
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Accelerating the Big Data Analytics Suite

Pierre Carrier

Applications Engineering

Hewlett-Packard Enterprise

Bloomington, MN, USA

Pierre.Carrier@hpe.com

Scott Moe1

HPC Software Solutions

Advanced Micro Devices, Inc.

Bellevue, WA, USA

scott.moeuw@gmail.com

Colin Wahl

Development Engineering

Hewlett-Packard Enterprise

Bloomington, MN, USA

Colin.Wahl@hpe.com

Alessandro Fanfarillo

HPC Software Solutions

Advanced Micro Devices, Inc.

Longmont, CO, USA

alessandro.fanfarillo@amd.com

Abstract— The Big Data Analytics Suite (BDAS) contains three

classic machine learning codes: K-Means, Principal Component

Analysis (PCA), and Support Vector Machine (SVM). This article

describes how the 3 CPU codes, originally written in R, have been

rewritten in C++ with HIP and MPI, and recast into GEMM-

centric operations, taking full advantage of the heterogeneous

architecture of the Frontier system. The new accelerated

implementation of K-Means is now 82% GEMM-centric, PCA is

99% GEMM-centric, and finally, a new implementation in SVM

will make it 20% GEMM-centric. Once completed in SVM, the

entire machine learning suite will be GEMM driven. A discussion

about AMD Tensile optimization of the GEMM operation adapted

to extremely tall-and-skinny matrices in BDAS is included. The

improvements from the original CPU R codes to the new

accelerated versions, referenced to the same number of Frontier

nodes in use, are 320X, 360X and 120X, respectively for K-Means,

PCA, and SVM. Future integration with python and inclusion of

various precision types is also briefly discussed.

Keywords—K-Means, Principal Component Analysis, Suport

Vector Machine, HIP, GEMM, AMD MI250X

I. INTRODUCTION

The Big Data Analytics Suite (BDAS) is a set of three classic

machine learning algorithms [1] that were used as benchmarks

for the CORAL-2 procurement2 and that lead recently to the

first “exascale” machine, Frontier. This original BDAS code

consist of CPU-only implementation 3 of the K-Means

algorithm [2], the Principal Component Analysis (PCA)

method [3], and finally, the (linear) Support Vector Machine

(SVM) method [4]. These three codes, originally written in the

R-language, were combined with pbdMPI [5], implying that

they could indeed take advantage of the parallel distributed

memory architectures of the Frontier Cray-EX machine, but

could not use its accelerators, or in fact any accelerator (from

AMD, Nvidia, nor Intel).

The original BDAS R programs were not formulated to

leverage level 2 or especially level 3 linear algebra subroutines,

(BLAS 2 and BLAS 3, respectively). For maximal

performance, each of the three algorithms were reformulated to

leverage those libraries. The software was re-written to

leverage C++ and Heterogeneous Interface for Portability (HIP)

1 Now at Microsoft Azure,

Redmond, WA, USA

languages as well as libraries in AMD’s open-source Radeon

Open eCosystem Platform (ROCm™) software stack. The

reformulation is mathematically equivalent to the original

CPU-only benchmark but makes efficient use of the GPU

resources. The optimization of all three programs is centered

around General Matrix Multiply (GEMM) operations, each

algorithm being rewritten to take advantage of the performance

of GEMM kernels on GPUs. The GEMM dimensions in BDAS

depart significantly from typical chemistry, engineering, or

even synthetic benchmarks like HPL, where matrix dimensions

are usually square, or at least somewhat square. In the

accelerated BDAS version, matrices are extremely tall-and-

skinny, with a ratio of dimensions surpassing 4 orders of

magnitudes between them, as further detailed in this article.

This characteristic makes the AMD Tensile optimization tool

[6] crucial for obtaining good performance. We devote a section

of the article to that important component of our optimization.

The primary step of “optimization” for the Frontier machine

was thus to first rewrite the 3 BDAS codes to run relatively

efficiently on AMD MI250X GPU nodes (and tested prior to

that on MI60 or MI100 hardware). Further optimization of these

codes was then incrementally done to get the best performance

on the Cray-EX system. Note that we had considered other

possibilities in this process. For example (a) the Python

h2oai/h2o4gpu code4 as suggested in the CORAL-2 document;

(b) CUDA/MPI versions for K-Means and SVM that we then

“hipified”, plus a PCA Fortran/scaLAPACK version. However,

we opted to directly translate the R codes with the goal of

keeping all three implementations uniform.

In each algorithm MPI is used for the communication

between nodes of the network. The specifics of the GPU-to-

GPU MPI communication implemented in BDAS is described

in detail in each section of the three codes.

The BDAS benchmark uses synthetic randomly generated

data. However, all codes and solutions are validated using the

iris data set, comparing results with the original R with pbdMPI

codes.

The description in the next section is general and applies to

all three BDAS codes. The three subsequent Sections will focus

on the specifics of each: K-Means, PCA, and SVM. Section VI

2 https://asc.llnl.gov/coral-2-

benchmarks

3 https://www.r-project.org/ 4https://github.com/h2oai/h2o

4gpu

mailto:Pierre.Carrier@hpe.com
mailto:scott.moeuw@gmail.com
mailto:Colin.Wahl@hpe.com
mailto:alessandro.fanfarillo@amd.com
https://asc.llnl.gov/coral-2-benchmarks
https://asc.llnl.gov/coral-2-benchmarks
https://www.r-project.org/
https://github.com/h2oai/h2o4gpu
https://github.com/h2oai/h2o4gpu

briefly discusses the AMD Tensile optimization program used

to optimize the tall-and-skinny matrix multiply operations

occurring in BDAS. Section VII summarizes the performance

gains from the original CPU-only code, and specific profiles for

each code. We conclude in Section VIII with a short discussion

on potential improvement and potential integrations with

python/cython.

