
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Automating Software Stack Deployment on an HPE 
Cray EX Supercomputer 

 

Pascal Jahan Elahi 
Pawsey Supercomputing 

Research Centre 
Kensington, WA, Australia 
pascal.elahi@pawsey.org.au 

 

Cristian Di Pietrantonio 
Pawsey Supercomputing 

Research Centre 
Kensington, WA, Australia 

cristian.dipietrantonio@pawsey.o
rg.au 

Marco De La Pierre 
Pawsey Supercomputing 

Research Centre 
Kensington, WA, Australia 

marco.delapierre@pawsey.org.au 
 

Deva Kumar Deeptimahanti 
Pawsey Supercomputing 

Research Centre 
Kensington, WA, Australia 

deva.deeptimahanti@pawsey.org.
au

 
Abstract— The complexity and diversity of scientific software, 

in conjunction with a desire for reproducibility, led to the 
development of package managers such as Spack and EasyBuild, 
with the purpose of compiling and installing optimised software on 
supercomputers. In this paper, we present how Pawsey leverages 
such tools to deploy the system-wide software stack. Two aspects 
of Pawsey software stack deployment are discussed: the first 
comprises organisation, accessibility, interoperability with the 
HPE Cray EX environment, and the choice of technologies such as 
containers, derived from a set of policies and requirements; the 
second is the (almost) automated, self-contained, deployment 
process using Spack and Bash scripts. This process clones a 
specific version of Spack, configures it, runs it to build the software 
stack using environments, deploys Singularity Registry HPC to 
setup desired containers-as-modules and then generates bespoke 
module files. The deployment is tested using a ReFrame 
framework. Meeting the requirements of our user base 
necessitated patching Spack, writing new Spack recipes, patching 
existing recipes and/or source code of software to properly build 
within the Cray Programming Environment. The whole Spack 
configuration at Pawsey is made publicly accessible on GitHub, for 
the benefit of the broader HPC community.  

Keywords— HPC, software installation, automation, Spack, 
containers, ReFrame, regression tests 

I. INTRODUCTION  
A supercomputing software stack comprises of libraries and 

applications that implement or support scientific and industrial 
research. Some of the software is free and open source, some 
proprietary, and some may have restrictive licenses. 
Supercomputing centres spend considerable time and effort in 
providing a performant software stack for their users that 
satisfies their requirements. This often entails installing multiple 
versions of each software for various architectures, compilers, 
and dependent libraries. Furthermore, the software stack needs 
to be rebuilt for each vendor-specific system update such as an 
OS (Operating System) update or Cray Programming 
Environment (CPE) update.   

In this paper, we present our automated process of installing 
a full software stack and how it can handle updates to the 
underlying HPC system. We first present our software policies 
and motivation behind the design of the Setonix software stack. 
We then describe the organisation of the Pawsey 

Supercomputing Research Centre’s [1] software stack on the top 
of the HPE-Cray EX environment, including key aspects of the 
Spack instance and the rationale for targeted use of containers. 
Next, we outline the key features of the automated deployment 
procedure that enables the full installation of the software stack 
on our supercomputer. To provide a measure of effectiveness for 
the proposed approach, we discuss the pros and cons of the two 
full stack deployments we have already made with it on Setonix. 
Finally, we summarise ongoing and future works and make our 
conclusive remarks. 

II. BACKGROUND 
Due to rapidly evolving HPC world, most HPC users lack 

the knowledge to configure their software to best take advantage 
of the latest hardware. Additionally, the same application or 
library used by multiple research groups can be installed once 
by HPC staff for all users, avoiding replication of software 
installation and effort. Therefore, the provision and maintenance 
of scientific software on a supercomputer by HPC experts 
crucially enable researchers to interact with a ready-to-use, 
highly optimised environment. The challenge for HPC centres 
in providing this environment is the complexity of scientific 
software, which makes deployment a time-consuming process, 
and prone to mistakes and unforeseen errors.  

To facilitate this, Pawsey previously used an in-house 
automated system named Maali [2], which used a complex Bash 
script to automate the process and bash scripts as recipes. 
However, with the growing user base and increase in the number 
of application requests, it became very time-consuming to 
prepare recipes for each requested software package by our 
users. Additionally, system updates often broke the recipes, 
which then needed to be promptly fixed to reproduce the 
software stack.   

Our approach required a rethink and revision, particularly 
considering the deployment of our new system, Setonix, 
Pawsey’s latest HPE Cray EX supercomputer. Pawsey 
investigated the suitability of Spack [3, 4, 5], an open-source 
package manager developed by Lawrence Livermore National 
Laboratory, as a replacement. Our choice was motivated by the 
large and ever-growing number of pre-existing installation 
recipes, the large, active community base, easy-to-use interface,  



 
 
Fig. 1. Summary of available software on Setonix, here grouped by rough 
type. Software packages highlighted by a red frame are deployed via this 
automated process. 

and the existence of a product roadmap to improve AMD  
support in collaboration with HPE. Additionally, the use of 
rpaths by Spack improves reproducibility. Initial trials by our 
Applications team on the Magnus, a Cray XC40 supercomputer 
were successful: the team was able to easily configure and install 
several software packages, although there were challenges 
installing some packages like Amber. Due to the positive results, 
Pawsey selected Spack as the package manager on Setonix, its 
latest HPE Cray EX supercomputer.  

