
Polaris and Acceptance Testing
Brian Homerding*, Ben Lenard*, Cyrus Blackworth, Carissa Holohan, Alex Kulyavtsev, Gordon McPheeters,

Eric Pershy, Paul Rich, Doug Waldron, Michael Zhang, Kevin Harms, Ti Leggett, William Allcock
Leadership Computing Facility

Argonne National Laboratory
Lemont, IL

{bhomerding,blenard,cblackworth,carissa,alexku,gmcpheeters,pershy,
richp,dwaldron,mzhang,harms,tleggett,allcock}@anl.gov

Abstract—The Argonne Leadership Computing Facility
(ALCF) is home to Polaris, a 44 peak PetaFLOP (PF) system de-
veloped in collaboration with Hewlett Packard Enterprise (HPE)
and NVIDIA. Polaris is a heterogeneous system with 560 nodes
utilizing NVIDIA GPUs along with a HPE Slingshot Interconnect
and a HDR200 Infiniband network to storage. Due to hardware
availability the delivery was performed in multiple stages. We
introduce both hardware and software components of Polaris and
discuss the performance of our thorough benchmarking analysis.
ALCF policy is to perform a rigorous multi-week acceptance
testing (AT) evaluation for every major system to ensure the
capabilities of that system can support ALCF users’ science
application needs and meet ACLF system operational metrics.
The various system components are thoroughly tested to ensure
the system will be stable for production operation, function
correctly, and fulfill performance expectations for scientific work-
loads. We will discuss how ALCF used Jenkins and ReFrame to
perform the AT of the base Polaris system as well as a second
AT to evaluate the Polaris CPU upgrade. We will present our
approach for deploying Jenkins to streamline the AT evaluation
with benchmarking improvements and lessons learned from the
successful acceptance of the heterogeneous system, Polaris.

Index Terms—deployment, integration, acceptance

I. INTRODUCTION

In 2022, the Argonne Leadership Computing Facility
(ALCF) acquired the Polaris system developed in collaboration
with HPE and NVIDIA. At deployment, Polaris is a 44 peak
PetaFLOP (PF) heterogeneous system. Polaris is comprised
of 560 nodes utilizing NVIDIA GPUs for acceleration. Each
compute node consists of an AMD EPYC “Milan” 7543P
CPU with four NVIDIA HGX A100s. Polaris utilizes the
HPE Slingshot Interconnect network system for high-speed,
low latency communications. To access the external ACLF
production Lustre filesystems, Eagle and Grand, Polaris uti-
lizes HDR200 InfiniBand via gateway nodes. ALCF performs
a rigorous multi-week acceptance testing (AT) process for
its leadership class systems to ensure the capabilities of the
system for supporting ALCF users’ science applications and
the Facility’s ability to meet system operational metrics.

The Polaris compute nodes have an aggergate 160 GB
HBM2 memory on the GPUs with 1.6 TB/s memory band-
width per NVIDIA HGX A100 GPU. Additionally, each node
has 512 GB total DDR4 memory with 204.8 GB/s memory

*Both authors contributed equally to this research

bandwidth. There are two NVMe SSDs per node with a total
capacity of 3.2 TB and two HPE Slingshot Cassini network
adapters per node providing a total injection bandwidth of 50
GB/s. The PCIe Gen4 bandwidth on the node is 64 GB/s and
the GPU NVLink bandwidth is 600 GB/s. The HPE Slingshot
Interconnect provides multiple quality of service levels along
with aggressive adaptive routing and advanced congestion
control. This provides very low average and tail latency and
high-performance multicast and reduction operations.

The AMD EPYC “Milan” 7543P CPU on each compute
node provides 32 Zen3 cores with 64 total threads. The total
shared L3 cache is 256 MB with a private L2 cache of 512 KB
per core and a private L1 cache per core of 32 KB. Each of
the NVIDIA HGX A100s on each compute node is capable of
9.7 TF at FP64 precision, this grows to 19.5 TF when utilizing
the FP64 tensor core support. Each of the A100 GPUs has 40
GB of HBM2 memory.

To ensure that the Polaris system met the desired func-
tionality, performance, and stability requirements many tests
were implemented. These tests ranged from system operational
tests, benchmarks designed to stress system components, to
full scientific applications. ALCF leveraged the Jenkins au-
tomation framework and ReFrame regression testing frame-
work, both open-source technologies, to perform the AT pro-
cess for Polaris as well as acceptance of the Polaris upgrade. A
rigorous multi-week system test of scientific applications was
performed to ensure the stability of the system for steady-state
production operation. The scientific applications covered a
range of scientific domains and characteristics - these included
HACC, QMCPack, NekRS, LAMMPS, and CosmicTagger.
Each of these scientific applications were utilized at various
scales - from single node up to full machine jobs - with the
expected output and performance being validated. In all, 70
different scientific application configurations were utilized for
the Polaris AT process.

ReFrame is a python framework for the development of
HPC system tests and includes built-in support for HPC
job schedulers, including Polaris’s job scheduler, PBSPro,
allowing for the easy submission of jobs and tracking of job
progress. Each ReFrame test was staged in a unique direc-
tory with all execution dependencies, allowing for multiple
concurrent independent ReFrame test launches. ReFrame pro-

vides rich support for implementing complex correctness and
performance checks, monitoring the validity and performance
of the application executions.

To automate the execution of the individual ReFrame tests,
we employed the Jenkins CI framework. Additionally, Jenkins
provides a convenient interface and hooks to enable effective
test failure triage. Jenkins enabled us to produce continuous
submissions of the ReFrame tests, submitting a new execution
of a given test after the completion of the previous execution.
These features enabled the combined test harness of Jenkins
and ReFrame components to produce a steady stream of
diverse workloads for the system over the course of three
weeks. The hooks in Jenkins provided tools for us to archive
and notify on job failures. In the event of a ReFrame test
producing a failure, Jenkins would produce a notification to
a shared Slack space with a direct link to the failed test.
Additionally on job failures Jenkins captured the job standard
out and error to the web interface and saved the failed job
stage to the Lustre file system. Easily accessing the standard
out and error of the failed job through the web interface
enabled quick triage of the failed tests for further investigation.
Finally, Jenkins enabled the generation of various dashboards
to provide a high-level view of the overall AT results. With the
above Jenkins configuration, ALCF could trivially change the
number of concurrent executions of the same test controlling
which components of the system were stressed at any given
time.