II. GENERAL ACCELERATION SCHEME

The BDAS implementation was validated using the

iris dataset that contains 150 objects (3 species), and 4

features (i.e., the sepal and petal lengths and widths). The iris

dataset is a tall-and-skinny matrix (150 X 4), although tiny

in size compared to the benchmark (16,000,000 X 250,

discussed below). Once the run was validated, performance

was tested using a large, randomly generated, dataset for the

benchmark. The choice for the dimension of the benchmark

is discussed in the next two paragraphs. The number of

objects is generally several orders of magnitudes larger than

the number of features [e.g., the few types of credit card

transactions of millions of users]. This imbalance of matrix

dimension has critical implications for GEMM performance

and Tensile optimization, as further described below in

Section VI.

The data in BDAS is distributed across a number of

MPI ranks, which allows to consider any size datasets

(limited in practice only by the amount of memory available

on the entire system). An “ensemble” run is defined by the

total amount of data to be distributed. For performance

comparison purposes one ensemble is chosen to be 1.024

terabytes (TB) of distributed data (a convenient unitary unit

of measurement used throughout the article). The number of

input features in all benchmarks is constrained to be equal to

250, letting the number of objects to be arbitrary large.

 One important common optimization scheme true to

the three BDAS codes was to increase the concentration of

work per MPI rank that is assigned to each accelerator. For

instance, if one ensemble of the original R code is distributed

across 2048 MPI ranks, that means that each MPI rank can

hold 250,000 double precision local objects. That same

ensemble uses only 32 MPI ranks in the optimized

implementation, corresponding to 16,000,000 double

precision local objects. In both cases, the R codes, and the

C++/HIP codes, 1.024TB of data are used; it’s the local

matrices that have strongly different ratio of dimensions.

Thus, all local matrices in the optimized codes are extremely

tall-and-skinny compared to the original CPU-only R

implementation; they are in fact 64 times taller and skinnier

than in the original.

 The initialization in BDAS is identical for all 3

algorithms. Two components need to be initialized: MPI and

HIP. MPI codes require few lines of MPI initialization prior

to calling any MPI function, which essentially tell the

compiler to prepare for communication across the nodes in

the network. On top of this, the HIP and ROCm™ libraries

add a new software layer requiring initialization. The HIP

initialization essentially tells the compiler that the MPI ranks

are to be assigned to specific accelerators on the nodes.

Because some of this is novel to many in the target audience,

a complete excerpt of the MPI/HIP/ROCm™ initialization is

shown next. The HIP initialization takes values from the MPI

environment variable ${LOCAL_RANK}. In this example,

we use the SLURM workload manager, :
export LOCAL_RANK=$SLURM_LOCALID

...

#include "mpi.h"

#include <hip/hip_runtime.h>

#include "hipblas.h"

#include "rocblas.h"

...

int main(int argc, const char** argv){

// MPI Initialization

MPI_Init(NULL, NULL);
int num_ranks, rank;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &num_ranks);

// HIP + ROCm Initialization

int dev, dev_count;

char* str;

hipError_t hip_result;

if ((str = getenv("LOCAL_RANK")) != NULL) {

 hipGetDeviceCount(&dev_count);

 int local_rank = std::atoi(str);

 dev = (local_rank % dev_count);

}

hip_result = hipInit(0);

if (hip_result != hipSuccess) {return 1;}

hip_result = hipSetDevice(dev);

if (hip_result != hipSuccess) {return 1;}

hipblasHandle_t handle;

hipblasCreate(&handle);

rocblas_initialize();

...

This initialization is general and would apply to any

code that performs a one-to-one assignment between an MPI

rank and a GCD of the MI250X. The handle variable is

used by GEMM operations and other BLAS 2 and BLAS 3

calls. The rocblas_initialize() function usually leads

to performance improvement in the GEMM calls, and since

that initialization step is done only once, prior to calling the

multiple GEMM operations, it is usually beneficial. Once

that initialization is completed then GPU-to-GPU MPI

communication can be utilized. In practice “on device”

variables (that are initialized with a hipMalloc allocation)

can directly be used as arguments to the MPI_* function calls

(at least on a Cray-EX machine). Relevant snippets of codes

showing these features are shown in each Section of the three

codes.

Combining MPI with HIP adds a new layer of

potential synchronization: one between the network and the

CPU, and one between the GPU and the CPU. On the one

hand, an MPI_Barrier() function call ensures

synchronization between data that is transferred from the

network that is to be used onto the CPU. MPI collectives

integrate a default barrier at the end. On the other hand, the

function hipDeviceSynchronize()has a similar purpose,

but in this case between the GPU and the CPU. This

synchronization ensures that all the hip “wavefronts” on the

AMD GPU (also called “warps” on Nvidia GPU) are all

completed at the end of the execution of the hip function.

Note that hipblasDgemm(...) does not include a default

synchronization at the end. The following excerpt of code

(from K-Means) shows this kind of relationship between

network, GPU, and CPU synchronizations:

...

double* ClusterCentroids_OnDevice;

hipMalloc(

 (void**)&ClusterCentroids_OnDevice,

 NFeatures*KClusters*sizeof(realtype)

)

...

hipblasDgemm(handle,

 HIPBLAS_OP_T,

 HIPBLAS_OP_N,

 NFeatures,

 KClusters,

 MObjects_rank,

 &alpha,

 DataMatrix_OnDevice,

 MObjects_rank,

 ClusterID_OnDevice,

 MObjects_rank,

 &beta,

 ClusterCentroids_OnDevice,

 NFeatures

);

hipDeviceSynchronize();

MPI_Allreduce(MPI_IN_PLACE,

 &ClusterCentroids_OnDevice[0],

 NFeatures*KClusters,

 MPI_DOUBLE,

 MPI_SUM,

 MPI_COMM_WORLD);

// The MPI_Barrier() is implicit

...

