std=c++11             \ 

          --amdgpu-target=gfx90a \ 

          -O3 

CXXFLAGS+= -DDATA_BYTES=${DATA_BYTES} 

https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf
https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf


CXXFLAGS+= -I${CRAY_MPICH_PREFIX}/include 

CXXFLAGS+= -I${ROCM_PATH}/include 

CXXFLAGS+= -fno-omit-frame-pointer      \  

           -mno-omit-leaf-frame-pointer \ 

           -fno-optimize-sibling-calls 

 

LDFLAGS=-L${CRAY_MPICH_PREFIX}/lib         \ 

        -lmpi                              \ 

        -L${CRAY_MPICH_BASEDIR}/../gtl/lib \ 

        -lmpi_gtl_hsa 

LDFLAGS+=-L${ROCM_PATH}/hipblas/lib/       \ 

         -lhipblas                         \ 

         -L${ROCM_PATH}/rocblas/lib/       \ 

         -lrocblas \ 

         -L${ROCM_PATH}/lib \ 

         -lamdhip64 \ 

         -lhsa-runtime64 

The necessary libraries in bold are specifically related to 

hipBLAS and rocBLAS. Hierarchically, hipBLAS is the 

BLAS library that marshals the AMD GPU rocBLAS 

library6. In other words, the hipBLAS library is more general 

and could marshal other libraries, such as cuBLAS. The 

other two libraries, amdhip64 and hsa-runtime64, are 

runtime hip and rocr libraries. The variable ${ROCM_PATH} 

is defined through module load rocm. The remaining 

libraries are typical MPI libraries on Cray-EX. 

 The next three Sections describe specifically how 

optimization was performed for each of the BDAS codes: K-

Means, PCA, and SVM, in alphabetic order. 

III. ACCELERATING K-MEANS 

The optimized K-Means code was based on the original R 

algorithm, where each essential part of the serial R code has 

been extracted and re-written in C++ with calls to hipBLAS 

libraries. Subsequently, the code was parallelized with MPI. 

One conceptual difference between the original R with 

pbdMPI code and the new C++/HIP with MPI is in the 

sequence of work: in the original R code only one cluster size 

is treated. For example, for a given dataset if K=2, then K=3, 

and finally K=4 are evaluated, then the R code would solve 

them sequentially. In the optimized version those three 

cluster sizes are stacked in parallel, which translates to “K” 

being of dimension KClusters = 2+3+4 = 9. This single 

dimension is important for defining the GEMM operations 

and its optimization. Note that since K-Means is an “NP-

hard” problem this scheme of launching multiple cluster 

dimensions (2, 3, and 4) at the same time can easily be 

expanded to launching multiple initial conditions at the same 

time (an implication of NP-hardness) for a given cluster 

dimension, K. 

 

The reformulated K-Means Lloyd algorithm is computing 

arg min
𝑆

∑ ∑ ||𝒙 −  𝝁𝒊 ||
𝟐

𝒙∈𝑆𝑖

𝐾

𝑖=1

, 
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where the summation index, 𝑆𝑖, is the set of data points in the 

i-th cluster, K is the number of clusters, with multiple 

problems that can be stacked, or not, and 𝜇𝑖 is the centroid of 

the i-th cluster. The solution of this optimization problem is 

obtained using an algorithm based on alternating between 

updating the clusters and updating the centroids until a fixed-

point solution is reached, as further shown in a code snippet 

below. 

 

The algorithm proceeds in two steps. First, the set of 

centroids is assumed fixed (and randomly initialized if it is 

the first iteration). With this assumption the algorithm 

computes 

 

 ‖𝒙 − 𝝁𝒊‖
𝟐 = 𝒙𝑻𝒙 − 𝟐𝒙𝑻𝝁𝒊 + 𝝁𝒊

𝑻𝝁𝒊, (1) 

 

for each combination of data point and cluster, assigning 

each data point to the cluster that minimizes the distance 

between the point and the cluster centroid. Each data point is 

assigned to multiple clusters if multiple K-Means problems 

are stacked together. Next, the data points are assumed to 

belong to fixed clusters, and the centroids of these new 

clusters are computed. This cluster centroid equals 

 

𝝁𝒊 =
𝟏

|𝑺𝒊|
∑ 𝒙,

𝒙∈𝑺𝒊

 

 

for the i-th cluster. Then this sequence of operations is 

repeated until all cluster memberships no longer vary, thus 

attaining a fixed-point solution. 