Over the course of a successful multi-week AT, a total
of 99,381 jobs were executed with 146 failures. The system
maintained 99.7% availability with 95.7% utilization including
multiple 24-hour periods with no job failures due to system
events. The test harness enabled ALCF to ensure the stability
of the system for steady-state production operation, while
performing as expected for scientific workloads. Throughout
the Polaris AT process there were several lessons learned for
successful system acceptance.

This configuration created a simple process for redirecting
the archival of job output and failed job stages avoiding
issues with file system availability. Having a hierarchical
system for understanding failures streamlined the root cause
analysis of issues. For Polaris, the first notification was through
Slack from Jenkins which provided easy notification with
minimally concise information. Next the Jenkins web interface
provided the job standard output and error which allowed
for quickly understanding most errors. Finally, the failed job
ReFrame stages were archived on a Lustre filesystem and
node logs (syslog, dmesg, etc.) were centrally gathered by
the management stack for in-depth investigation. To enable
the understanding of failed job underlying issues, generating
test executions targeting specific system components enabled
the isolation of the issue with a test to trigger it.

II. RELATED WORK

When ALCF performed acceptance testing of its previous
flagship supercomputer, Theta, in 2016, an internal application
called the ALCF Test Harness was utilized [1]. The ALCF Test

River Compute Racks 40
Apollo Gen10+ Chassis 280
Compute Nodes 560
AMD EPYC 7543P CPUs 560
NVIDIA A100 GPUs 2240
Total GPU HBM2 Memory 87.5TB
Total CPU DDR4 Memory 280 TB
Total NVMe SSD Capacity 1.75 PB
Interconnect HPE Slingshot
Slingshot Endpoints 1120
Rosetta Switches 80
Total Injection BW (w/ Cassini) 28 TB/s
Total GPU DP Tensor Core Flops 44 PF
Total Peak Power 1.8 MW

TABLE I: Polaris System Configuration

Harness provided automation for building, executing, validat-
ing results, as well as archiving artifacts during the acceptance
testing process. These tasks are performed repeatedly during
AT, and provide the metrics that determine if an acceptance
test criteria is successful. By removing manual intervention
with the ALCF Test Harness, mistakes caused by human error
were reduced. The ALCF Test Harness was tightly integrated
with the Cobalt [2] job scheduler.

Jenkins is an open source tool for Continuous Integration
and Continuous Deployment platform that is written in Java
[3]. Around 2018, the ALCF began to utilize Jenkins for
Continuous Integration in their HPC environment, namely on
Theta, so that users can compile and execute their code [4].
Therefore it was a natural leap to utilize Jenkins for Polaris’s
AT as discussed in section VI-A.

The Swiss National Supercomputing Centre developed a
regression framework for HPC systems written in Python
called ReFrame that was presented at Cray Users Group in
2018 [5]. This framework interfaces with the scheduler and
launcher for benchmarks that are executed on the HPC system.
The output of the job execution is validated by user-defined
sanity and performance functions.

HPE OneView is software that provides hardware error
reporting and firmware information about HPE nodes within
the system environment by communicating with the node’s
Lights-Out (ilo) card.

III. HARDWARE DETAILS

The Polaris system consists of 560 compute nodes utilizing
NVIDIA GPUs for acceleration. Each compute node has a
single AMD EPYC ”Milan” 7543P CPU with four NVIDIA
HGX A100s. At deployment, Polaris achieved a peak per-
formance of 23.8 PF on the November 2021 Top500 list []
and then 25.81 PF on the June 2022 list [] after the upgrade
and tuning. Polaris utilizes the HPE Slingshot Interconnect
network system for communication. The system has a total of
87.5 TB of HBM2 memory on the GPUs combined with 280
TB of DDR4 memory. The full Polaris system configuration
is shown in Table I.

Each of the 560 Polaris nodes are heterogeneous, utilizing
four NVIDIA A100 GPUs for acceleration. The node config-
uration is shown in Figure 1. The single AMD EPYC 7543P

CPU provides 32 Zen3 cores with 64 threads. Each of the four
NVIDIA A100 GPUs includes 128 Streaming Multiprocessors
with 64 FP32 CUDA cores per Streaming Multiprocessors.
The CPU is connected to the GPUs using PCIe Gen 4
providing 64 GB/s bandwidth. The GPUs interconnect utilizes
NVLink providing 600 GB/s. The single node specifications
are show in Table II.

AMD EPYC 7543P CPUs 1
NVIDIA A100 GPUs 4
Total HBM2 Memory 160 GB
HBM2 Memory BW per GPU 1.6 TB/s
Total DDR4 Memory 512 GB
DDR4 Memory BW 204.8 GB/s
NVMe SSDs 2
Total NVMe SSD Capacity 3.2 TB
Slingshot NICs 2
Total Injection BW (w/ Cassini) 50 GB/s
PCIe Gen4 BW 64 GB/s
NVLink BW 600 GB/s
Total GPU DP Tensor Core Flops 78 TF

TABLE II: Polaris Single Node Configuration

Fig. 1: Single Node Configuration.

A. Compute Characteristics

Each compute node has a single AMD EPYC ”Milan”
7543P CPU. The base frequency is 2.8 GHz with a maximum
boost frequency of 3.7 GHz. There are 32 Zen3 cores with 64
total threads per CPU. Each CPU is connected to four NVIDIA
HGX A100s. The NVIDIA A100 is capable of 9.7 TF FP64
performance. Through the utilization of the tensor cores the
FP64 performance increases to 19.5 TF. The BF16 and FP16
performance utilizing the tensor cores is 312 TF.

To measure the compute performance of the NVIDIA A100
GPUs, we utilized the CUDA implementation of the DGEMM

kernel from the Parallel Research Kernels (PRK) [6]. PRK
provides a variety of kernel operations implemented in many
difference parallel programming models. We executed the
cublas implementation to measure the compute performance
across all Polaris GPUs. The results are shown in Table III.