All variables ending with “_OnDevice” are defined

through an hipMalloc, which allocates memory on the

device. The call to hipblaDgemm is concurrently executed

on a GCD. The subsequent hipDeviceSynchronize()

ensures that all wavefronts on the GCD are completed at the

end of the call, and that all data are equally available on the

GPU. Then the MPI_Allreduce function communicates

through the network the variable

ClusterCentroids_OnDevice. It is important to notice

that that variable in the arguments of the standard MPI

interface function MPI_Allreduce is on the device. In other

words, no intermediary transfer from GPU to CPU is

necessary! As noted above an implicit barrier resides at the

end of any MPI_Allreduce, ensuring that once the

communication is complete, all data are equally available on

5

 https://developer.download.nvidia.com/CUDA/traini

ng/StreamsAndConcurrencyWebinar.pdf

the CPU. This structure of double synchronization (network-

GPU/CPU-GPU) is used in all three BDAS codes. This

example of double synchronization is relatively simple.

There are no general methods for dealing with potential race

conditions in a more complex program 5 . However,

systematically including hipDeviceSinchronize()

and MPI_Barrier() calls after all functions, then

removing them incrementally, after careful analysis of the

call structure, may give a little bit of a procedural approach

for keeping codes functional, and at the same time, getting

them incrementally faster in the process.

 Double and single precision arithmetic are both fully

integrated in the optimized BDAS. Swapping from double to

single precision is done through a -DDATA_BYTES

variable in the Makefile, where DATA_BYTES is defined

by:

#if (DATA_BYTES ==4)

typedef float realtype;

#else

typedef double realtype;

#endif

The variable realtype is used to define all floating-point

variables, or arrays, everywhere in BDAS.
Half precision is currently under evaluation at the

time of writing this article. Adding half precision implies

adding the following library and realtype definitions:

#include <hip/hip_fp16.h>

#if (DATA_BYTES ==2)

 typedef __half realtype;

#if (DATA_BYTES ==22)

 typedef __half2 realtype;

This syntax is relatively new and is being tested using simple

parallel dot product instructions on MI250X GPU, that are to

eventually be integrated in BDAS. It is believed that future

AMD hardware will get substantial performance benefits

from the use of half precision arithmetic.

Compiling BDAS on a Cray-EX machine requires the

following essential modules:

Either PrgEnv-cray or PrgEnv-gnu

module load rocm

module load craype-accel-amd-gfx90a

Once loaded, the Makefile requires using the following

libraries from rocm and hipblas:

CXXFLAGS= -std=c++11 \

 --amdgpu-target=gfx90a \

 -O3

CXXFLAGS+= -DDATA_BYTES=${DATA_BYTES}

https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf
https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf

CXXFLAGS+= -I${CRAY_MPICH_PREFIX}/include

CXXFLAGS+= -I${ROCM_PATH}/include

CXXFLAGS+= -fno-omit-frame-pointer \

 -mno-omit-leaf-frame-pointer \

 -fno-optimize-sibling-calls

LDFLAGS=-L${CRAY_MPICH_PREFIX}/lib \

 -lmpi \

 -L${CRAY_MPICH_BASEDIR}/../gtl/lib \

 -lmpi_gtl_hsa

LDFLAGS+=-L${ROCM_PATH}/hipblas/lib/ \

 -lhipblas \

 -L${ROCM_PATH}/rocblas/lib/ \

 -lrocblas \

 -L${ROCM_PATH}/lib \

 -lamdhip64 \

 -lhsa-runtime64

The necessary libraries in bold are specifically related to

hipBLAS and rocBLAS. Hierarchically, hipBLAS is the

BLAS library that marshals the AMD GPU rocBLAS

library6. In other words, the hipBLAS library is more general

and could marshal other libraries, such as cuBLAS. The

other two libraries, amdhip64 and hsa-runtime64, are

runtime hip and rocr libraries. The variable ${ROCM_PATH}

is defined through module load rocm. The remaining

libraries are typical MPI libraries on Cray-EX.

 The next three Sections describe specifically how

optimization was performed for each of the BDAS codes: K-

Means, PCA, and SVM, in alphabetic order.

III. ACCELERATING K-MEANS

The optimized K-Means code was based on the original R

algorithm, where each essential part of the serial R code has

been extracted and re-written in C++ with calls to hipBLAS

libraries. Subsequently, the code was parallelized with MPI.

One conceptual difference between the original R with

pbdMPI code and the new C++/HIP with MPI is in the

sequence of work: in the original R code only one cluster size

is treated. For example, for a given dataset if K=2, then K=3,

and finally K=4 are evaluated, then the R code would solve

them sequentially. In the optimized version those three

cluster sizes are stacked in parallel, which translates to “K”

being of dimension KClusters = 2+3+4 = 9. This single

dimension is important for defining the GEMM operations

and its optimization. Note that since K-Means is an “NP-

hard” problem this scheme of launching multiple cluster

dimensions (2, 3, and 4) at the same time can easily be

expanded to launching multiple initial conditions at the same

time (an implication of NP-hardness) for a given cluster

dimension, K.

The reformulated K-Means Lloyd algorithm is computing

arg min
𝑆

∑ ∑ ||𝒙 − 𝝁𝒊 ||
𝟐

𝒙∈𝑆𝑖

𝐾

𝑖=1

,

6 https://rocblas.readthedocs.io/en/latest/

where the summation index, 𝑆𝑖, is the set of data points in the

i-th cluster, K is the number of clusters, with multiple

problems that can be stacked, or not, and 𝜇𝑖 is the centroid of

the i-th cluster. The solution of this optimization problem is

obtained using an algorithm based on alternating between

updating the clusters and updating the centroids until a fixed-

point solution is reached, as further shown in a code snippet

below.

The algorithm proceeds in two steps. First, the set of

centroids is assumed fixed (and randomly initialized if it is

the first iteration). With this assumption the algorithm

computes

 ‖𝒙 − 𝝁𝒊‖
𝟐 = 𝒙𝑻𝒙 − 𝟐𝒙𝑻𝝁𝒊 + 𝝁𝒊

𝑻𝝁𝒊, (1)

for each combination of data point and cluster, assigning

each data point to the cluster that minimizes the distance

between the point and the cluster centroid. Each data point is

assigned to multiple clusters if multiple K-Means problems

are stacked together. Next, the data points are assumed to

belong to fixed clusters, and the centroids of these new

clusters are computed. This cluster centroid equals

𝝁𝒊 =
𝟏

|𝑺𝒊|
∑ 𝒙,

𝒙∈𝑺𝒊

for the i-th cluster. Then this sequence of operations is

repeated until all cluster memberships no longer vary, thus

attaining a fixed-point solution.