 

The K-Means program is relatively small: 1360 lines 

of C++/HIP/MPI coding. The program starts by computing 

the dot product represented by the first element of Eq. (1), on 

the device and in parallel. The next paragraph shows how 

tiling is done for that dot product instruction. Note that this 

dot product code is being used for evaluating half precision. 

That structure is relatively general, and it occurs also in 

SVM. It should easily be extended to other programs. The 

dot product method is called (in the main) using the 

following structure: 
... 

const int TileSize=256; 

const int TileCount=256; 

long m_r =MObjects_rank%(TileCount*TileSize); 

long m_d =MObjects_rank - m_r; 

... 

hipLaunchKernelGGL((dot_products), 

                  0,0, m_r, m_d, 

                  MObjects_rank, 

                  NFeatures, 

                  DataMatrix_OnDevice, 

                  DataMatrixSquared_OnDevice 

                  ); 

https://rocblas.readthedocs.io/en/latest/


This dot_products (notice the plural) function is tiling the 

threads (generating “wavefronts” of computations on the 

GPU, in waves of chosen dimensions 256 X 256 tiles). This 

dot_products function has the following syntax: 

 
__global__ void dot_products( 

   long m_r, long m_d, 

   long M  , long N, 

   realtype * a_d, 

   realtype * norm_d) 

{ 

 long blockID  =  

 hipBlockIdx_x + 

 hipBlockIdx_y * hipGridDim_x +  

 hipBlockIdx_z * hipGridDim_x * hipGridDim_y; 

 

 long threadID =  

 hipThreadIdx_z*( 

 hipBlockDim_x * hipBlockDim_y ) +  

 hipThreadIdx_y *hipBlockDim_x +  

 hipThreadIdx_x; 

 

 long tid    = threadID; 

 long i1     = blockID*(TileSize) + tid; 

 long stride = TileSize * 2 * TileCount; 

 long i      = blockID*(TileSize*2) + tid; 

 

 if (i1 < m_r + m_d)  

    dot_product(i1, M, N, a_d, norm_d); 

} 

For each threadID, the dot_product (notice the singular) 

function calculated on the device is called. This local 

dot_product function takes the form of a usual dot 

product: 
 

__device__ void dot_product( 

                  long tid, 

                  long M, 

                  long N, 

                  realtype * a_d, 

                  realtype* norm_d) 

{ 

   realtype sum = 0.0; 

   for(long k1 = 0; k1 < N; k1++) { 

      sum += a_d[tid + k1*M]*a_d[tid + k1*M]; 

   } 

   norm_d[tid] = sum; 

 

} 

 

Next, recall that the K-Means algorithm is a fixed-

point iteration. The pseudocode takes the following form, in 

terms of HIP and MPI function calls. Most variables are on 

device, except for the reduction step: 

 
for (int outer=0; outer < FIXEDPOINT; outer++) 

{ 

   (1)hipblasDgemm 

  in:  DataMatrix_OnDevice, 

  in:  ClusterCentroids_OnDevice, 

  out: DataXCentroidMatrix_OnDevice  

 (2)hipblasDdot 

  in:  ClusterCentroids_OnDevice 

  out: CentroidMatrixSquared_OnDevice 

 (3)hipLaunchKernelGGL(assign_cluster) 

  in: DataXCentroidMatrix_OnDevice 

  in: DataMatrixSquared_OnDevice 

  out: ClusterID_OnDevice 

 (4)reduction tiled;  

  in: ClusterID_OnDevice 

  out: NumOfPointsPerCluster_OnHost 

 (5)MPI_Allreduce 

  inout: &NumOfPointsPerCluster_OnHost 

 

 (6)hipMemcpy 

  out: NumOfPointsPerCluster_OnDevice) 
 (7)hipLaunchKernelGGL (normalize_weights) 

  in: NumOfPointsPerCluster_OnDevice          

  out: ClusterID_OnDevice 

 