Although most software is best installed as bare-metal 
builds, some are best provided through containers, a notable 
example being bioinformatic software. To provide these 
software packages in a fashion like bare-metal builds produced 
by Spack, Pawsey uses the Singularity Registry HPC (SHPC, 
[6]), a publicly available utility to that can provide containers-
as-modules.   

To simplify the complex procedure of installing the entire 
software stack and improve reproducibility, the Pawsey 
Supercomputing Applications team developed a mostly 
automated software deployment process to provide a performant 
software stack on its latest HPE Cray EX supercomputer, 
Setonix. Implemented through a set of well-designed Bash 
scripts and several other well-known tools, the process is 
reproducible and understandable, runs in less than a day, and 
relies on other well-known tools like git.   

The design decisions pertaining to the software stack’s 
organisation and deployment is guided by our software policies 
[7], developed by the Supercomputing Applications team at 
Pawsey. This document captures the high-level software stack 
organisation, how to determine what the stack contains, and 
protocols for support, deployment, updates, and maintenance. 

Briefly, the main points related to how the design of the 
deployed software are:  

• Software is organised in three-level of support: system-
wide (fully supported and maintained by Pawsey), 
project-wide and user-specific (maintained by Pawsey 
users).  

• The software stack consists of bare-metal installations 
and containers that are exposed to users through 
module files. Module files are organised in 
informative, user-friendly categories.   

• Supported software package versions follow a general 
3+1 rule, accounting for an implicit classification of 
one “legacy”, one “stable” and one “latest” version. 
The stack can also contain several versions of a given 
piece of software to cover compatibility requirements 
of the user community, examples of which is Boost. 

III. SOFTWARE STACK COMPONENTS AND ORGANISATION 
An HPE Cray supercomputer comes with pre-installed, high-

performance applications and libraries that complement the 
hardware and efficiently implement fundamental operations and 
tasks, such as multi-node communication primitives through 
MPICH and mathematical functions through Cray LibSci. Built 
on top of this low-level, system-wide stack, the Pawsey software 
stack provides users with optimized installations of relevant 
applications and libraries, and the means to easily install their 
own additional software, to design and run scientific 
computations. An example of software packages and what is 
installed through this automated process is presented in Figure 
1.  

A. High Level Organisation 
There are five components making up the Pawsey software 

stack, each having a top-level directory in the installation prefix. 
First, the Spack package manager is installed within the 
installation prefix, within the Spack directory. Most applications 

 

 
 



and libraries are compiled from source using Spack and they are 
placed under the software directory.   

Not all software packages are built from source due to either 
having a high number of dependencies, suffers from a 
complicated installation procedure, or requirement for 
portability. For this reason, they are provided within containers 
that can be run using Singularity [8]. Containers are installed 
using the SHPC tool and placed under the containers/ 
directory. We install software with a build system different than 
Spack, such as pre-built binaries, under the custom directory.   

 

Fig. 2. High-level organisation of the system-wide software directory. 

Finally, any software, independently of how it is installed, is 
made visible to users through Lmod modules and placed under 
the modules/ directory. At present, modules have different 
paths depending on the type of build approach taken for the 
corresponding software (Spack, SHPC, or custom).  

Pawsey identifies three software deployment levels: system-
wide, project-wide, and user-wide. Popular applications and 
libraries accessible to all users are deployed system-wide by 
Pawsey staff as seen in Figure 2. Project-wide installations are 
meant to be used by members of a research group and no one 
else; usually a member of the group is appointed to manage such 
installations. Finally, there are a user’s personal installations, an 
example is shown in Figure 3. All of them share the same 
instance of Spack and SHPC by clever use of its multi-level 
configuration lookup.  

All the software on Setonix resides on a dedicated Lustre 
filesystem aptly named /software/ with each deployment 
level having its own installation prefix. System-wide software 
deployment is installed under 
/software/<system>/<date-tag>. The <system> 
parameter is the target supercomputing system, accounting for 

the fact that the /software/ filesystem may be mounted on 
multiple supercomputers in the future. The <date-tag> 
parameter is the deployment date and allows the coexistence of 
multiple deployments. 

B. Spack Instance 
Pawsey adopts the Spack software manager for optimized 

and reproducible deployments. A stable release of Spack is 
firstly customised and then installed in the system-wide software 
stack. The Spack version currently deployed on Setonix is  
0.17.0. However, we already moved to Spack 0.19.x in the 
development branch of this work.  

Fig. 3. High-level organisation of the user-specific software directory. 