The K-Means program is relatively small: 1360 lines

of C++/HIP/MPI coding. The program starts by computing

the dot product represented by the first element of Eq. (1), on

the device and in parallel. The next paragraph shows how

tiling is done for that dot product instruction. Note that this

dot product code is being used for evaluating half precision.

That structure is relatively general, and it occurs also in

SVM. It should easily be extended to other programs. The

dot product method is called (in the main) using the

following structure:
...

const int TileSize=256;

const int TileCount=256;

long m_r =MObjects_rank%(TileCount*TileSize);

long m_d =MObjects_rank - m_r;

...

hipLaunchKernelGGL((dot_products),

 0,0, m_r, m_d,

 MObjects_rank,

 NFeatures,

 DataMatrix_OnDevice,

 DataMatrixSquared_OnDevice

);

https://rocblas.readthedocs.io/en/latest/

This dot_products (notice the plural) function is tiling the

threads (generating “wavefronts” of computations on the

GPU, in waves of chosen dimensions 256 X 256 tiles). This

dot_products function has the following syntax:

__global__ void dot_products(

 long m_r, long m_d,

 long M , long N,

 realtype * a_d,

 realtype * norm_d)

{

 long blockID =

 hipBlockIdx_x +

 hipBlockIdx_y * hipGridDim_x +

 hipBlockIdx_z * hipGridDim_x * hipGridDim_y;

 long threadID =

 hipThreadIdx_z*(

 hipBlockDim_x * hipBlockDim_y) +

 hipThreadIdx_y *hipBlockDim_x +

 hipThreadIdx_x;

 long tid = threadID;

 long i1 = blockID*(TileSize) + tid;

 long stride = TileSize * 2 * TileCount;

 long i = blockID*(TileSize*2) + tid;

 if (i1 < m_r + m_d)

 dot_product(i1, M, N, a_d, norm_d);

}

For each threadID, the dot_product (notice the singular)

function calculated on the device is called. This local

dot_product function takes the form of a usual dot

product:

__device__ void dot_product(

 long tid,

 long M,

 long N,

 realtype * a_d,

 realtype* norm_d)

{

 realtype sum = 0.0;

 for(long k1 = 0; k1 < N; k1++) {

 sum += a_d[tid + k1*M]*a_d[tid + k1*M];

 }

 norm_d[tid] = sum;

}

Next, recall that the K-Means algorithm is a fixed-

point iteration. The pseudocode takes the following form, in

terms of HIP and MPI function calls. Most variables are on

device, except for the reduction step:

for (int outer=0; outer < FIXEDPOINT; outer++)

{

 (1)hipblasDgemm

 in: DataMatrix_OnDevice,

 in: ClusterCentroids_OnDevice,

 out: DataXCentroidMatrix_OnDevice

 (2)hipblasDdot

 in: ClusterCentroids_OnDevice

 out: CentroidMatrixSquared_OnDevice

 (3)hipLaunchKernelGGL(assign_cluster)

 in: DataXCentroidMatrix_OnDevice

 in: DataMatrixSquared_OnDevice

 out: ClusterID_OnDevice

 (4)reduction tiled;

 in: ClusterID_OnDevice

 out: NumOfPointsPerCluster_OnHost

 (5)MPI_Allreduce

 inout: &NumOfPointsPerCluster_OnHost

 (6)hipMemcpy

 out: NumOfPointsPerCluster_OnDevice)
 (7)hipLaunchKernelGGL (normalize_weights)

 in: NumOfPointsPerCluster_OnDevice

 out: ClusterID_OnDevice

 (8)hipblasDgemm

 in: DataMatrix_OnDevice,

 in: ClusterID_OnDevice,

 out: ClusterCentroids_OnDevice

 (9)MPI_Allreduce
 inout: &ClusterCentroids_OnDevice

}

Line (2) of the above pseudocode corresponds to the last

term of Eq. (1). Line (3) assigns each data point to one

cluster, or multiple clusters if multiple K-Means algorithms

are being executed at once, i.e., Clusters=2+3+4=9. This

kernel also populates the important ClusterID_OnDevice

matrix, referred to as K. That matrix holds one row for each

data point and one column for each cluster, where the (i,j)

entry will be set to one if the i-th data point is in cluster j and

zero otherwise, thus defining their membership. It involves

the 2nd DGEMM. The reduction step at line (4) counts the

number of points in each cluster and then the

normalize_weights kernel divides each 1.0 value in the K

matrix by the number of points in the appropriate cluster to

normalize the values. The 2nd hipBLAS DGEMM operation

at line (8) is used to compute the new cluster centroids.

Structurally, Lines (1) through (5) constitute one

balancing swing of the fixed-point iteration, which

corresponds to assigning the clusters. Then lines (6) through

(9) do the counter-balancing swing of that same fixed-point

iteration, which corresponds to finding the new centroids.

The process continues until the two counter-balancing

sections of code stop changing, thus reaching a fixed-point.

In practice, that implies that the pseudocode translates to

having two pairs of hipblasDgemm + MPI_Allreduce

calls [one at lines (1) and (5), and another pair at lines (8)

and (9)]. Note that the first MPI_Allreduce is using

variables that are on host, while the second is doing GPU-to-

GPU communication (as discussed previously in Section II).

The next paragraph further explores the specific

characteristics of those two GEMM operations using the

benchmark dimensions of a typical BDAS case.

In general, a GEMM operation performs a matrix-

matrix multiply between a first matrix A of dimension M

times k (not to be confused with the K clusters in K-means),

multiplied by a second matrix B of dimensions k times N,

resulting in a matrix C of dimensions corresponding to the

outer dimensions of the previous two: an M times N matrix.