Kernel TFlops/sec
DGEMM 19.3
SGEMM 136.1

TABLE III: GEMM Average Performance Across All Polaris
A100 GPUs

B. Memory Characteristics

Each GPU provides 40 GB of HBM2 memory, resulting in
160 GB per compute node. The HBM2 memory provides 1.6
TB/s bandwidth on the GPUs. Additionally, the CPU provides
512 GB of DDR4 memory through 8 memory channels. This
results in 204.8 GB/s memory bandwidth when using the
DDR4 memory.

The BabelStream [7] benchmark implements the
STREAM [8] benchmark in various different programming
models to provide support on a wider variety of platforms.
We validated the performance of the NVIDIA GPUs by
running the BabelStream benchmark on each GPU in the
Polaris system. The CUDA implementation was utilized with
a single thread offloading the kernels to a single GPU. The
results are show in table IV.

Kernel BW GBytes/sec
Copy 1387.64
Mul 1386.63
Add 1396.77
Triad 1397.36
Dot 1292.18

TABLE IV: BabelStream Average Performance Across All
Polaris A100 GPUs

C. Communication Characteristics

Polaris utilizes the HPE Slingshot Interconnect network
system. The Slingshot configuration is shown in Figure 2.
Polaris has a total of 11 dragonfly groups, 10 of which are
compute groups. The compute groups have 56 nodes each with
2 Slingshot NICs per node. Each compute group has 8 Rosetta
switches with 4 links within each group. Each NIC has a single
link to the Rosetta switches. There are 2 links between each
compute group. The single non-compute group is a service
group containing management nodes and I/O nodes.

Each link between and within the compute groups provide
200Gb/s. The Rosetta Switches provide multiple quality of ser-
vice (QoS) levels. Additionally, the switches have aggressive
adaptive routing with advanced congestion control and very
low average and tail latency. Finally, the switches provide high
performance multicast and reduction operations.

At the time of acceptance, Polaris utilized Slingshot 10,
each node was equipped with 2 Mellanox ConnectX NICs
with a 100Gb link. The injection bandwidth was ≈4TB/s

…

1 Service Group10 Compute Groups

L2 : 2 x 200GbL1: 4 x 200Gb

Each link is 25 GB/s unidirectional
 50 GB/s bidirectional

Group 1
56 Nodes

16x
NIC

Rosetta
1

Rosetta
0

Rosetta
7

16x
NIC

16x
NIC

…

…16x
NIC

Rosetta
1

Rosetta
0

Rosetta
7

16x
NIC

16x
NIC

…

…16x
NIC

Rosetta
1

Rosetta
 0

Rosetta
7

16x
NIC

16x
NIC

…

… 16x
NIC

Rosetta
1

Rosetta
0

Rosetta
7

16x
NIC

16x
NIC

…

…

Group 0
56 Nodes

Group 9
56 Nodes

Group 10
65 Nodes

L0 : 1 x 100Gb

Fig. 2: Polaris Slingshot Configuration.

with Slingshot 10. Polaris will be upgraded to Slingshot 11
equipping it with 2 Cassini NICs per compute node, increasing
the injection bandwifth to ≈28TB/s. In addition to doubling
the injection bandwidth, Slingshot 11 provides MPI hardware
tag matching and an independent MPI progress engine.

The ALCF MPI benchmarks [9] provide benchmarks to
measure the performance of the communication on the system.
The benchmarks were used to measure the bisection and
injection bandwidth at the time of AT. The results are shown
in Table V

Benchmark TBytes/sec
Global Injection BW 13.7
Global Bisection BW 13.7

TABLE V: Bisection and Injection Bandwidth at time of AT.

D. File Systems Used and Their Characteristics

Polaris utilizes three of the ALCF’s Lustre file systems in
order to provide access to both large scale storage for project
files, as well as provide access to the ALCF’s Global home
file system.

The two project systems are named Grand and Eagle.
Both file systems are identical in configuration and are based
on HPE’s E1000 Lustre Storage Systems. Each project file
system is 100 PB in size, consisting of 160 Object Storage
Targets (OST) each of which is based on 53 16TB HDD
in a GridRAID de-clustered RAID array. The 160 OSTs are
served by 40 Object Storage Servers (OSS) with each server
responsible to serve 4 OSTs.

The Metadata for each project file system resides on 40
Meta Data Targets (MDT). Each MDT consists of NVMe
Flash drives configured as a RAID-10 device. These 40 MDTs
are served by 20 Meta Data Servers (MDS).

Eagle and Grand are ALCF facility resources and as such
are available to other facility Compute Clusters including
Theta and Cooley. In addition to being available for the
Compute Clusters’ use, the two project file systems also offer

Globus support for data transfer into and out of the ALCF
facility in support of distributed workflows.

In addition to the project file systems being made available
to Polaris during acceptance the ALCF also made available
a DDN AI-400X named Swift. Swift is a NVMe/Flash based
Lustre file system which the ALCF used to host both a /home
file system during acceptance and also a space called /soft
for third party tools/libraries. Both /home and /soft were
sub-directories in the Swift file system but were presented to
the Polaris system as two separate file systems using Lustre
fileset mounts. Using the fileset mounts with Swift will allow
a seamless transition should the ALCF decide to re-host either
/home or /soft to a new file system at a later time.

In order to provide access to the Lustre file systems from
Polaris Compute Nodes (CN) a set of Lustre gateway nodes
(GW) were utilized. The Lustre storage systems, both for
projects and home, reside on the ACLF’s HDR-200 Infiniband
(IB) network. The Polaris CNs are on the Slingshot network.
The Lustre gateway nodes, having network interfaces on both
the IB and the Slingshot networks, allows Lustre file system
traffic to bridge these two networks.

Due to supply constraints of IB cables during the time frame
of the Polaris installation and acceptance, the ALCF accepted
the Polaris system using a subset of the total number of GW
nodes. 36 of the 50 GW nodes were used during acceptance.
4 of the 36 GW nodes were dedicated to serving the /home
and /soft structures while the other 32 GW nodes supported
the IO traffic to Grand and Eagle. This traffic isolation was
done to separate small trivial IO as characterized by /home
and /soft accesses from larger block IO to the project file
systems. Due to not having the full set of GW nodes available
at acceptance time, the acceptance bandwidth expectations
were adjusted linearly with the available GW node count.