Because Spack does not natively support the distinction 
between user and project installations, a wrapper script has been 
developed to use Spack with an alternative configuration 
directory enabling project-wide installations, see the file 
scripts/templates/spack_project.sh in the Pawsey Spack Config 
repository [9]. The user’s Spack cache and configuration 
directory would normally reside in their home directory, which 
is often subject to strict quota limits. We moved the ~/.spack/ 
directory from the user home to within the versioned user-wide 
software stack prefix to avoid filesystem limitations and 
interference between different Spack deployments; see file 
fixes/dot_spack.patch in the Pawsey Spack Config 
repository.   

Several package recipes have been fixed or adapted to work 
with the software environment present Setonix. Missing 
dependencies or incorrect dependency specs, additional source 
code patches, and integration with the Cray environment are the 
among the main reason to modify existing Spack recipes. Of 
notable mention are recipes for Amber and Charmpp. The 
former used to build dependencies within the Amber build 
process, missing the opportunity of using the Spack dependency 
mechanism. The latter did not properly recognise the Cray 
libfabric library. Finally, we created several for software 
packages in domains such as quantum computing (Qutip, 
Xanadu Pennylane, Xanadu Strawberry Fields), bioinformatics 
(tower-agent, tower-cli, nf-core tools), and radioastronomy 
(astropy, casacore, wsclean, vcstools). We contributed all these 
improvements back to the main Spack repository for the benefit 

setonix/DATE_TAG/ 
├── containers/ 
│   ├── modules-long/ 
│   ├── openfoam-sif/ 
│   ├── sif/ 
│   └── views/ 
│       └── modules/ 
├── custom/ 
│   ├── modules/ 
│   └── software/ 
├── modules/ 
│   ├── zen2/ 
│   └── zen3/ 
├── pawsey/ 
│   ├── modules/ 
│   └── software/ 
├── pawsey-spack-config/ 
├── software/ 
│   ├── bin/ 
│   ├── cray-sles15-zen2/ 
│   ├── cray-sles15-zen3/ 
└── spack/ 

username/setonix/ 
├── containers/ 
│   ├── modules-long/ 
│   ├── sif/ 
│   └── views/ 
│       └── modules/ 
├── manual/ 
├── modules/ 
│   └── zen3/ 
├── python/ 
├── r/ 
├── shpc_registry/ 
├── software/ 
│   ├── bin/ 
│   ├── cray-sles15-zen3/ 
└── spack_repo/ 



of the greater community. One of the authors is also a Spack 
maintainer for some of the Pawsey-created recipes.  

Configuration files have been customised to ensure use of 
the Cray Programming Environment (CPE). Cray MPICH, 
libfabric and xpmem are exposed as external packages. 
Unfortunately, we have found Cray LibSci quite poor in terms 
or performance and reliability, with several bugs affecting the 
library. At the time of the first deployment, we made the 
decision not to use it. We will re-evaluate this decision 
periodically. Finally, the template file for module files has been 
customised using dedicated Jinja syntax, to partition them onto 
several categories, hence simplifying user navigation. Another 
template modification adds build information, including 
compiler, compiler flags and build variants. See the template file 
systems/setonix/templates/modules/modulefile.l
ua in the Pawsey Spack Config repository.  

Spack version 0.19.x introduces a few options to personalise 
the behaviour of the concretizer. By default, Spack only 
compiles software for the CPU architecture it currently runs on. 
For heterogenous systems, like Setonix that hosts multiple CPU 
architectures, this new behaviour increases the complexity of 
software deployment processes. We removed this restriction by 
setting the option host_compatible=False. The new Spack 
reuse feature, that allows the concretizer to be more flexible 
when deciding whether to use an already-installed package, had 
to be turned off because resulting in unwanted behaviour.  

For each CPE-provided compiler, there exists an entry in the 
compilers.yaml configuration file, specifying name and 
version, and executables for Fortran and C/C++ code. In 
addition, we instruct Spack to load related CPE environment 
modules needed for the compiler to work correctly. This is 
another important way in which the Cray environment takes part 
in our software stack. For every compiler, we also provide the 
debug and profiling variations, with all the relevant flags 
specified in the configuration file. All customised Spack 
configurations for Setonix can be found under the directory 
systems/setonix/configs/ in the Pawsey Spack Config 
repository. 

C. Organisation and Software Module Hierarchies 
A scientific software stack has an inherent complexity due 

to compiling multiple instances of a package that arise from 
having different compilers1, target CPU architectures, and API 
library implementations used in the code (for instance, MPI). 
This motivates the use of software hierarchies, where for 
instance installation paths reflecting the characteristics of a 
given build. 

Software hierarchies are one of the key functionalities of the 
Lmod module system [10], and for this reason, we have selected 
it as the default one on Setonix. Notably, Cray provides a 
customised installation of Lmod, which among other things 
implements an un-documented custom way of handling 
hierarchies, in substitution for the standard Lmod way. On 
Setonix, an HPE Cray EX system, the code can be found at 
/opt/cray/pe/admin-

 
1 Cray, GNU and AOCC are currently present on HPE Cray EX systems. 
Currently, our software stack is built using GCC within the GNU programming 

pe/lmod_scripts/lmodHierarchy.lua. Each of the 
compiler, CPU architecture and MPI library modules scans the 
shell environment for a specific variable that sets additional 
module paths for that specific component; these paths are set 
(unset) when the component module is loaded (unloaded). For 
example, modules for a GCC compiler will look for the variable 
LMOD_CUSTOM_COMPILER_GNU_8_0_PREFIX, and so on. 