 (8)hipblasDgemm 

  in:  DataMatrix_OnDevice,  

  in:  ClusterID_OnDevice,  

  out: ClusterCentroids_OnDevice 

 (9)MPI_Allreduce  
  inout: &ClusterCentroids_OnDevice  

} 

Line (2) of the above pseudocode corresponds to the last 

term of Eq. (1). Line (3) assigns each data point to one 

cluster, or multiple clusters if multiple K-Means algorithms 

are being executed at once, i.e., Clusters=2+3+4=9. This 

kernel also populates the important ClusterID_OnDevice 

matrix, referred to as K. That matrix holds one row for each 

data point and one column for each cluster, where the (i,j) 

entry will be set to one if the i-th data point is in cluster j and 

zero otherwise, thus defining their membership. It involves 

the 2nd DGEMM. The reduction step at line (4) counts the 

number of points in each cluster and then the 

normalize_weights kernel divides each 1.0 value in the K 

matrix by the number of points in the appropriate cluster to 

normalize the values. The 2nd hipBLAS DGEMM operation 

at line (8) is used to compute the new cluster centroids. 

Structurally, Lines (1) through (5) constitute one 

balancing swing of the fixed-point iteration, which 

corresponds to assigning the clusters. Then lines (6) through 

(9) do the counter-balancing swing of that same fixed-point 

iteration, which corresponds to finding the new centroids. 

The process continues until the two counter-balancing 

sections of code stop changing, thus reaching a fixed-point. 

In practice, that implies that the pseudocode translates to 

having two pairs of hipblasDgemm + MPI_Allreduce 

calls [one at lines (1) and (5), and another pair at lines (8) 

and (9)]. Note that the first MPI_Allreduce is using 

variables that are on host, while the second is doing GPU-to-

GPU communication (as discussed previously in Section II). 

The next paragraph further explores the specific 

characteristics of those two GEMM operations using the 

benchmark dimensions of a typical BDAS case. 

In general, a GEMM operation performs a matrix-

matrix multiply between a first matrix A of dimension M 

times k (not to be confused with the K clusters in K-means), 

multiplied by a second matrix B of dimensions k times N, 

resulting in a matrix C of dimensions corresponding to the 



outer dimensions of the previous two: an M times N matrix. 

In K-Means, the dimensions of the GEMM (and the 

corresponding MPI_Allreduce) operations are respectively: 

1st GEMM (none transposed):  
   M = MObjects_rank = 16,000,000 

   N = KClusters     = 9 

   k = NFeatures     = 250 

1st MPI_Allreduce: KClusters = 9 

 

2nd GEMM (first transposed):  
   M = NFeatures     = 250 

   N = KClusters     = 9 

   k = MObjects_rank = 16,000,000 

2nd MPI_Allreduce: NFeatures*KClusters = 2250. 

 

The dimensions of the benchmark, used for analyzing 

the performance of the algorithm, are also shown. The 

software Tensile, which is discussed in Section VI, optimizes 

the implementation of these DGEMM operations for the 

MI250X. Profiling runs are discussed later in Section VII.A. 

  

IV. ACCELERATING PCA 

In general, there are two approaches for evaluating 

principal components from a dataset: (1) through a 

calculation of the singular value decomposition of the non-

symmetric matrix of dimensions MObjects times 

NFeatures, or (2) through a calculation of the eigenvalues 

of the symmetric variance matrix of dimensions NFeatures 

times NFeatures [7]. In practice, the second method is 

more amenable to execution on the GPU, because computing 

the variance (or covariance) utilizes a GEMM operation. 

While there are probably SVD codes that are optimized to 

take advantage of GEMM operations when constructing the 

fundamental subspaces ([7], chapter 6), we have not 

considered that route in this implementation. Essentially, we 

followed the same route as in the original R code: computing 

the eigenvalues of the variance matrix.  

 PCA (compared to the other two BDAS codes) is very 

simple. Because of this, the pseudocode is essentially the 

C++/HIP code itself. Once all variables are allocated on 

device (through hipMalloc), the actual algorithm reads as: 

 
... 

if (rank == 0) { 

   eig.init_syevd( 

      Variance_OnHost,  

      NFeatures); 

} 

hipblasDgemm(handle,  

             HIPBLAS_OP_T, 

             HIPBLAS_OP_N,  

             NFeatures,  

             NFeatures,  

             MObjects_rank,  

             &alpha,  

             DataMatrix_OnDevice,  

             MObjects_rank,  

             DataMatrix_OnDevice,  

             MObjects_rank,  

             &beta,  

             Variance_OnDevice,  

             NFeatures 

             ); 