In K-Means, the dimensions of the GEMM (and the

corresponding MPI_Allreduce) operations are respectively:

1st GEMM (none transposed):
 M = MObjects_rank = 16,000,000

 N = KClusters = 9

 k = NFeatures = 250

1st MPI_Allreduce: KClusters = 9

2nd GEMM (first transposed):
 M = NFeatures = 250

 N = KClusters = 9

 k = MObjects_rank = 16,000,000

2nd MPI_Allreduce: NFeatures*KClusters = 2250.

The dimensions of the benchmark, used for analyzing

the performance of the algorithm, are also shown. The

software Tensile, which is discussed in Section VI, optimizes

the implementation of these DGEMM operations for the

MI250X. Profiling runs are discussed later in Section VII.A.

IV. ACCELERATING PCA

In general, there are two approaches for evaluating

principal components from a dataset: (1) through a

calculation of the singular value decomposition of the non-

symmetric matrix of dimensions MObjects times

NFeatures, or (2) through a calculation of the eigenvalues

of the symmetric variance matrix of dimensions NFeatures

times NFeatures [7]. In practice, the second method is

more amenable to execution on the GPU, because computing

the variance (or covariance) utilizes a GEMM operation.

While there are probably SVD codes that are optimized to

take advantage of GEMM operations when constructing the

fundamental subspaces ([7], chapter 6), we have not

considered that route in this implementation. Essentially, we

followed the same route as in the original R code: computing

the eigenvalues of the variance matrix.

 PCA (compared to the other two BDAS codes) is very

simple. Because of this, the pseudocode is essentially the

C++/HIP code itself. Once all variables are allocated on

device (through hipMalloc), the actual algorithm reads as:

...

if (rank == 0) {

 eig.init_syevd(

 Variance_OnHost,

 NFeatures);

}

hipblasDgemm(handle,

 HIPBLAS_OP_T,

 HIPBLAS_OP_N,

 NFeatures,

 NFeatures,

 MObjects_rank,

 &alpha,

 DataMatrix_OnDevice,

 MObjects_rank,

 DataMatrix_OnDevice,

 MObjects_rank,

 &beta,

 Variance_OnDevice,

 NFeatures

);

MPI_Reduce(&Variance_OnDevice[0],

 &Variance_OnHost[0],

 NFeatures*NFeatures,

 MPI_DOUBLE,

 MPI_SUM,

 0,

 MPI_COMM_WORLD

);

if (rank == 0) {

 eig.compute_eigenvalues(Variance_OnHost);

}

Both functions init_sysevd and compute_eigenvalues

contain respectively the usual LAPACK initialization and

execution for the function dsyevd from NETLIB (or cray-

libsci), on host:

dsyevd(&jobz,

 &uplo,

 &matrix_size,

 matrix,

 &matrix_size,

 eigenvalues.get(),

 &wkopt,

 &lwork,

 &iwkopt,

 &liwork,

 &info);

...

The DGEMM dimensions are:
M = NFeatures = 250

N = NFeatures = 250

K = MObjects_rank = 16,000,000,

where the matrix-matrix product is applied to itself, as 𝐴𝑇𝐴.

The LAPACK routine “DSYRK” also implements this type

of operation (as it is done in the original R code). However,

that routine was not optimized on GPU through AMD

Tensile. It is thus important to specifically choose DGEMM

even though the matrix product is technically on itself, that

is, a DSYRK.

The above code is our final implementation, which

turns out to be the simplest approach among three that we

had considered. A second approach was a FORTRAN

implementation that called two parallel scaLAPACK

functions: PDGEMM, followed by the parallel eigenvalue

solver, PDSYEVD. That method has the disadvantage to not

take directly advantage of the AMD Tensile optimizer.

Moreover, that formulation creates excessive

communication within the tiny eigenvalue solver (since the

variance is only 250 X 250 in size). A third approach that we

considered was to manually subdivide the tall-and-skinny

matrix into a sum of “squarer” matrices, trying to bring the

extremely tall-and-skinny matrix dimensions into a sum of

matrices that have dimensions that are closer to those seen in

typical quantum chemistry, or engineering applications, then

multiplying the local matrices together through a series of

matrix-like dot products. However, after several tests, we

realized that this option was essentially one subset of the

parameter-space that the AMD Tensile optimizer would

eventually explore. Performance was no better, and coding

was cumbersome. We find that it is best to let the AMD

Tensile optimizer find the best subdivision, rather than to try

to figure one out manually. The best option we found is the

first approach shown above: to execute DGEMM

independently on each GPU, take advantage of the AMD

tensile optimization, send the result to rank 0, where finally

the tiny eigenvalue problem is solved on host.

Notice an interesting twist of combined-MPI/HIP

programming, where the MPI_Reduce is communicating

from all ranks to rank 0 and transferring from the device to

the host, all at the same time! In other words, it is

communicating the on-device variance from all ranks, onto

the on-host variable at rank 0, only through the list of MPI

arguments (shown in bold in the above excerpt). The on-host

variable is then ready for the next step: the eigenvalue solver

that is executed on-host.

V. ACCELERATING SVM

Due to the sequential nature of the Nelder-Mead

algorithm, accelerating SVM represents a bigger challenge

than the other two BDAS codes. This Section starts by

describing the Nelder-Mead algorithm. Then we describe the

implementation of the cost function using a matrix-vector

operation. We finally insert the main components necessary

for obtaining an efficient GPU optimized algorithm, ending

the Section by showing how a GEMM operation can be

integrated in a recent implementation.

 The Nelder-Mead implementation is directly based on

the original Pascal program written by J.C. Nash [8]. Note

that the original BDAS R code also uses that same algorithm.

The principle of the Nelder-Mead algorithm is to evaluate a

cost function “at each point (vertex) of the simplex [the

structure formed by (n+1) points] and the vertex having the

highest function value is replaced by a new point with a

lower function value.” Nash continues by stating the “four

main operations which are made on the simplex: reflection,

expansion, reduction, and contraction” ([8], page168). The

actual Pascal implementation starts at page 173 of Nash’s

book. We first translated Nash’s Pascal code into C++ with

HIP (without MPI). After testing the single node program’s

performance, we subsequently created a multi-node

implementation using MPI.