On HPE Cray systems, switching between compilers is done 
through switching the Programming Environment (PrgEnv-*) 
modules because of the mechanism described above. We 
implement the process of switching between the software 
hierarchies of the Spack-built applications through a Pawsey 
provided module, pawseyenv, which sets all the necessary 
environment variables. This module file is automatically loaded 
at shell login for every user; the corresponding template file is 
scripts/templates/pawseyenv.lua in the Pawsey Spack 
Config repository.  

Setonix hosts a variety of AMD CPU architectures, 
specifically Zen-2 for data mover nodes and Zen-3 for compute 
nodes. Consequently, we categorise software also based on the 
target architecture it is compiled for using lscpu at user login 
time to detect the CPU model. The model is saved in a variable 
and used to later form search paths for module files. The result 
is that on a data mover node, a user can only see software 
compiled for Zen-2 CPUS, which happens to be related to data 
movement. On a compute node which has Zen-3 CPUs, the 
entire software stack is visible.   

Spack can add the MPI implementation to the software 
hierarchy. Only one MPI implementation is available on Setonix 
in the current CPE version of and, as such, is unused.   

The resulting user access of software through Lmod module 
files is one in which the architecture hierarchy is static and set at 
shell login time and the compiler one is dynamic and dependent 
on the current active Programming Environment. To further 
simplify user navigation, applications have been divided onto 
multiple categories, as seen in Figure 4 in the case of the Zen-3 
architecture.   

We decided to make a major change in user experience by 
forcing module load commands to request both module name 
and module version. Although requiring extra typing, we believe 
this choice enforces a good practice that improves 
reproducibility of user workflows.   

The meta-information provided by the module whatis 
command for Spack-built packages provides additional details 
around compiler, compiler build flags and Spack build variants. 

D. Container Modules 
Certain software categories are provided system-wide as 

containers, that can be executed by means of the Singularity 
runtime container engine. These containers are outside the 
software hierarchy of bare-metal builds. This includes 
bioinformatics packages, some older releases of OpenFoam (a 
computational fluid dynamics package), and a bespoke Python 
stack for HPC (which comprises all Python scientific packages 

environment. Because the compiler is part of the hierarchy, however, multiple 
software stack builds, one for each compiler, can coexist on the system. 



officially supported on Setonix). The benefits here are: time-
effective deployment of domain-specific packages 
(bioinformatics); poor IO performance resolved using overlay 
filesystems mounted to the running containers (OpenFoam); and  
overall improved reproducibility and portability of workflows 
relying on articulated and conflict-prone dependency trees 
(Python-based).  

 

Fig. 4. High-level organisation of the system-wide module directory for Spack 
builds. As an example, breakdown of the module categories is given in 
the case of zen3/gcc/12.1.0. 

These containers are exposed to users as so-called container 
modules using Singularity Registry HPC [6] (SHPC), a publicly 
available utility to automate the deployment of containerised 
software as modules, to which some of these authors have made 
significant contributions in terms of concepts, feature-set and 
implementation2. For each containerised application, the module 
will provide a binary path containing a set of wrapper shell 
scripts, encapsulating the Singularity syntax required to execute 
a given set of executables relevant to that application. In this 
way, users of a package can load the corresponding module and 
execute its application binaries by using the same syntax 
required for the standard package build, thus effectively 
removing the usage barrier for containers.  

Unlike the bare-metal builds, the containers module category 
is flat since containers do not depend on compiler. Here, the 
module whatis provides meta-information such as tool name 
and version, and container repository of origin, whereas module 

 
2 Notably, one of the Pawsey contributions targeted the automated and scalable 
discovery of executables within containers [13], to enable automation of the 
process that generates modules for very large collections of container images;  

help outputs usage information, such as the available 
executables. 

 

Fig. 5. High-level organisation of the pawsey-spack-config repository. 

IV. AUTOMATED DEPLOYMENT 
Deployment is the process of installing and maintaining 

scientific software, tools and libraries on the supercomputer, 
together with all the necessary mechanisms to make it easily 
accessible to users. Historically, software deployment at Pawsey 
was manual leading to a not easily reproducible, error-prone, 
and tedious process. Spack and SHPC abstract away much of 
this process, reducing the manual burden on system 
administrators. Pawsey deployment process employs these tools 
in a set of sophisticated Bash scripts containing all the necessary 
commands to deployment of a clearly defined software stack 

a major outcome of this project was the release of container module recipes for 
the collection of 8000+ BioContainers, widely popular in bioinformatics, now 
available on demand on Setonix through this Software Stack Deployment. 