MPI_Reduce(&Variance_OnDevice[0],  

           &Variance_OnHost[0], 

           NFeatures*NFeatures, 

           MPI_DOUBLE, 

           MPI_SUM,  

           0,  

           MPI_COMM_WORLD 

          ); 

if (rank == 0) { 

   eig.compute_eigenvalues(Variance_OnHost); 

} 

 

Both functions init_sysevd and compute_eigenvalues 

contain respectively the usual LAPACK initialization and 

execution for the function dsyevd from NETLIB (or cray-

libsci), on host: 

 
dsyevd(&jobz,  

       &uplo,  

       &matrix_size,  

       matrix,  

       &matrix_size,  

       eigenvalues.get(),  

       &wkopt,  

       &lwork,  

       &iwkopt,  

       &liwork,  

       &info); 

... 

  

The DGEMM dimensions are:  
M = NFeatures     = 250 

N = NFeatures     = 250 

K = MObjects_rank = 16,000,000, 

where the matrix-matrix product is applied to itself, as 𝐴𝑇𝐴. 

The LAPACK routine “DSYRK” also implements this type 

of operation (as it is done in the original R code). However, 

that routine was not optimized on GPU through AMD 

Tensile. It is thus important to specifically choose DGEMM 

even though the matrix product is technically on itself, that 

is, a DSYRK.   

The above code is our final implementation, which 

turns out to be the simplest approach among three that we 

had considered. A second approach was a FORTRAN 

implementation that called two parallel scaLAPACK 

functions: PDGEMM, followed by the parallel eigenvalue 

solver, PDSYEVD. That method has the disadvantage to not 

take directly advantage of the AMD Tensile optimizer. 

Moreover, that formulation creates excessive 

communication within the tiny eigenvalue solver (since the 

variance is only 250 X 250 in size). A third approach that we 

considered was to manually subdivide the tall-and-skinny 

matrix into a sum of “squarer” matrices, trying to bring the 

extremely tall-and-skinny matrix dimensions into a sum of 

matrices that have dimensions that are closer to those seen in 

typical quantum chemistry, or engineering applications, then 

multiplying the local matrices together through a series of 



matrix-like dot products. However, after several tests, we 

realized that this option was essentially one subset of the 

parameter-space that the AMD Tensile optimizer would 

eventually explore. Performance was no better, and coding 

was cumbersome. We find that it is best to let the AMD 

Tensile optimizer find the best subdivision, rather than to try 

to figure one out manually. The best option we found is the 

first approach shown above: to execute DGEMM 

independently on each GPU, take advantage of the AMD 

tensile optimization, send the result to rank 0, where finally 

the tiny eigenvalue problem is solved on host.  

Notice an interesting twist of combined-MPI/HIP 

programming, where the MPI_Reduce is communicating 

from all ranks to rank 0 and transferring from the device to 

the host, all at the same time! In other words, it is 

communicating the on-device variance from all ranks, onto 

the on-host variable at rank 0, only through the list of MPI 

arguments (shown in bold in the above excerpt). The on-host 

variable is then ready for the next step: the eigenvalue solver 

that is executed on-host.  

V. ACCELERATING SVM 

Due to the sequential nature of the Nelder-Mead 

algorithm, accelerating SVM represents a bigger challenge 

than the other two BDAS codes. This Section starts by 

describing the Nelder-Mead algorithm. Then we describe the 

implementation of the cost function using a matrix-vector 

operation. We finally insert the main components necessary 

for obtaining an efficient GPU optimized algorithm, ending 

the Section by showing how a GEMM operation can be 

integrated in a recent implementation.  

 The Nelder-Mead implementation is directly based on 

the original Pascal program written by J.C. Nash [8]. Note 

that the original BDAS R code also uses that same algorithm. 

The principle of the Nelder-Mead algorithm is to evaluate a 

cost function “at each point (vertex) of the simplex [the 

structure formed by (n+1) points] and the vertex having the 

highest function value is replaced by a new point with a 

lower function value.” Nash continues by stating the “four 

main operations which are made on the simplex: reflection, 

expansion, reduction, and contraction” ([8], page168). The 

actual Pascal implementation starts at page 173 of Nash’s 

book. We first translated Nash’s Pascal code into C++ with 

HIP (without MPI). After testing the single node program’s 

performance, we subsequently created a multi-node 

implementation using MPI.  