IV. SYSTEM SOFTWARE

Polaris is a leading-edge system for scientists and applica-
tion developers. Polaris is utilizes the HPE Performance Clus-

ter Manager (HPCM) to provide provisioning, management,
and monitoring. Polaris offers excellent capabilities in simula-
tion, data, and learning by using NVIDIA’s existing HPC SDK.
Additionally, Polaris provides support for HPE Cray MPI and
MPICH via libfabric using the Slingshot provider.

A. PBS

Polaris uses Altair’s PBS Professional (PBSPro) for work-
load scheduling and resource management, along with HPE’s
provided Parallel Application Launch Service (PALS) for
user task execution via PALS’s implementation of mpiexec.
For system shakedown and acceptance testing, PBSPro was
configured for FIFO with strict job ordering with backfilling
enabled. This allowed for a mix of jobs at different sizes to
run and kept the system saturated with work and efficiently
allocated resources to maintain the utilization required for
the stability phase of acceptance testing, while avoiding heel-
toe starvation of large, capability-sized jobs by smaller jobs
submitted to the system. Capability jobs are jobs that utilize
greater than twenty percent of system resources and are a
key metric for the ALCF. A mix of job sizes, all the way to
full-system jobs were run via PBSPro during the acceptance
test period, including during stability testing, representing a
normal, expected production workload in the ALCF.

B. Programming Environments

Polaris provides the HPE Cray Programming Environment.
HPE Cray MPI provides support for gpuDirect offload to
A100 for multi-NIC and multi-GPU support. The NVIDIA
HPC SDK provides the primary support for programming the
NVIDIA A100. In addition to OpenMP and CUDA support,
the DOE programming models Kokkos and RAJA are sup-
ported. Support for the SYCL/DPC++ programming model on
NVIDIA GPUs is provided through the CodePlay computecpp
compiler and through the Intel DPC++ opensource LLVM
compiler.

The HPE Cray Programming Environment provides Python
with builtin support for many modules, including numpy,
scipy, pandas and mpi4py. Additionally, optimized data learn-
ing and analytics frameworks are provided which are opti-
mized for the GPUs through use of the NVIDIA libraries.
The NVIDIA Rapids library provides support for data science
and analytics.

C. Debugging and Performance Analysis Tools

The Polaris system provides several debugging tools to as-
sist developers. In addition to gdb, CUDA-GDB [10] provides
support for debugging CUDA code. To support debugging at
the scale needed for a system the scale of Polaris, gdb4hpc
provides a parallelized gdb for HPC. Additionally, the Stack
Trace Analysis Tool (STAT) [11] provides support for stack
tracing at scale.

To assist developers in leveraging the performance available
on the Polaris system, several performance analysis tools are
supported. The Cray Performance Measurement and Analysis
toolset (CrayPAT) [12] provides a large toolset to understand

whole application performance. With the large portion of
performance provided by the GPUs, extracting high appli-
cation performance on the GPUs is necessary. The NVIDIA
Nsight [13] tool provides for system-wide performance anal-
ysis enabling analysis of the application GPU performance.

V. ACCEPTANCE TESTING AND PHASES

The acceptance process for Polaris was designed to en-
sure a productive and stable system for science to verify
the functionality, performance, and stability of the system
based on the contract requirements. The process draws on
several past successful ALCF system acceptances, including
Intrepid [14], Mira [15], and Theta [16]. An Acceptance
Test Plan (ATP) was created to clearly define the phases
of acceptance along with the entrance and exit criteria for
each phase. Additionally, the ATP defined the roles, respon-
sibilities, and activities performed during the acceptance. An
Acceptance Test Checklist (ATC) was created to clearly define
the specific tests with their expected results along with the
owners of the tests. The expected performance projections
were made using ThetaGPU [17]. ThetaGPU is a hetero-
geneous ALCF resource providing identical NVIDIA A100
40GB GPUs along with AMD EPYC 7742 CPUs. In contrast
to Polaris, ThetaGPU provides 2 CPUs and 8 GPUs per node.
Additionally, ThetaGPU uses a Fat Tree Infiniband network
instead of Slingshot.

The 3 phases of the ATP which rigorously evaluate the
system are the 1) Functional, 2) Performance, and 3) Stability
phases. We chose to combine the Functional and Performance
phases (ATP-FP) to run concurrently. The ATP-FP could take
up to a week, but because many of the disruptive system
functional tests were completed before starting this phase, it
completed several days sooner. Before starting the ATP-FP
100% of the hardware had to be up and healthy. All application
and benchmark tests that completed successfully must obtain
a correct result and any defects had to be categorized and
a root cause analysis completed. After ATP-FP completed,
the Stability phase (ATP-S) could start, but before starting
all hardware again had to be 100% up and healthy. ATP-S
must run for 21 continuous calendar days achieving ≥ 95%
availability while maintaining ≥ 90% utilization. Availability
was defined as: ∑

iN(Si −Di)∑
iNSi

where Si is the number of schedulable hours for node i
(wall clock time minus downtime scheduled by Argonne)
Di is the number of hours of downtime for node i.
Also during ATP-S, there needed to be at least 24 continu-

ous hours with no failures due to system defects and at least
every application that could, had to have a full system (560
nodes) job complete successfully.