The Nelder-Mead algorithm includes 5 calls to a cost

function, corresponding to the 4 main operations described

above, plus one initialization. The pseudocode centered

around those cost function is as follows:

Initialize: 1st cost_function

Loop over 2nd cost_function

if (Highest > Lowest && Lowest > tolerance)

 3rd cost_function

 if (Reflection < Lowest)

 4th cost_function

 else (Reflection >= Lowest)

 5th cost_function

endif

Note that the 4th and 5th calls are exclusive,

constituting an either-or branch. The sequential nature of the

algorithm stands out from the if-then-else conditions across

the four main operations on the simplex. Notice that the cost

function loops over the series of saved values of the

polytopes. We first show in the next paragraph that the cost

function includes a matrix-vector operations: DGEMv.

The SVM algorithm’s cost function involves a hinge-loss

function of the form 𝑚𝑎𝑥(0, 1 − 𝑦𝑖 (𝑤𝑇𝑥)), where 𝑤𝑇𝑥 is

the linear intended output, and 𝑦𝑖 , the classifier score, that is

equal to ±1, used to separate the data into two ensembles

(i.e., the “support vector” that defines the hyperplane that is

separating the two ensembles). In SVM, we wish to

minimize (using the Nelder-Mead algorithm) the following

cost function:

1

𝑛
∑ max(0,1 − 𝑦𝑖(𝒘𝑻𝒙)) + λ||𝒘||𝟐,

𝑛

𝑖=1

where 𝜆 =
1

2
𝑛 . The computationally intensive part of the

algorithm is the matrix-vector operation, 𝑤𝑇𝑥. A reduction

calculates the resulting hinge-loss function. The following

snippet shows the hinge loss function with the significant

components of the functions call:

double hinge_loss(double * Weights,

 int hipDeviceRank)

{

 double alpha = 1.0, beta = 0.0;

 hipblasDgemv(handle_global,

 HIPBLAS_OP_N,

 MObjects,

 NFeatures,

 &alpha,

 DataMatrix_Device,

 MObjects,

 Weights,

 1,

 &beta,

 ComputedSpecies_Device,

 1

);

 // Reduction outputs hinge-loss cost.

 double out =

 reduction(ComputedSpecies_Device,

 Species_Device,

 MObjects,

 hipDeviceRank);

 // Sum reduces the cost across ranks.

 MPI_Request request;

 MPI_Iallreduce(MPI_IN_PLACE,

 &out,

 1,

 MPI_DOUBLE,

 MPI_SUM,

 MPI_COMM_WORLD,

 &request);

 double norm = 0.0;

 hipblasDnrm2(handle,

 NFeatures,

 Weights,

 1,

 &norm);

 MPI_Wait(&request, MPI_STATUS_IGNORE);

 // L2 Regularization

 out = 1.0/regularizationParameter*

 (out + 0.5*norm);

 return out;

}

This hinge loss function is the cost_function used

in the Nelder-Mead algorithm shown above. The

hipblasDgemv operation is part of the classifier score

computation and is the most time-consuming part of SVM.

The snippet of code shows that MPI communication

uses only one non-blocking reduction and is extremely

minimal in SVM, even when comparing with the other two

BDAS programs. The reason for having an MPI reduction is

the hinge loss function output that is locally reduced on GPU,

and that needs to be reduced globally across the MPI ranks.

The regularization parameter is chosen to be identical to the

one defined in the original R code. This version of SVM

shown above does not have any GEMM operation.

A second version of SVM, which is currently under

development (Makefile with the value --DGEMM=1),

incorporates GEMM into SVM. When introducing the

Nelder-Mead algorithm, above, it was stated that the second

call to the hinge loss function is within a loop. Nash’s literal

transcription of the Nelder-Mead Pascal code [8] reads as:

...

-- STEP 10

if calcvert then

begin

for j := 1 to nl do

 begin

 if j<>L then

 begin

 for i := 1 to n do Bvec[i] := P[i,j];

 f:= fininfn(n,Bvec,Workdata,notcomp);

 ...

In BDAS, the function fininfn contains an

hipblasDgemv. As the Pascal code above shows, that

matrix-vector operation exists within a loop: a loop over a

set of matrix-vectors is essentially a matrix-matrix operation,

i.e., a single hipblasDgemm. In practice, that implies having

to insert the GEMM operation directly inside the Nelder-

Mead algorithm (which makes the new Nelder-Mead

implementation “unextractable” from SVM, so it cannot be

7 https://github.com/ROCmSoftwarePlatform/Tensile

used elsewhere with, say, a quadratic loss function). The new

NelderMead_GEMM code now contains the following call to:

hipblasDgemm(handle,

 HIPBLAS_OP_N,

 HIPBLAS_OP_N,

 MObjects_rank,

 NFeatures,

 NFeatures,

 &alf,

 DataMatrix_Device,

 MObjects_rank,

 WeightsMatrix_Device,

 NFeatures,

 &bet,

 SpeciesMatrix_Device,

 MObjects_rank);

The DGEMM dimensions in SVM are:
M = MObjects_rank = 16,000,000

N = NFeatures = 250

K = NFeatures = 250

These dimensions correspond to a product between a tall-

and-skinny matrix and a tiny 250X250 matrix, a quite

different aspect ratio from the ones in K-Means or PCA.

In general, replacing a sequence of matrix-vectors

(computed within a loop) with one single matrix-matrix

operation essentially corresponds to transferring a problem

of larger runtime into a problem of larger memory (i.e.,

trading time, for space). At the time of writing this paper, we

are considering batching the DGEMM into two calls

(reducing k to 125), because the above approach surpasses

the amount of local memory available (for those benchmark

dimensions).

VI. TENSILE OPTIMIZATION

Currently, every time a GEMM API is invoked in

rocBLAS, the actual computation is performed by a separate

and specialized library called Tensile.