The Nelder-Mead algorithm includes 5 calls to a cost 

function, corresponding to the 4 main operations described 

above, plus one initialization. The pseudocode centered 

around those cost function is as follows: 

 
Initialize: 1st cost_function 

Loop over 2nd cost_function 

if (Highest > Lowest && Lowest > tolerance) 

     3rd cost_function 

     if (Reflection < Lowest) 

          4th cost_function 

     else (Reflection >= Lowest) 

          5th cost_function 

endif 

 

Note that the 4th and 5th calls are exclusive, 

constituting an either-or branch. The sequential nature of the 

algorithm stands out from the if-then-else conditions across 

the four main operations on the simplex. Notice that the cost 

function loops over the series of saved values of the 

polytopes. We first show in the next paragraph that the cost 

function includes a matrix-vector operations: DGEMv.  

The SVM algorithm’s cost function involves a hinge-loss 

function of the form 𝑚𝑎𝑥(0, 1 − 𝑦𝑖  (𝑤𝑇𝑥)),  where  𝑤𝑇𝑥 is 

the linear intended output, and 𝑦𝑖 , the classifier score, that is 

equal to ±1, used to separate the data into two ensembles 

(i.e., the “support vector” that defines the hyperplane that is 

separating the two ensembles). In SVM, we wish to 

minimize (using the Nelder-Mead algorithm) the following 

cost function:  

 

1

𝑛
∑ max(0,1 − 𝑦𝑖(𝒘𝑻𝒙)) + λ||𝒘||𝟐,

𝑛

𝑖=1

 

 

where 𝜆 =
1

2
𝑛 . The computationally intensive part of the 

algorithm is the matrix-vector operation, 𝑤𝑇𝑥. A reduction 

calculates the resulting hinge-loss function. The following 

snippet shows the hinge loss function with the significant 

components of the functions call: 

 
double hinge_loss(double * Weights,  

                    int hipDeviceRank) 

{ 

 double alpha = 1.0, beta = 0.0;  

    

 

   hipblasDgemv(handle_global,  

                HIPBLAS_OP_N,  

                MObjects,  

                NFeatures,  

                &alpha, 

                DataMatrix_Device, 

                MObjects,  

                Weights,  

                1,  

                &beta, 

                ComputedSpecies_Device,  

                1 

                ); 

 

     // Reduction outputs hinge-loss cost. 

   double out =  

   reduction(ComputedSpecies_Device, 

             Species_Device,  

             MObjects,  

             hipDeviceRank); 

 

   // Sum reduces the cost across ranks. 

   MPI_Request request; 

   MPI_Iallreduce(MPI_IN_PLACE,  

                  &out,  

                  1,  



                  MPI_DOUBLE,  

                  MPI_SUM,  

                  MPI_COMM_WORLD,  

                  &request); 

  

   double norm = 0.0; 

     hipblasDnrm2(handle, 

                  NFeatures,  

                  Weights,  

                  1,  

                  &norm); 

     MPI_Wait(&request, MPI_STATUS_IGNORE); 

   // L2 Regularization 

   out = 1.0/regularizationParameter* 

  (out + 0.5*norm); 

 

 return out; 

} 

This hinge loss function is the cost_function used 

in the Nelder-Mead algorithm shown above. The 

hipblasDgemv operation is part of the classifier score 

computation and is the most time-consuming part of SVM. 

The snippet of code shows that MPI communication 

uses only one non-blocking reduction and is extremely 

minimal in SVM, even when comparing with the other two 

BDAS programs. The reason for having an MPI reduction is 

the hinge loss function output that is locally reduced on GPU, 

and that needs to be reduced globally across the MPI ranks. 

The regularization parameter is chosen to be identical to the 

one defined in the original R code. This version of SVM 

shown above does not have any GEMM operation. 

A second version of SVM, which is currently under 

development (Makefile with the value --DGEMM=1), 

incorporates GEMM into SVM. When introducing the 

Nelder-Mead algorithm, above, it was stated that the second 

call to the hinge loss function is within a loop. Nash’s literal 

transcription of the Nelder-Mead Pascal code [8] reads as:  

 
... 