modules/ 
├── zen2/ 
│   ├── aocc/ 
│   │   └── 3.2.0/ 
│   ├── cce/ 
│   │   └── 14.0.3/ 
│   └── gcc/ 
│       └── 12.1.0/ 
└── zen3/ 
    ├── aocc/ 
    │   └── 3.2.0/ 
    ├── cce/ 
    │   └── 14.0.3/ 
    └── gcc/ 
        └── 12.1.0/ 
            ├── applications/ 
            ├── astro-applications/ 
            ├── benchmarking/ 
            ├── bio-applications/ 
            ├── dependencies/ 
            ├── developer-tools/ 
            ├── libraries/ 
            ├── programming-languages/ 
            ├── python-packages/ 
            ├── utilities/ 
            └── visualisation/ 

pawsey-spack-config/ 
├── fixes/ 
├── LICENSE 
├── NOTES.md 
├── README.md 
├── repo/ 
├── scripts/ 
├── shpc_registry/ 
└── systems/ 
    ├── askapingest/ 
    │   └── configs/ 
    ├── garrawarla/ 
    │   └── configs/ 
    ├── setonix/ 
    │   ├── configs/ 
    │   │   ├── project/ 
    │   │   ├── site/ 
    │   │   └── spackuser/ 
    │   ├── environments/ 
    │   │   ├── env_apps/ 
    │   │   ├── env_astro/ 
    │   │   ├── env_bench/ 
    │   │   ├── env_bio/ 
    │   │   ├── env_devel/ 
    │   │   ├── env_io_libs/ 
    │   │   ├── env_langs/ 
    │   │   ├── env_num_libs/ 
    │   │   ├── env_python/ 
    │   │   ├── env_roms/ 
    │   │   ├── env_s3_clients/ 
    │   │   ├── env_utils/ 
    │   │   ├── env_vis/ 
    │   │   └── env_wrf/ 
    │   ├── settings.sh 
    │   └── templates/ 
    └── topaz/ 
        ├── configs/ 
        └── environment_compchem/ 



according to our policies and design choices. These scripts are 
non-interactive, allowing the applications team to run them in a 
Slurm job, therefore achieving automation. 

A. Repository Organisation and Tools 
The software stack deployment procedure presented here is 

publicly available on a GitHub repository. The scripts use 
Spack, SHPC, and other common tools (e.g., git, sed, 
patch). The repository is structured in the following hierarchy 
of directories. 

• fixes/ contains patches implemented by Pawsey staff 
and to be applied to Spack prior to production use. 
They are meant to improve usability of Spack for 
Pawsey-specific use cases.  

• repo/ collects custom Spack package recipes for 
software not yet supported by Spack or that needed 
modification in the build process to work on Pawsey 
systems.  

• shpc_registry/ are custom Singularity-HPC 
(SHPC) recipes to deploy containers.  

• scripts/ contains Bash scripts used to automate the 
deployment process. There are several of them, each 
taking care of a well-defined task, such as installing 
Spack, or creating the directory hierarchy hosting 
module files.  

• systems/<system> is a directory containing 
configuration files to customise the software stack 
deployment with respect to a specific system.   

To make use of these scripts, a supercomputing system must 
have a directory within systems containing:  

• configs/ directory contains yaml configuration files 
for Spack. These point Spack to available compilers, 
system packages, and specify how generated module 
files look like, among other things. There are three sets 
of configuration files, based on who is executing Spack 
and the scope of the installation. The config files 
residing in configs/site/ define how user 
installations behave as well as general settings for 
Spack valid in all use cases. They are moved to the 
$spack/etc/spack directory during the deployment 
process. Next, the configs/project/ set targets 
project-wide installations. These configuration files 
will be positioned in the project-wide software stack of 
each project and override the default ones when Spack 
is executed through the spack_project.sh wrapper 
script. Finally, the configs/spackuser/ 
configuration files shape system-wide installations, 
part of the software stack deployment process, 
performed by Pawsey staff. They will be placed in the 
personal space of the spack Linux user, a special 
account dedicated to software stack management, and 
override the system-wide configuration.  

• The environments/ directory groups Spack 
environment yaml files which outlines packages and 
their specifications to be installed, together with the 

compilers to use and the architecture to target (in our 
case, zen3).   

• The templates/ directory hosts a module file 
template for Spack to generate module files of installed 
packages.   

• A settings.sh file defining variables used 
throughout the scripts, such as the installation paths, 
the version of Spack and SHPC to use, among other 
things. 

B. Deployment Execution 
Pawsey software stack is made of many complex parts 

interconnected with each other. For example, SHPC containers 
deployment requires that Singularity is installed, which in turn 
depends on Spack installing the env_utils environment. 
Therefore, its deployment must go through many steps and order 
of execution might not be straightforward. Automation 
drastically reduces deployment times and makes sure the 
process is performed correctly.  

Deployment on Setonix is performed using a special Linux 
user, aptly named spack. Members of the applications team can 
log in as spack user using the sudo su – spack command.  
The main reason is to add an extra layer of protection against 
accidental changes by Pawsey staff; only the spack user has 
permissions to modify the system-wide software stack. In 
addition, the spack user has specific Spack configuration files 
overriding the default ones. They instruct Spack to install 
software in the system-wide deployment level instead of the 
default user-private location where installations by other users 
are directed to.  