Tensile [6] is an open source 7 tool able to auto

generate highly performing GPU assembly kernels

optimized for specific GEMM sizes. Due to the complexity

of modern GPUs not all problem sizes can be efficiently

handled in the same way. Some implementations for a

specific problem size will perform differently from others

based on many factors, such as: number of workgroups,

cache accesses, type of MFMA instructions used and others.

The overall idea is to have a fixed set of sized-tuned

assembly kernels generated offline after a thorough tuning

process and ship them in an official ROCm™ release.

Although this approach is extremely effective when

the GEMM sizes submitted to rocBLAS match exactly the

sizes used during tuning, the performance for GEMM sizes

not considered during tuning can vary. This variation can

happen unpredictably between ROCm releases due to newly

added size-tuned kernels in Tensile.

Furthermore, the specific sizes used by BDAS are

particularly challenging to handle due to large imbalances

between the number of rows of the first and second matrix

(16Mx250, tall and skinny).

For this reason, we decided to create a bespoke Tensile

library specifically tuned for all the GEMM sizes invoked

during the execution of the three test cases, and only for those

sizes.

AMD generated a special library for the BDAS

application. In practice, a custom Tensile generated library

can be loaded and used on top of a given ROCm library.

Currently, the dimensions used in BDAS (16,000,000 X 250

matrices) are part of rocm/5.4.3.

VII. PERFORMANCE PROFILES

This Section combines the performances of the three

BDAS codes, focusing on their GEMM and GEMv profiles.

The method for validating each algorithm is also discussed

at the beginning of each subsection. All algorithms are

validated using the iris dataset (three species of Iris setosa,

Iris virginica, and Iris versicolor). There are 150 objects and

4 features (the sepal and petal lengths and widths) in that

dataset. The solution is known and thus the quality of each

algorithm can be evaluated.

It is important to realize that the runtime shown below,

for K-Means and PCA, are fast only thanks to the Tensile

optimization. Any ROCm non-optimized library would give

runtimes much slower, slower perhaps by an order of

magnitude (~10 to 20X slower). The Tensile optimization is

essential in obtaining these fast runtimes.

A. K-Means

The K-Means implementation is validated by varying

the initial conditions of the clusters (K-Means being an

“NP-hard” problem). The K-Means algorithm is tested by

setting K=3, in parallel (e.g., 2 MPI ranks). The Rand index

function [9] defines the “distance” between two ensembles,

a characterization of the overlap between the known

solution (the 3 species) and the K-Means solution (the 3

clusters). Depending on the initial condition, the Rand index

distance varies between 71.48% and the maximum

obtained: 90.55%, an excellent overlap between the

simulation and the solution.

The benchmark runtime for the 16,000,000 X 250

local random matrix, using 32 MPI ranks on 4 nodes, is 0.23

seconds. The original R CPU-only code requires 2048 ranks

distributed across 32 nodes, with local matrices of 250,000

X 250, to simulate that same terabyte of data. That means

that the optimized code requires 8 times fewer nodes. The

runtime from the CPU-only code is 9.2 seconds for that

same 1.024TB ensemble. That means that the optimized

code is 40 times faster. Multiplying those two factors (nodes

required and runtimes) the new accelerated K-Means

version is thus 320X better, i.e., the same work can be done

on 8 times fewer nodes, in 40 times faster runtime.

 Table I shows the profile using

$ROCM_PATH/bin/rocprof preloaded to the usual

SLURM run script, for the 1.024TB ensemble, running on

the MI250X nodes of a system equivalent to the Frontier

machine (the machine “crusher”).

 Table I. K-Means rocprof profile

Method Percentage DGEMM

Cijk_Alik_Bljk (32x16x32) 51.6
82.2

Cijk_Ailk_Bljk (1024x32x8) 30.6

dot_product 12.7

assign_cluster 2.3

normalize_weights 1.8

reduction_hip_tiled 0.9

rocblas_dot_kernel_magsq 0.04

Cijk_D 0.004

It shows that the optimized K-Means code has been

rewritten so that the algorithm depends mostly (82%) on the

GEMM calls, which have been optimized by Tensile as

described in Section VI for these two extremely tall-and-

skinny matrices. The MPI runtime spent in the two

MPI_Allreduce communication across only 4 nodes is

negligeable (fraction of a percent). We also tested weak

scaling of the code, by increasing the size of an ensemble

up to 128TB per ensemble. We find that MPI

communication becomes noticeable (>2%) beyond 32TB,

or 256 MPI ranks. In general, we suggest splitting the

problem into 1TB problems, when possible, to avoid

potential load imbalance. Load imbalance depends on the

dataset. Realistic datasets may show larger imbalance than

the randomly generated datapoints we use for the

benchmark. From this profile K-Means is more than 80%

compute bound and dominated by GEMM operations. The

4 functions in bold, in Table I are rocm libraries, while the

other four are K-Means function that were described in

Section III.

B. PCA

PCA is first validated by comparing the eigenvalues of

the centered and normalized iris dataset from the R code.

The R code gives eigenvalues:

[1]2.91849782 0.91403047 0.14675688 0.02071484

The output of the optimized PCA eigenvalues gives

identical values:

 Eigenvalues =
2.071483642862e-02

1.467568755713e-01

9.140304714681e-01

2.918497816532e+00

The benchmark runtime for the 16,000,000 X 250

local matrix, using 32 MPI ranks, is 0.15 seconds.

Equivalently, the original R code takes 6.8 seconds to

complete the 1.024TB ensemble run (using 2048 MPI ranks,

as in K-Means). The optimized code is 45 times faster. On

a per ensemble basis the optimized code is 45X faster, and

on a per node basis, as is calculated in K-Means, it is 360X

faster, i.e., the same work can be done on 8 times fewer

nodes, in 45 times faster runtime.
Table II. PCA rocprof profile

Method Percentage DGEMM

Cijk_Alik_Bljk (128x256x16) 99.992 99.992

The rocprof profile for PCA is shown in Table II. It

shows that essentially all (99.992%) of the runtime is spent

in the matrix-matrix multiply operation, optimized for

extremely tall-and-skinny matrices using AMD Tensile.