-- STEP 10 

if calcvert then 

begin 

for j := 1 to nl do  

   begin 

   if j<>L then  

   begin 

   for i := 1 to n do Bvec[i] := P[i,j];  

   f:= fininfn(n,Bvec,Workdata,notcomp);  

   ... 

In BDAS, the function fininfn contains an 

hipblasDgemv. As the Pascal code above shows, that 

matrix-vector operation exists within a loop: a loop over a 

set of matrix-vectors is essentially a matrix-matrix operation, 

i.e., a single hipblasDgemm. In practice, that implies having 

to insert the GEMM operation directly inside the Nelder-

Mead algorithm (which makes the new Nelder-Mead 

implementation “unextractable” from SVM, so it cannot be 

 
7 https://github.com/ROCmSoftwarePlatform/Tensile 

used elsewhere with, say, a quadratic loss function). The new 

NelderMead_GEMM code now contains the following call to: 
 

hipblasDgemm(handle,  

             HIPBLAS_OP_N,  

             HIPBLAS_OP_N,  

             MObjects_rank,  

             NFeatures,  

             NFeatures,  

             &alf,  

             DataMatrix_Device,  

             MObjects_rank,  

             WeightsMatrix_Device,  

             NFeatures,  

             &bet,  

             SpeciesMatrix_Device,  

             MObjects_rank); 

 

The DGEMM dimensions in SVM are:  
M = MObjects_rank = 16,000,000 

N = NFeatures     = 250 

K = NFeatures     = 250 

These dimensions correspond to a product between a tall-

and-skinny matrix and a tiny 250X250 matrix, a quite 

different aspect ratio from the ones in K-Means or PCA.  

In general, replacing a sequence of matrix-vectors 

(computed within a loop) with one single matrix-matrix 

operation essentially corresponds to transferring a problem 

of larger runtime into a problem of larger memory (i.e., 

trading time, for space). At the time of writing this paper, we 

are considering batching the DGEMM into two calls 

(reducing k to 125), because the above approach surpasses 

the amount of local memory available (for those benchmark 

dimensions). 

VI. TENSILE OPTIMIZATION 

Currently, every time a GEMM API is invoked in 

rocBLAS, the actual computation is performed by a separate 

and specialized library called Tensile. 

Tensile [6] is an open source 7  tool able to auto 

generate highly performing GPU assembly kernels 

optimized for specific GEMM sizes. Due to the complexity 

of modern GPUs not all problem sizes can be efficiently 

handled in the same way. Some implementations for a 

specific problem size will perform differently from others 

based on many factors, such as: number of workgroups, 

cache accesses, type of MFMA instructions used and others. 

The overall idea is to have a fixed set of sized-tuned 

assembly kernels generated offline after a thorough tuning 

process and ship them in an official ROCm™ release. 

Although this approach is extremely effective when 

the GEMM sizes submitted to rocBLAS match exactly the 

sizes used during tuning, the performance for GEMM sizes 

not considered during tuning can vary. This variation can 

happen unpredictably between ROCm releases due to newly 

added size-tuned kernels in Tensile.  



Furthermore, the specific sizes used by BDAS are 

particularly challenging to handle due to large imbalances 

between the number of rows of the first and second matrix 

(16Mx250, tall and skinny). 

For this reason, we decided to create a bespoke Tensile 

library specifically tuned for all the GEMM sizes invoked 

during the execution of the three test cases, and only for those 

sizes. 

AMD generated a special library for the BDAS 

application. In practice, a custom Tensile generated library 

can be loaded and used on top of a given ROCm library. 

Currently, the dimensions used in BDAS (16,000,000 X 250 

matrices) are part of rocm/5.4.3.  

VII. PERFORMANCE PROFILES 

This Section combines the performances of the three 

BDAS codes, focusing on their GEMM and GEMv profiles. 

The method for validating each algorithm is also discussed 

at the beginning of each subsection. All algorithms are 

validated using the iris dataset (three species of Iris setosa, 

Iris virginica, and Iris versicolor). There are 150 objects and 

4 features (the sepal and petal lengths and widths) in that 

dataset. The solution is known and thus the quality of each 

algorithm can be evaluated.  