A. Functional and Performance Tests
1) Applications and Benchmarks: To ensure that the Polaris

system successfully supports the range of ALCF user appli-
cations, 6 applications were selected to be included in the

acceptance testing. These applications were selected to cover
the breadth of simulation, data, and learning application needs.
Additionally, these applications were chosen because they have
a large user base, provide a high level of scalability, and are
motivated to collaborate with the ALCF team. The following
are the applications that were utilized during the AT of Polaris:

• QMCPACK [18]: Open source quantum Monte Carlo
package for ab initio electronic structure calculations
Weak scaling from 1 to 560 nodes, MPI + OpenMP, C++

• LAMMPS [19]: Classical molecular dynamics code with
a focus on materials modeling Weak scaling from 1 to
560 nodes, MPI + Kokkos, C++

• NekBench [20]: Proxy application for NekRS (based on
NEK5000) Navier Stokes solver based on the spectral
element method Strong scaling from 32 to 512 nodes,
MPI + OCCA, C++

• HACC [21]: Extreme-scale cosmological simulation code
Weak scaling from 1 to 560 nodes, MPI + CUDA, C++

• Cosmic Tagger [22]: Removes background particles by
applying semantic segmentation on full detector images
from the SBND detector via deep learning Weak scaling
from 1 to 512, Python + PyTorch + mpi4py, using
NVIDIA container

• Uno [23]: Predict drug response to fight cancer cells via
machine/deep learning Weak scaling on 1 node with 1
and 7 MIG instances on a single GPU, Python + Keras
+ Tensorflow

In addition to the 6 applications chosen, the following
benchmarks were included to thoroughly test the system
components:

• OvO [24]: Collection of OpenMP Offloading test func-
tions for C++ and Fortran

• SOLLVE VV [25]: OpenMP Validation and Verification
project is a suite of test cases to validate conformance
and correctness for OpenMP 4.5/5.0 C/C++

• HPL [26]: Portable implementation of High-Performance
LINPACK Benchmark

• DGEMM [6]: Benchmark to measure sustained floating-
point rate

• STREAM [8] [7]: Benchmark to measure sustainable
memory bandwidth, both GPU HBM and DDR4

• IOR [27]: Tests the performance of parallel file systems
• MPI [9]: Measures the performance of the communica-

tion
• HPL-AI [28]: High Performance LINPACK highlighting

the convergence of HPC and AI workloads

2) System: In addition to the functional and performance
application/benchmark tests discussed. A large set of func-
tional system tests are run to ensure a productive system for
science. Many of these tests ran outside of the Polaris Test
Harness as human interaction was required.

• Bill of Materials (BOM) Validation: Validate that all
hardware and software listed in the BOM is present,
delivered, and installed

• Cold and Warm Reboot: Reboot all components - CNs,
GWs, etc. - up and including the entire Polaris system
from both warm and cold boot conditions to a correctly
operational state

• Software Environment: Validate that the software environ-
ment - e.g., HPE PE, NVIDIA SDK, modules, etc. - is
installed as described in Section IV.

• Workload Manager and Batch Jobs: Verify that the
PBSPro workload manager can be configured and run
workloads of many sizes and types and the job logs are
captured and available

• Compute Node Operating System (CNOS): Verify the
configuration and functionality of the CNOS - e.g.,
system logs are captured; access to filesystems; process
accounting; basic authentication, authorization, and ac-
counting, etc

• Reliability, Availability, and Serviceability (RAS): Set of
tests to ensure RAS - e.g., system diagnostics present
and functioning, component availablity/status is logged,
power (AC and DC) events are handled gracefully and
correctly (both for redundant and non-redundant fed), iLO
is configured and accessible, etc

• Network: Test all components of the network are running
the expected software and/or firmware, are remotely
manageable, and handle various types of failures

• System Security: Perform security scans to ensure that
the system does not present any known security exploits
with a CVE rating of high or critical; this includes system
software as well as firmware on all nodes. We used
OneView for firmware verification by having it compare
the firmware versions provided by HPE against what was
installed on the nodes

B. Stability

During the stability portion of the acceptance testing all
of the applications and some of the benchmarks tested in
the functional and performance phases were utilized. Across
the six applications, 71 workload configurations were utilized.
These configurations ranged from single node to full machine
jobs (560 nodes) and included several long running, multi-hour
configurations. In addition to the application tests, two single-
node benchmarks were included with seven different problem
configurations. The full breakdown of workload configurations
and scale are listed in table VI.

Application/Benchmark Configurations Scale (Nodes)
CosmicTagger 8 1 – 128
HACC 20 1 – 560
LAMMPS 22 1 – 560
NekBench 10 32 – 512
QMCPack 10 2 – 560
Uno 1 1
BabelStream 5 1
D/SGEMM 2 1

TABLE VI: Stability Phase Tests

VI. POLARIS TEST HARNESS

The Polaris Test Harness leverages two open-source tech-
nologies, ReFrame [5] and Jenkins [3]. These two technologies
provide features to create an automatic tool for test control,
execution and validation.

A. Jenkins

As discussed in Section II, the ALCF has utilized Jenkins
within the HPC environment in the past for Theta; so when
the deployment of a new supercomputer arose, there was the
option update the custom built Test Harness used for Theta’s
AT, or use Jenkins similar to how we used it for Continuous
Integration & Continuous Deployment (CICD) on Theta.

We deployed a dedicated Jenkins instance for AT for the
ALCF; while Polaris AT was the only AT occurring at the time,
it was deployed with multitenancy in mind. We connected
Jenkins to the ALCF centralized LDAP environment which
provides authentication as well as Linux groups. During the
AT of Polaris it is important to point out that the vendors,
HPE and NVIDIA, had read-only access to Jenkins while the
ALCF staff driving and managing AT had read-write access.
Within this instance of Jenkins, folders were utilized to isolate
different systems (i.e., Polaris and future systems such as
Aurora), if needed, as well as access controls.

For each of the different applications used for AT and
described in Section II, there was a range of different pa-
rameters which constituted its own test. For example, Uno
had one configuration whereas LAMMPS had twenty-two
different configurations (see table VI), and as a result twenty-
two different Jenkins jobs.

The Jenkins application was permitted to SSH into the
Polaris login nodes, as a service account, so that it could
spawn its own executor on the server. The only requirement
for Jenkins besides SSH access was Java. Jenkins provides the
ability to control the number of concurrent job submissions on
a node as well as the concurrent executions for a given job. In
other words, we could define that Login1 can have 16 Jenkins
jobs executing concurrently, and of the 16, only 2 STREAM
jobs of a given configuration could be simultaneously running.

Within a Jenkins job, regardless of ReFrame, a failure is
detected when a Return Code (RC) for a command in the
job’s script returns a non-zero and is discussed further below.
Regardless of the RC, Jenkins will capture stdout and
stderr gathered for its agent.