The MPI_Reduce runtime for transferring to rank 0,

as well as the runtime for calculating the tiny 250X250

variance matrix eigenvalues (through DSYEVD), are both

negligeable. PCA is essentially 100% compute bound.

C. SVM

The optimized implementation of SVM is validated by

separating one iris species from the other two and letting

SVM find the support vector that separates those two sets.

The accuracy of that separation is computed to be 100%.

The benchmark time for SVM on Frontier using 4

nodes (1 ensemble of 1.024 TB) is 13.47 seconds. The R

CPU-code does the same work in 202 seconds. That is, 15X

faster on GPU. Since the same work can be done on 8 times

fewer nodes, as for the other two codes, that corresponds to

a 120X improvement. The performance gain in SVM is not

as large as in K-Means and PCA, but it is expected that this

gap will close with the new version that is rewritten to use

GEMM operations.

Table III SVM rocprof profile

Method Percentage DGEMM

 0

gemvn_kernel 99.16

reduction_hip_tiled 0.74

temp_accumulate 0.07

rocblas_reduction_strided 0.015

 The SVM profile shown in Table III shows

that most of the time is spent in the DGEMv call that occurs

inside the hinge-loss function. DGEMv cannot be optimized

with AMD Tensile (since the varied parameter from the

parameter space search algorithm, i.e., various strides in a

matrix are not available). SVM is shown to be essentially

100% memory bound.

Recall that in Section V above we have shown that the

Nelder-Mead algorithm contains 5 calls to the hinge loss

function, and that the second call (STEP 10 in Nash’s

algorithm) includes an inner loop call to DGEMv that we

transformed into a DGEMM.

Table IV. Nelder-Mead cost function calls for the tiny iris and the

large random benchmark datasets

Cost function call Iris Random

1st (initialization) 1 1

2nd (DGEMM loop) 5 250

3rd Reflection 248 125

4th lower 75 0

5th upper 173 125

Table IV shows the number of calls inside Nelder-

Mead, for both the Iris dataset and for the large synthetic

random dataset. The proportions of DGEMM (2nd call) are

inverted between the two datasets: The iris dataset has few

DGEMM calls compared to the other 4 DGEMv calls, while

the randomly generated large dataset has about half of the

DGEMM calls, and the other half being DGEMv. We believe

that larger realistic datasets would likely have between be

20%-25% of the total calls in DGEMM. Performance

analysis with this new implementation is under development

at the time of writing this article.

VIII. CONCLUSION

This article describes a C++ with HIP and MPI

implementation of the classic K-Means, PCA, and linear

SVM machine learning algorithms. We show that leveraging

BLAS 3 GEMM operations in these three programs can

significantly improve their performance, by taking

advantage of the AMD Tensile GEMM optimizer. We find

that K-Means, PCA, and SVM are respectively 320X, 360X,

and 120X faster than the original CPU-only

implementations. The K-Means code spends 82% of its time

in GEMM operations, for PCA this figure is 99%, and we

have shown that SVM contains a potential for the runtime to

spend over 20% of its time in GEMM operations in the

second call to the hinge loss function inside Nelder-Mead

(still under investigation).

 These techniques could easily be integrated into other

modern statistical learning algorithms, such as K-Means++

[10], SVD [11], or non-linear SVM [1].

Python being one of the preferred languages of

machine learning, we believe that these techniques written in

C++ with HIP and MPI could eventually be included in a

python library or included and integrated using cython with

HIP. Dragon or mpi4py could also be considered to replace

the MPI instructions, since the structure of internode

communication has been kept minimalistic. HIP-Python

(like the existing CUDA-Python) is under development.

Such integration could also be considered, soon.

 This accelerated BDAS code was created as part of the

CORAL-2 procurement. The optimized BDAS code has

been provided to Oak Ridge National Laboratory.

ACKNOWLEDGMENT

We thank Steven Abbott, John Baron, Joe Glenski, Faisal
Hadi, Nick Hill, Krishna Kandalla, Timothy Mattox, Luke
Rosko, Kevin Thomas, Norm Troullier, Trey White, and Xin Ye
at HPE, the system administrators at HPE and ORNL, as well as
Paul Bauman, Ian Bogle and Nicholas Malaya at AMD for their
help and discussions on various possible experiments which lead
to our optimization.

REFERENCES

[1] Hastie, T., Tibshirana, R., Friedman, J., The Elements of Statistical

Learning (Springer, New York, 2012).

[2] Lloyd, S.P., Least square quantization in PCM, IEEE Transactions on
Information Theory 28 (129-137), March 1982.

[3] Pearson K. F.R.S., LIII. On lines and planes of closest fit to systems of
points in space, The London, Edinburgh, and Dublin Philosophical
Magasine and Journal of Science, 2(11), pp. 559-572, 1901.

[4] Cortes, C. and Vapnik V., Support-vector networks, Machine Learning
20, 273-297 (1995).

[5] Ostrouchov, G., Chen, W.-C., Schmidt, D., Patel, P., Programming with
Big Data in R, (Oak Ridge National Laboratory and University of
Tennessee, 2012).

[6] D. E. Tanner, "Tensile: Auto-Tuning GEMM GPU Assembly for All
Problem Sizes," 2018 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), Vancouver, BC, Canada,
2018, pp. 1066-1075, doi: 10.1109/IPDPSW.2018.00165.

[7] Elden, L., Matrix Methods in Data Mining and Pattern Recognition,
(SIAM, Philadelphia, 2007).

[8] Nash, J.C., Compact Numerical Methods for Computers, Linear Algebra
and Function minimisation (Adam Hilger, New York, 1979).

[9] Rand, W. M., Objective Criteria for the Evaluation of Clustering
Methods, J. American Statistical Association, 66, No. 336, pp. 846-850
(1971).

[10] Vassilvitskii, A.D., K-Means++: the Advantages of Careful Seeding,
Proc. of the Eighteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SIAM, Philadelphia, pp. 1027-1035.

[11] Berry, M.W., Large-Scale Sparse Singular Value Computations, Int. J.
High Performance Computing Applications, 6, Issue 1, pp. 13-49 (1992).