It is important to realize that the runtime shown below, 

for K-Means and PCA, are fast only thanks to the Tensile 

optimization. Any ROCm non-optimized library would give 

runtimes much slower, slower perhaps by an order of 

magnitude (~10 to 20X slower). The Tensile optimization is 

essential in obtaining these fast runtimes. 

A. K-Means 

The K-Means implementation is validated by varying 

the initial conditions of the clusters (K-Means being an 

“NP-hard” problem). The K-Means algorithm is tested by 

setting K=3, in parallel (e.g., 2 MPI ranks). The Rand index 

function [9] defines the “distance” between two ensembles, 

a characterization of the overlap between the known 

solution (the 3 species) and the K-Means solution (the 3 

clusters). Depending on the initial condition, the Rand index 

distance varies between 71.48% and the maximum 

obtained: 90.55%, an excellent overlap between the 

simulation and the solution. 

The benchmark runtime for the 16,000,000 X 250 

local random matrix, using 32 MPI ranks on 4 nodes, is 0.23 

seconds. The original R CPU-only code requires 2048 ranks 

distributed across 32 nodes, with local matrices of 250,000 

X 250, to simulate that same terabyte of data. That means 

that the optimized code requires 8 times fewer nodes. The 

runtime from the CPU-only code is 9.2 seconds for that 

same 1.024TB ensemble. That means that the optimized 

code is 40 times faster. Multiplying those two factors (nodes 

required and runtimes) the new accelerated K-Means 

version is thus 320X better, i.e., the same work can be done 

on 8 times fewer nodes, in 40 times faster runtime. 

 Table I shows the profile using 

$ROCM_PATH/bin/rocprof preloaded to the usual 

SLURM run script, for the 1.024TB ensemble, running on 

the MI250X nodes of a system equivalent to the Frontier 

machine (the machine “crusher”). 

 
 Table I. K-Means rocprof profile 

Method Percentage DGEMM 

Cijk_Alik_Bljk (32x16x32) 51.6 
82.2 

Cijk_Ailk_Bljk (1024x32x8) 30.6 

dot_product 12.7 

 

assign_cluster 2.3 

normalize_weights 1.8 

reduction_hip_tiled 0.9 

rocblas_dot_kernel_magsq 0.04 

Cijk_D 0.004 

 

It shows that the optimized K-Means code has been 

rewritten so that the algorithm depends mostly (82%) on the 

GEMM calls, which have been optimized by Tensile as 

described in Section VI for these two extremely tall-and-

skinny matrices. The MPI runtime spent in the two 

MPI_Allreduce communication across only 4 nodes is 

negligeable (fraction of a percent). We also tested weak 

scaling of the code, by increasing the size of an ensemble 

up to 128TB per ensemble. We find that MPI 

communication becomes noticeable (>2%) beyond 32TB, 

or 256 MPI ranks. In general, we suggest splitting the 

problem into 1TB problems, when possible, to avoid 

potential load imbalance. Load imbalance depends on the 

dataset. Realistic datasets may show larger imbalance than 

the randomly generated datapoints we use for the 

benchmark. From this profile K-Means is more than 80% 

compute bound and dominated by GEMM operations. The 

4 functions in bold, in Table I are rocm libraries, while the 

other four are K-Means function that were described in 

Section III. 

B. PCA 

PCA is first validated by comparing the eigenvalues of 

the centered and normalized iris dataset from the R code. 

The R code gives eigenvalues: 

 
[1]2.91849782 0.91403047 0.14675688 0.02071484 

 

The output of the optimized PCA eigenvalues gives 

identical values: 

 

 Eigenvalues = 
2.071483642862e-02 

1.467568755713e-01 

9.140304714681e-01 

2.918497816532e+00 

 

The benchmark runtime for the 16,000,000 X 250 

local matrix, using 32 MPI ranks, is 0.15 seconds. 

Equivalently, the original R code takes 6.8 seconds to 

complete the 1.024TB ensemble run (using 2048 MPI ranks, 

as in K-Means). The optimized code is 45 times faster. On 

a per ensemble basis the optimized code is 45X faster, and 



on a per node basis, as is calculated in K-Means, it is 360X 

faster, i.e., the same work can be done on 8 times fewer 

nodes, in 45 times faster runtime. 
Table II. PCA rocprof profile 

Method Percentage DGEMM 

Cijk_Alik_Bljk (128x256x16) 99.992 99.992 

 

The rocprof profile for PCA is shown in Table II. It 

shows that essentially all (99.992%) of the runtime is spent 

in the matrix-matrix multiply operation, optimized for 

extremely tall-and-skinny matrices using AMD Tensile.  