One of the useful Jenkins features that was utilized was
integration with Slack for notifcations in addition to standard
email notifications. We created a dedicated Slack channel
for Jenkins job failures which the AT team monitored. The
notifications included a URL to the failed job’s output making
it easy to do initial triage (see 4). While we used a centralized
Slack Channel, it is also possible to notify individual users
within Slack as well.

Jenkins also has the ability to execute conditional steps
during a job’s execution, and we leveraged this functionality
to capture artifacts when a job failed so that an investigation
could take place.

B. ReFrame

ReFrame [5] is a python framework for the development
of HPC system tests. It provides built-in support for HPC
job schedulers, including Polaris’s job scheduler, PBSPro,
allowing for the easy submission of jobs and tracking of
job progress. Additionally, ReFrame provides rich support for
implementing complex correctness and performance checks.

ReFrame was configured to recognize Polaris’s nodes,
scheduler, launcher, module system, and environments. The
ALCF test files were then created with the assistance of the test
owners to create one or more sanity functions to validate the
execution. For the performance checks, the mutually agreed to
projected performance metrics in the ATP were encoded and
compared against. Each job customized the job options and
launcher options to control the resources and affinity.

The execution of the ReFrame tests followed the same
pattern. For each instance of a test execution, ReFrame creates
a directory and copies or links to all needed files/executables
for the test. For stability testing, a unique test stage directory
is created to enable safe concurrent executions of multiple
instances of a test. ReFrame provides builtin support for PBS
to submit jobs as defined by the python test files. The Polaris
instance of the ReFrame PBS support is customized to match
the PBSPro support on Polaris. Upon job completion the
sanity functions encoded in the python test files are run to
verify the correctness of the test. The sanity functions range
from simple checks for specific output values to validating the
results of different aspects of the scientific simulation is within
expected α. The test instances check the achieved performance
against figure of merits used during the performance test phase
triggering failures if performance is below ∼ 5% of target.

C. Jenkins and ReFrame Pipeline

Each of the individual test configurations is a single Jenkins
job, each of which can be enabled or disabled. Through this
mechanism, we controlled the jobs which were active on the
system at any given time. With this control we initiated the
stability test with full machine jobs. After allowing only full
machine jobs to run continuously on the system for hours, the
smaller configurations were enabled.

Jenkins and ReFrame handle different aspects of the AT
process and together they compose the pipeline utilized for
Polaris. Figure 3 illustrates the pipeline as described below.
Jenkins first submits a test, or Jenkins Job, which is then
dispatched to the node where Jenkins has SSH access. The
Jenkins job launches the ReFrame test. ReFrame takes over
staging the test, submitting it to PBS, and validating the output
as well as the performance metrics. If the test passed the check
for completeness and performance, ReFrame exited with a RC
of zero, which signaled to Jenkins that the test was successful.
During AT, Jenkins continuously submitted jobs. Regardless of
job exit status, the test is requeued to run again.

When a test returned a non-zero to Jenkins, Jenkins sent
a failure message to a specific Slack channel along with the
test’s execution link for easy access. Jenkins then preserved
the artifacts of the failed test by copying the stage test to

Capture Failed
StageNotify Failure

Collect and
Check Test

Performance
Check Test

Correctness
Wait for Job
Completion

Submit Job to
SchedulerStage Test

Submit Test Launch Test Yes/No Pass? No Root Cause
Analysis

ReFrame handles
interaction with scheduler,
executor, and application

Jenkins handles test launch,
failure notification/capture, and

initial root cause analysis

Tests are
continuously
resubmitted

Fig. 3: Polaris Test Harness Pipeline.

Fig. 4: Initial root cause analysis through Slack notification and Jenkins.

another location. Once these steps were completed, a manual
Root Cause Analysis was initiated by one of the AT team.

D. Root Cause Analysis

A root cause analysis was performed on every job that failed
during all 3 AT phases to determine whether the failure was
caused by the system - e.g., system software defect, hardware
failure, etc. - or not - e.g., application defect, workload
manager issue, full filesystem, etc.

In the event of a test failure Jenkins sent a notification
via Slack including a direct link to the failed test output
in the Jenkins GUI. The stdout and stderr from the
ReFrame submission was captured in the Jenkins console log
of all failed Jenkins Jobs. An example of the Jenkins job
console log interface is shown in Figure 4. This easy access
to the console log through the Jenkins web GUI simplified
the triage of job failures and was the initial step in every root

cause analysis. Once some common failure signatures were
identified, it was fast and easy to classify these failures using
the Jenkins console log. Some failures could not be positively
classified using only the Jenkins console log. In these cases,
further analysis was conducted by investigating node system
logs, BMC/iLO logs and metrics, etc.

When the root cause of the failure was unclear through
system logs for job artifacts, steps were taken to reproduce
the issue. To assist with the reproduction of issues, we utilized
features of Jenkins and ReFrame to control the test execution.
In some cases the exact group of nodes involved with the
original failure were utilized to reproduce the failure. In
these cases, the ReFrame test configuration was altered or
duplicated to submit to the suspect nodes or a subset thereof. In
other cases it required running a specific application workload
repeatedly on many different nodes. In these cases, Jenkins

Jobs were replicate to increase the number of concurrent
executions of the test to give the job more presence during
the testing phase. Jenkins and ReFrame allowed the AT team
to control the exact workload mixture at any given time to
stress the system in the desired way.

VII. RESULTS

The Polaris system was successfully accepted after com-
pleting each phase of the ATP. The Functional & Performance
phases were completed successfully in less than the planned 7
day period. Following the Functional & Performance phases,
the Stability phase was completed over the course of 21
days. After a successful acceptance the Polaris system was
transitioned to production. The individual results for tests for
each of the phases of the ATP follow.

A. Functional & Performance Results

1) QMCPACK: QMCPack returned correct results across
the tested problems. The performance achieved was 10%
below the projected target. This performance loss was due
to changing one of the solver methods to run on the CPU
rather than the GPU. A deprecation in the cusolver method
used by QMCPack for this particular NVIDIA driver version
motivated this change during AT.

2) LAMMPS: LAMMPS returned correct results across
all test problems. The performance exceeded the projected
performance for all targets except for the single node run,
which was still within performance tolerances.

3) NekBench: NekBench correctly completed all test cases
and exceeded the performance projections in all test cases.