A fresh software stack deployment for Setonix that relies on 
sensible defaults requires only two command lines, as shown in 
Figure 6. The second command is the primary script that 
orchestrates the entire deployment. The script can be submitted 
for execution as a Slurm job on compute nodes.  
 

Fig. 6. Minimal set of commands required to deploy the software stack on 
Setonix, using the default parameters in the pawsey-spack-config 
repository. 

Before proceeding with a new installation, the settings.sh file 
may require updates, such as changing the DATE_TAG variable 
that is used to differentiate between multiple software stack 
deployments. Updating SHPC version and the list of containers 
to be installed is another easy and useful change that can be done 
prior to deployment. Any other change may require extensive 
testing and will be discussed in a later section.  

$ git clone 
https://github.com/PawseySC/pawsey-spack-
config 
 
$ bash pawsey-spack-
config/scripts/install_software_stack.sh 



 

 
 

Fig. 7. Schematic representation of the automated installation procedure, 
highlighting its key conceptual steps. 

The deployment process has two logical phases, pictured 
graphically in Figure 7. During the first phase, Spack and SHPC 
are installed and configured. In the subsequent one, these are 
used to install scientific software.  

The deployment process starts with the execution of the 
install_spack.sh script. It downloads Spack on the system 
and applies the patches contained in the fixes/ directory. 
Configuration files are instantiated with system-specific 
information and copied within the directory of the Spack 
instance (system-wide defaults and settings for user 
installations) and the spack user’s home directory (for Pawsey-
managed deployments). It also creates the directory structure 
that hosts the various components of the system-wide software 
stack.  

Spack is then used to install a Spack-compatible Python 
(>=3.7), which is then set as default interpreter for Spack itself3. 
Subsequently, Singularity and SHPC are installed.  

At this point, system-wide software and containers are ready 
to be deployed. To build and install bare-metal via Spack, we 
make use of Spack Environments, though we do not use these 
environments for access. Specifically, using the Spack yaml 

 
3 At the time when this part of the process was developed, the cray-python 
version was too old to properly support Spack. 

files contained in the 
systems/<system>/environments/<env> directories, we 
activate the environment, force concretisation, install the 
software packages and then deactivate the environment.   

The env_num_libs and env_utils Spack environments are 
installed first because they provide critical dependencies to all 
others. Then, the remaining environments are installed in 
parallel. This is a critical moment of the deployment when one 
might see errors due to packages not being installed, especially 
if testing the deployment on a new version of the HPE Cray 
software, for a variety of reasons.  

Module files are created by Spack using the templates for an 
explicit set of software to produce simple, human-readable 
module name 4 . Consequently, conflicts in module file 
generation may arise as well where there are multiple instances 
of the same software with different Spack specifications that do 
not result in a unique name. The ideal solution is to avoid the 
root cause, duplication. This is still hard to achieve in practice, 
and we resorted to “manually” pick which specification for 
which to generate the module file.   

Independently and at the same time, containers are deployed 
through SHPC using the install_shpc_containers.sh 
script.  

A post installation script is executed to tidy up the 
installation and apply final changes. First, it makes sure all 
module files for the installed software are present by 
regenerating them using a dedicated Spack command. The script 
also restricts access to licensed software by means of Linux 
groups. Spack has some support for this type of operations, but 
we decided to have more flexibility by employing our own Bash 
script. Another post-installation operation worth mentioning is 
the customisation of Singularity module files to mount Pawsey 
file systems and to bind HPE Cray libraries, see the template file 
at 
systems/setonix/templates/modules/modulefile.l
ua in the Pawsey Spack Config repository. 

C. Adapting the Deployment Process for a New System 
The deployment process is designed to be as much system 

independent as possible. System-specific knowledge and 
configurations are confined to within the systems directory. 
Those include Spack configuration files, parameter definitions 
such as installation location, compilers versions, and CPU 
architectures. This means that Pawsey, and any other centre, can 
easily adopt this very same deployment process for other 
systems. The easiest way to start is to create a copy of 
systems/setonix/, give it a sensible name, and start 
modifying the relevant information. While only the settings.sh 
file is technically required, it only makes sense to use Pawsey 
deployment system if embracing the three-level deployment 
approach. Hence, we suggest heavily borrowing from our Spack 
configuration files. The environments/ directory is there to 
organise the software in categories and to introduce these in the 
module hierarchy. Once again, we encourage the use of such 

4  By default, Spack produces module names that contain a unique hash 
associated with the software. This would make for long and uninformative 
module names. Therefore, we limit modules to an explicit list. For all other 
software, we produce hidden modules that do contain a unique hash. 

 



feature. In general, the farther one moves away from our 
approach, the more the generalised scripts must be modified.  