The MPI_Reduce runtime for transferring to rank 0, 

as well as the runtime for calculating the tiny 250X250 

variance matrix eigenvalues (through DSYEVD), are both 

negligeable. PCA is essentially 100% compute bound. 

C. SVM 

The optimized implementation of SVM is validated by 

separating one iris species from the other two and letting 

SVM find the support vector that separates those two sets. 

The accuracy of that separation is computed to be 100%.  

The benchmark time for SVM on Frontier using 4 

nodes (1 ensemble of 1.024 TB) is 13.47 seconds. The R 

CPU-code does the same work in 202 seconds. That is, 15X 

faster on GPU. Since the same work can be done on 8 times 

fewer nodes, as for the other two codes, that corresponds to 

a 120X improvement. The performance gain in SVM is not 

as large as in K-Means and PCA, but it is expected that this 

gap will close with the new version that is rewritten to use 

GEMM operations. 

 
Table III SVM rocprof profile 

Method Percentage DGEMM 

  0 

gemvn_kernel 99.16  

reduction_hip_tiled 0.74  

temp_accumulate 0.07  

rocblas_reduction_strided 0.015  

 

 The SVM profile shown in Table III shows 

that most of the time is spent in the DGEMv call that occurs 

inside the hinge-loss function. DGEMv cannot be optimized 

with AMD Tensile (since the varied parameter from the 

parameter space search algorithm, i.e., various strides in a 

matrix are not available). SVM is shown to be essentially 

100% memory bound.  

Recall that in Section V above we have shown that the 

Nelder-Mead algorithm contains 5 calls to the hinge loss 

function, and that the second call (STEP 10 in Nash’s 

algorithm) includes an inner loop call to DGEMv that we 

transformed into a DGEMM. 

 
Table IV. Nelder-Mead cost function calls for the tiny iris and the 

large random benchmark datasets 

Cost function call  Iris Random 

1st (initialization) 1 1 

2nd (DGEMM loop) 5 250 

3rd Reflection 248 125 

4th lower 75 0 

5th upper 173 125 

 

Table IV shows the number of calls inside Nelder-

Mead, for both the Iris dataset and for the large synthetic 

random dataset. The proportions of DGEMM (2nd call) are 

inverted between the two datasets: The iris dataset has few 

DGEMM calls compared to the other 4 DGEMv calls, while 

the randomly generated large dataset has about half of the 

DGEMM calls, and the other half being DGEMv. We believe 

that larger realistic datasets would likely have between be 

20%-25% of the total calls in DGEMM. Performance 

analysis with this new implementation is under development 

at the time of writing this article. 

VIII. CONCLUSION 

This article describes a C++ with HIP and MPI 

implementation of the classic K-Means, PCA, and linear 

SVM machine learning algorithms. We show that leveraging 

BLAS 3 GEMM operations in these three programs can 

significantly improve their performance, by taking 

advantage of the AMD Tensile GEMM optimizer. We find 

that K-Means, PCA, and SVM are respectively 320X, 360X, 

and 120X faster than the original CPU-only 

implementations. The K-Means code spends 82% of its time 

in GEMM operations, for PCA this figure is 99%, and we 

have shown that SVM contains a potential for the runtime to 

spend over 20% of its time in GEMM operations in the 

second call to the hinge loss function inside Nelder-Mead 

(still under investigation). 

  These techniques could easily be integrated into other 

modern statistical learning algorithms, such as K-Means++ 

[10], SVD [11], or non-linear SVM [1].  

Python being one of the preferred languages of 

machine learning, we believe that these techniques written in 

C++ with HIP and MPI could eventually be included in a 

python library or included and integrated using cython with 

HIP. Dragon or mpi4py could also be considered to replace 

the MPI instructions, since the structure of internode 

communication has been kept minimalistic. HIP-Python 

(like the existing CUDA-Python) is under development. 

Such integration could also be considered, soon.  

 This accelerated BDAS code was created as part of the 

CORAL-2 procurement. The optimized BDAS code has 

been provided to Oak Ridge National Laboratory. 
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