4) HACC: HACC correctly completed all test cases and
exceeded the performance projections in all test cases.

5) Cosmic Tagger: Cosmic Tagger completed correctly for
all test cases with the exception of the 512-node scale. The
performance failed to meet the performance projections on all
correct test cases.

6) Uno: Uno successfully executed on a single node with
NVIDIA Multi-Instance GPU mode (MIG) [29] enabled for a
single instance as well as the maximum seven instances.

7) OvO: OvO completed with the NVIDIA compilers and
had a 79% success rate. This matches the results on ThetaGPU
and was expected for the compiler.

8) SOLLVE VV: The SOLLVE suite ran successfully with
the NVIDIA compilers. The results matched the expected
results for the compiler from ThetaGPU. The breakdown of
the results are shown in Table VII.

OpenMP Version C++ C F90
4.5 100% 92% 91%
5.0 53% 23% 38%

TABLE VII: Pass Rates for SOLLVE suite.

9) HPL: HPL was run successfully and submitted to the
Top500. The November 2021 list shows Polaris ranked at #12
with 23,840 TFlop/s

Test Case Runs Passed
BOM Validation 2 Yes
Cold and Warm Reboot 3 No
System Environment 10 Yes
PBS and Batch Jobs 21 Yes
Compute Node OS 7 Yes
RAS and Power Redundancy 11 Yes
Network 6 Yes

TABLE VIII: Functional System Results.

10) DGEMM: The results for DGEMM are shown in III.
All nodes obtained greater than 95% of the peak for both
DGEMM and TF32.

11) STREAM: The results for STREAM are shown in III.
All nodes obtained greater than 95% of the expected peak.

12) IOR/mdtest: The IOR (IO throughput) and mdtest
(meta data performance) results measured were within expec-
tation for the less then full set of Lustre GW nodes that were
available at the time of acceptance.

13) MPI: The results for the ALCF MPI benchmarks are
shown in III. Additionally, the OSU functional benchmarks
were successfully executed.

14) HPL-AI: HPL-AI was successfully run and was sub-
mitted to the HPL-AI list. The November 2021 list shows
Polaris ranked #8 with a score of 0.114.

B. Functional System Results

All functional tests passed or were deferred at Argonne’s
discretion as seen in Table VIII. The cold and warm reboot
test did not pass due to the full system reboot exceeding the
time required by the test.

C. Stability Results

The stability phase of the Polaris acceptance imposed the
following requirements which were met:

• 21 contiguous days
• 95% availability
• 90% load
• 24 hours of no job failures related to system software or

hardware

In total, 99,381 total jobs were run, of which 146 were
failures. 99.7% availability was achieved with 95.7% utiliza-
tion. During the stability period, there were 6 distinct 24+
hour periods without job failures due to system software or
hardware. The full breakdown of test execution and failures
is shown in table IX. The type of failures are shown in
table X. NekBench error was a known failure which occurred
occasionally in the MLX5 ethernet driver. The environment for
the NekBench tests was setup to minimize the occurrences of
this error during stability.

Over the course of the Stability phase, the test harness
notified and assisted with the root cause analysis of the failures
experienced. Additionally, the availability and utilization met-
rics were tracked and accessible through a dashboard. The full
stability run availability and utilization is shown in Figure 5.

Fig. 5: Polaris Availability and Utilization during Stability.

App/Benchmark Runs Failures
BabelStream 45903 3
CosmicTagger 6359 1
D/SGEMM 16404 0
HACC 6989 13
LAMMPS 9598 36
NekBench 1837 12
QMCPack 2947 21
Uno 374 1

TABLE IX: Stability Application Runs and Failures.

Failure Type Count
Hardware 32
Human Error 2
Performance 8
Walltime 43
Software 1
NekBench Error 1

TABLE X: Failure Types

D. Results Reporting

These results were visualized by our Business Intelligence
(BI) team. The metrics were calculated from data collected
using the following methods:

• Polling: PBS command line commands were executed
every 60 seconds to check the status of each node. The
output was parsed and stored in a database table.

• ETL of log files: Our Extract Translate and Load (ETL)
processing extracted data from the log files created by
PBS and loaded them into our raw database tables. Each

line is a record with record types that define the Queued,
Start, End, Abort events of each job.

• Back end processing: Back end processes read the raw
database data and inserted records into our Dimension
and Fact database tables in our data warehouse. Further
processing aggregated the dimension and fact records into
summary records which were used by graphing software
to generate graphs and data images.

Jenkins launched the software for all of the above resulting
in a web page that updated every 3 minutes displaying the near
real time metric values and graphs. Figure 5 was generated
by the BI team showing availability and usage of the system
during various phases of AT.

VIII. POLARIS UPGRADE

Polaris began life with compute nodes being delivered with
AMD ”Rome” CPUs with the same 32-cores but Zen2 instead
of the Zen3 micro-architecture. The original design of Polaris
was to use the AMD ”Milan” processors described throughout,
but in order to speed up initial delivery and acceptance,
the Rome CPUs were used in the interim. The effort in
development of the fully automated test harness paid off many
times over. HPE performed the CPU upgrade from Rome to
Milan CPUs onsite. The automated test harness was enabled
once the compute node upgrades were complete in order to
shakeout nodes. The test harness quickly helped to identify
failing nodes. These could have been bad CPUs, or simple
component issues resulting from jostling of NICs, DRAM
or cables which were easily fixed. Once this shakeout was

complete, a three data stability test was completed using the
same conventions as defined in section V-B. Passing this
three day stability proved that the Polaris CPU upgrade had
been completed successfully and the system was ready for
production once again.

ACKNOWLEDGMENT

This research used resources of the Argonne Leadership
Computing Facility, which is a DOE Office of Science User
Facility supported under Contract DE-AC02-06CH11357.

We would like to recognize all the ALCF staff who con-
tributed on the integration efforts and acceptance testing.

We would like to thank the following HPE and NVIDIA
personnel for their extraordinary efforts: Jon Bouvet, Carrie
Breuer, Greg Cross, Lisa Giacchetti, Max Katz, Mark Juaire,
Todd Letsche, and many others.