D. Rebuilds, Upgrades and Maintenance 
The software stack needs to be rebuilt when external 

dependencies get updated. This usually happens after an HPE 
delivered software upgrade. Another case is when the Pawsey 
staff decides to use a newer compiler version that is significantly 
more performant than the previous one. At the time of writing, 
Pawsey has not gone through a redeployment yet.  

Several deployments can live at the same time on the system 
because they are versioned by deployment date. If an older 
deployment still works, it may be left on the system for at least 
the duration of the current allocation cycle. Thanks to the 
pawseyenv module, users can choose among the various 
software stacks available. This will affect not only the modules 
available system-wide, but also the project-wide and user-wide 
deployments.  

Within the same deployment, software upgrades and 
maintenance can be done manually using Spack. It can be adding 
a new software or removing a faulty one. In most cases, 
redeploying the whole software stack can be overkilling and 
forces users re-installing their local software when they do not 
need to. The changes, however, must then be implemented 
appropriately in the GitHub repository too.  

E. Reframe Regression Testing 
The last step in our automated deployment process is to 

verify the installed software stack through regression tests. This 
has been automated using the ReFrame framework [11] 
developed by the Swiss CSCS HPC centre. Pawsey staff have 
written several tests to test the sanity and performance of various 
application software and numerical libraries in the installed 
software stack, checking that the modules are present and 
running regression tests for the correctness and acceptable 
performance values. These tests are run by our Pawsey 
administrators to test the readiness of the systems after each 
maintenance and any incidents to ensure the software stack is 
functional. 

V. EVALUATION 
The first production deployment of the software stack as 

outlined in this paper was performed in May 2022, ahead of the 
public release of the Phase 1 of Setonix. At that time, all 
configurations were already stored on the Github repository, and 
the installation procedure was entirely scripted and partially 
parametrised. This procedure was not fully automated yet, and 
instead relied on about ten independent scripts, each requiring 
manual actioning. Despite the required higher degree of human 
integration, this semi-automatic character was indeed left on 
purpose, and was instrumental to inspecting the whole 
procedure, and verifying it for correctness and consistency. The 
positive outcomes of this first experience were: installation 
issues arising from the latest versions of system compilers and 
libraries were investigated and fixed; generation of module files 
against specifications and user requirements was assessed; 
interplay with the available hardware (Zen-2 and Zen-3 nodes) 
and the Cray software platform was tested and debugged, as well 
as integration with software components provided by other 

Pawsey teams (e.g., integration with shell login initialisation). 
The deployment was tested and completed over the course of 
about two weeks, and at first user access it was met with 
generally positive feedback. 

Pawsey had to redeploy the same software stack in 
November 2022 after HPE Cray updated their software on 
Setonix. The only major change was in the compiler used; we 
moved from gcc/11.2.0 to gcc/12.1.0. More importantly, 
the person in charge of executing the operation changed, making 
this deployment an ideal case to test usability and reproducibility 
of the process. By following the procedure documented in a 
README file, the newly appointed staff member managed to 
deploy the software stack in three days, with some of that time 
spent troubleshooting. A very good result, but more could be 
done. It is during this time that a driver script was developed, 
encoding the knowledge contained in the README file on how 
to execute the many scripts. We pushed towards complete 
automation by simplifying the scripts, reducing the number of 
them, and removing unnecessary user interactions. After several 
refactoring passes, we managed to deploy the software stack in 
a day on the test system.  

Based on user feedback and our own evaluation, we noted a 
few things to improve. For instance, keeping the ~/.spack 
cache directory between deployments lead to misbehaviours, 
such as software being installed under the gcc/11.2.0 
hierarchy despite gcc/12.1.0 being used. This is one of the 
reasons we now have a different cache directory per 
deployment. A user suggested better tooling for managing 
project-wide installations, for example support for garbage 
collection. 

VI. SOFTWARE STACK WITH ACCELERATORS 
Setonix has both CPU-only and AMD GPU-nodes. We have 

developed our own build system for ROCm, called ROCm-
from-source [12], to deploy the AMD GPU development 
platform independently of HPE Cray and without service 
disruption. ROCm libraries are added to the Spack configuration 
as external dependencies to be used for GPU-accelerated 
software builds.  

Modules for GPU applications are marked with a suffix 
indicating the GPU architecture they are compiled for. The 
suffix is amd-gfx90a for the hardware currently installed on 
Setonix. These modules live in the same categories as the CPU 
applications, meaning that the current configuration does not 
introduce GPU acceleration in the software and module 
hierarchies. One of the reasons is that CPU libraries are likely 
still needed within GPU accelerated applications as well as pre, 
post and complementary processing steps. The choice of adding 
a suffix allows for multiple different GPUs to coexist.  

Pawsey is also aiming to provide quantum computer 
acceleration and QPU-enabled software as the Centre houses a 
Quantum Brilliance room-temperature quantum computer [13], 
and plans to potentially host additional quantum kits in the 
future. In the same fashion, these software stack will make use 
of dedicated suffixes to identify QPU-enabled software running 
on the distinct types of quantum hardware. 