REFERENCES

[1] K. Harms, T. Leggett, B. Allen, S. Coghlan, M. Fahey, C. Holohan,
G. McPheeters, and P. Rich, “Theta: Rapid installation and acceptance
of an xc40 knl system,” Concurrency and Computation: Practice and
Experience, vol. 30, no. 1, 2017.

[2] “Cobalt: Component-based lightweight toolkit.” [Online]. Available:
https://trac.mcs.anl.gov/projects/cobalt

[3] [Online]. Available: https://www.jenkins.io/
[4] B. Lenard and T. Jackson. Continuous integration

in a cray multiuser environment. [Online]. Available:
https://cug.org/proceedings/cug2018 proceedings/includes/files/pap171s2-
file1.pdf

[5] V. Karakasis, V. Rusu, A. Jocksch, and J.-G. Piccinali,
“A regression framework for checking the health of
large hpc systems - cug,” 2018. [Online]. Available:
https://cug.org/proceedings/cug2017 proceedings/includes/files/pap122s2-
file1.pdf

[6] R. F. Van der Wijngaart and T. G. Mattson, “The parallel research ker-
nels,” in 2014 IEEE High Performance Extreme Computing Conference
(HPEC), 2014, pp. 1–6.

[7] “Evaluating attainable memory bandwidth of parallel programming
models via babelstream,” Int. J. Comput. Sci. Eng., vol. 17, no. 3, p.
247–262, jan 2018.

[8] J. McCalpin, “Stream: Sustainable memory bandwidth in high perfor-
mance computers,” http://www. cs. virginia. edu/stream/, 2006.

[9] V. Morozov, J. Meng, V. Vishwanath, J. R. Hammond, K. Kumaran, and
M. E. Papka, “Alcf mpi benchmarks: Understanding machine-specific
communication behavior,” in 2012 41st International Conference on
Parallel Processing Workshops, 2012, pp. 19–28.

[10] “Cuda-gdb.” [Online]. Available: https://docs.nvidia.com/cuda/cuda-
gdb/index.html

[11] D. C. Arnold, D. H. Ahn, B. R. de Supinski, G. L. Lee, B. P. Miller,
and M. Schulz, “Stack trace analysis for large scale debugging,” in 2007
IEEE International Parallel and Distributed Processing Symposium,
2007, pp. 1–10.

[12] S. Kaufmann and B. Homer, “Craypat-cray x1 performance analysis
tool,” Cray User Group (May 2003), 2003.

[13] “Nvidia nsight.” [Online]. Available:
https://developer.nvidia.com/nsight-systems

[14] “Intrepid supercomputer.” [Online]. Available:
https://www.anl.gov/article/alcf-intrepid-100tf-bgp-system-goes-live

[15] “Mira.” [Online]. Available: https://www.alcf.anl.gov/alcf-
resources/mira

[16] T. Leggett, K. Harms, B. Allen, S. Coghlan, M. Fahey, E. Holohan,
G. McPheeters, and P. Rich, “Theta: Rapid installation and
acceptance of an xc40 knl system,” 1 2018. [Online]. Available:
https://www.osti.gov/biblio/1432488

[17] “Thetagpu.” [Online]. Available: https://www.alcf.anl.gov/alcf-
resources/theta

[18] J. Kim, A. D. Baczewski, T. D. Beaudet, A. Benali, M. C. Bennett,
M. A. Berrill, N. S. Blunt, E. J. L. Borda, M. Casula, D. M. Ceperley
et al., “Qmcpack: an open source ab initio quantum monte carlo package
for the electronic structure of atoms, molecules and solids,” Journal of
Physics: Condensed Matter, vol. 30, no. 19, p. 195901, 2018.

[19] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M.
Brown, P. S. Crozier, P. J. in’t Veld, A. Kohlmeyer, S. G. Moore,
T. D. Nguyen et al., “Lammps-a flexible simulation tool for particle-
based materials modeling at the atomic, meso, and continuum scales,”
Computer Physics Communications, vol. 271, p. 108171, 2022.

[20] “Nekbench.” [Online]. Available: https://github.com/Nek5000/nekBench
[21] S. Habib, A. Pope, H. Finkel, N. Frontiere, K. Heitmann, D. Daniel,

P. Fasel, V. Morozov, G. Zagaris, T. Peterka et al., “Hacc: Simulating
sky surveys on state-of-the-art supercomputing architectures,” New As-
tronomy, vol. 42, pp. 49–65, 2016.

[22] R. Acciarri, C. Adams, C. Andreopoulos, J. Asaadi, M. Babicz, C. Back-
house, W. Badgett, L. Bagby, D. Barker, V. Basque et al., “Cosmic ray
background removal with deep neural networks in sbnd,” Frontiers in
artificial intelligence, vol. 4, p. 649917, 2021.

[23] P. Balaprakash, R. Egele, M. Salim, S. Wild, V. Vishwanath, F. Xia,
T. Brettin, and R. Stevens, “Scalable reinforcement-learning-based neu-
ral architecture search for cancer deep learning research,” in Proceed-
ings of the international conference for high performance computing,
networking, storage and analysis, 2019, pp. 1–33.

[24] “Ovo: Openmp vs offload.” [Online]. Available:
https://github.com/TApplencourt/OvO

[25] T. Huber, S. Pophale, N. Baker, M. Carr, N. Rao, J. Reap, K. Holsapple,
J. H. Davis, T. Burnus, S. Lee, D. E. Bernholdt, and S. Chandrasekaran,
“Ecp sollve: Validation and verification testsuite status update and com-
piler insight for openmp,” in 2022 IEEE/ACM International Workshop
on Performance, Portability and Productivity in HPC (P3HPC), 2022,
pp. 123–135.

[26] J. J. Dongarra, “Performance of various computers using standard linear
equations software,” ACM SIGARCH Computer Architecture News,
vol. 20, no. 3, pp. 22–44, 1992.

[27] “Ior.” [Online]. Available: https://ior.readthedocs.io/en/latest/
[28] “Hpl-ai.” [Online]. Available: https://icl.utk.edu/hpl-ai/
[29] “Multi-instance gpu.” [Online]. Available:

https://docs.nvidia.com/datacenter/cloud-native/mig/mig.html