VII. CONCLUSION AND FUTURE WORK 
In this paper, the authors presented an automated software 

stack deployment process for an HPE Cray EX supercomputer. 
It was designed to smoothly install the many components a 
modern software stack in minimal amount of time with 
improved reproducibility and usability. Users will directly 
experience the advantages of using modern technologies such as 
Spack and SHPC, as the same instances used for system-wide 
deployments are available for project-wide and user-private 
installations.   

The deployment process is subject to constant development 
to add functionality and improvements. Based on experiences 
with the past two deployments, we have already identified 
several potential improvements. Updating the extensive list of 
external dependencies listed in the configuration files requires 
extensive work and we would like to reduce those to a minimum, 
letting Spack build them. This reduces the effort in deploying 
software after an OS update but also increases the chance that 
the prior software stack deployment can be reused.   

Another aspect requiring attention is the resolution of 
module generation conflicts that block us from having a 
complete automated deployment. Besides looking into better 
defining Spack specifications for the software installed system-
wide, we think the situation will improve once Spack matures 
and the chance of unwanted software duplication diminishes.   

Future work is to integrate the deployment of reframe tests 
completely within the deployment scripts.  

Lastly, would like to improve tools and support for project-
wide and user-private installations. For instance, users should be 
able to easily migrate their currently installed software when a 
new software stack is made available. 

ACKNOWLEDGMENT 
We would like to acknowledge the Whadjuk people of the 

Noongar nation as the traditional custodians of this country, 
where the Pawsey Supercomputing Research Centre is located 
and where we live and work. We pay our respects to Noongar 
elders past, present, and emerging. This work was supported by 
resources provided by the Pawsey Supercomputing Research 
Centre with funding from the Australian Government and the 
Government of Western Australia.  

We would also like to thank the lead developers of Spack, 
who generously donated their time for a Q&A session to address 
the shortcomings identified by our initial tests. We would like to 
thank the entire Pawsey Applications Team for their 
contributions to this work. PJE would like to thank all the friends 
and family met during a long, much need holiday that 
reenergised them.   

 

 

 

 

REFERENCES 

 

[1]  "Pawsey Supercomputing Research Centre," [Online]. Available: 
https://pawsey.org.au. [Accessed 4 April 2023]. 

[2]  R. C. Bording, C. Harris and D. Schibeci, "Using Maali to Efficiently 
Recompile Software Post-CLE Updates on a CRAY XC System," in 
CUG2015 Proceedings, 2015.  

[3]  T. Gamblin, M. LeGendre, M. R. Collette, G. L. Lee, A. Moody, B. R. 
de Supinski and S. Futral, "The Spack Package Manager: Bringing 
Order to HPC Software Chaos," in SC '15: Proceedings of the 
International Conference for High Performance Computing, 
Networking, Storage and Analysis, 2015.  

[4]  M. Melara, T. Gamblin, G. Becker, R. French, M. Belhorn, K. 
Thompson, P. Scheibel and R. Hartman-Baker, "Using Spack to 
Manage Software on Cray Supercomputers," in CUG2017, 2017.  

[5]  NERSC, "Spack Artifacts," [Online]. Available: 
https://gitlab.com/NERSC/nersc-user-software/-/tree/main/spack-
artifacts. [Accessed 4 April 2023]. 

[6]  V. Sochat and A. Scott, "Collaborative Container Modules with 
Singularity Registry HPC," Journal of Open Source Software, vol. 6, 
no. 63, p. 3311, 2021.  

[7]  Pawsey, "Software Stack Policies," [Online]. Available: 
https://support.pawsey.org.au/documentation/display/US/Software+St
ack+Policies. [Accessed 4 April 2023]. 

[8]  G. M. Kurtzer, V. Sochat and M. W. Bauer, "Singularity: Scientific 
containers for mobility of compute," PLoS ONE, vol. 12, no. 5, p. 
e0177459, 2017.  

[9]  Pawsey Supercomputing Research Centre, "Pawsey Spack Config," 
[Online]. Available: https://github.com/PawseySC/pawsey-spack-
config. [Accessed 4 April 2023]. 

[10]  TACC, "Lmod: a New Environment Module System," [Online]. 
Available: https://lmod.readthedocs.io. [Accessed 4 April 2023]. 

[11]  CSCS, "ReFrame," [Online]. Available: https://reframe-
hpc.readthedocs.io. [Accessed 4 April 2023]. 

[12]  C. Di Pietrantonio, "Building AMD ROCm from Source on a 
Supercomputer," in CUG 2023, unpublished.  

[13]  S. N. Saadatmand, S. Yin, M. L. Walker, M. W. Doherty, M. Cytowski 
and U. Varetto, "qbOS: a Python framework for the development of 
coprocessing quantum-classical applications," in First International 
Workshop on Integrating High-Performance and Quantum Computing, 
2021.  

[14]  V. Sochat, M. Muffato, A. Stott, M. De La Pierre and G. Stuart, 
"Automated Discovery of Container Executables," Journal of Open 
Research Software, p. in press, 2023.  

 
 
 

 
 
 
 
 
 
 

 


