
pxpx

Automating Software Stack Deployment on
an HPE Cray EX Supercomputer
Dr. Pascal Jahan Elahi, Cristian Di Pietrantonio, Dr. Marco De La Pierre,
Dr. Deva Kumar Deeptimahanti

2023 Cray User Group Conference



Pawsey Supercomputing Research Centre

Headquarted in Perth, Western Australia, Pawsey has a 20-year long history. Offers
critical support to radioastronomy research around the Square Kilometre Array (SKA).
The centre underwent a 70m capital refresh financed by the Australian government.
Currently employs 60+ staff.

2 / 22



The Setonix supercomputer

Australia’s most powerful research supercomputer.
HPE Cray EX system with 200’000 AMD Zen3
CPU cores and 750+ MI250X GPUs.
50 PFLOPS, 90% coming from AMD GPUs.
15PB /scratch storage.
15th in TOP500, 4th in Green500.
Artwork by aboriginal artist Margaret Whitehurst.

3 / 22



Outline

1 Introduction and motivation
2 Software stack components and organization
3 Automated software stack deployment
4 Evaluation and future work

4 / 22



HPC Software
Introduction and motivation

Supercomputing software stacks are becoming increasingly complex..
Increasing number of applications and libraries from a variety of fields of science.
Multiple CPU architectures, compilers and supporting libraries.
Multiple configurations for the same software based on user requirements.
Constant evolution of the software provided by HPE Cray.

Need automation of the deployment process to improve deployment times, reduce
human errors and reduce the workload on staff.

5 / 22



Pawsey’s Approach
Introduction and motivation

Built around Spack and Singularity HPC (SHPC).
Integrates with the HPE Cray environment to provide multiple builds.
Allows the same Spack instance to be used for system-wide and user installations.
Uses the Lmod module system to expose software deployed with Spack, SHPC
and custom build methods.
This process can deploy the current software stack in less than a day. We have
deployed several software stacks on Setonix, an HPE Cray EX system.

The automation package can be downloaded from
github.com/PawseySC/pawsey-spack-config.git.

6 / 22

github.com/PawseySC/pawsey-spack-config.git


Design
Software stack components and organization

Software stack has three levels of deployment (and associated support):
System-wide: accessible by all and maintained by Pawsey.
Project-wide: maintained by the project and accessible by project members.
User-private: individual Pawsey users installations.

It consists of
Optimized bare-metal installations accessed through modules.
Containers accessed through modules.

The module files providing software are organized in informative, user-friendly
categories (e.g., applications, libraries, containers, etc.).
Supported versions follow a general 3 + 1 rule (legacy, stable, latest).

7 / 22



Software Stack Organization
Software stack components and organization

The system-wide stack consists of five components, each having a top-level directory in
the installation prefix <system>/DATE_TAG.

1 spack/: Spack package manager installation directory.
2 software/: Spack-built software packages installation directory.
3 containers/: SHPC deployed containers.
4 modules/: Module files for Spack-built software packages.
5 pawsey/: Contains modules and wrappers to properly expose three levels of

installation.
6 custom/: Contains binaries built by means other than Spack.

8 / 22



Spack Instance
Software stack components and organization

Currently using Spack 0.17.0 in production, moving to 0.19.x .
A spack Linux user is employed for system-wide software installations.
Additional scripts implement new features like multi-level installation paths
(project-wide and user-level).
Spack is patched to allow the use of configuration defined .spack/ directory.
New recipes and fixes to existing recipes (dependencies, specs, patching source
code, integration with CPE). Examples are:

Existing - Amber, Charmpp, astropy, casacore
Quantum Computing (new) - Qutip, Xanadu Pennylane, Xanadu Strawberry Fields
Bioinformatics (new) - tower-agent, tower-cli, nf-core tools
Radioastronomy (new) - wsclean, vcstools

9 / 22



Module Hierarchies
Software stack components and organization

HPC software stack must deal with multiple
compilers & CPU architectures.
This motivates use of software hierarchies,
where paths reflect currently loaded modules
and underlying CPU architecture.
We use Lmod to handle software hierarchies.

CPU architecture

Compiler name

Compiler version

Category

Module name

Module version

10 / 22



Module Hierarchies for CPE
Software stack components and organization

Cray’s customized Lmod installation implements an undocumented custom way of
handling hierarchies in substitution for the standard Lmod way.

Compiler, CPU architecture and MPI library modules scan the shell environment for
a specific variable that sets additional module paths.
Paths are (un)set when the relevant module is (un)loaded (unloaded). For example,
modules for a GCC compiler will look for LMOD_CUSTOM_COMPILER_GNU_8_0_PREFIX.
On Setonix, code is in
/opt/cray/pe/admin-pe/lmod_scripts/lmodHierarchy.lua.

We implement this process for Spack-built software packages through a
auto-loaded module, pawseyenv.lua.

11 / 22



Module Hierarchies for CPE
Software stack components and organization

Figure: Example of CPE software hierarchy

12 / 22



Module Hierarchies for CPU Architectures
Software stack components and organization

Setonix hosts a variety of AMD CPU architectures (Zen-2, Zen-3)
Module hierarchies are based on the CPU architecture using lscpu at user login
time to the node.

CPU architecture is saved in an environment variable for later use in forming search
paths for module files.

Figure: Example of CPU architecture software hierarchy

13 / 22



Containers-as-modules
Software stack components and organization

Certain software packages are provided system-wide as containers using SHPC,
which can be executed with the Singularity container engine. These include

Bioinformatics packages - complex dependency trees. Containers provided
time-effective deployment.
OpenFoam - CFD package where older releases are required and poor IO
performance resolved using overlay filesystems mounted to the running containers.
Bespoke Python stack for HPC - comprises all Pawsey-supported Python scientific
packages.

Containers are outside the software hierarchy of bare-metal builds through
container-as-modules produced by SHPC.

14 / 22



User’s View of Software Stack
Software stack components and organization

Users access all Pawsey-supported software through Lmod modules.
The resulting Lmod software hierarchy for Spack-built software is one where

An architecture hierarchy is static and set at shell login time.
A compiler hierarchy is dynamic and dependent on the current active CPE.

Containers as modules do not have a hierarchy since the underlying container does
not depend on the CPU architecture nor the active CPE.
We also force module load commands to request both module name and module
version to enforce good practice and improve reproducibility.

Figure: Example of modules on Setonix

15 / 22



Deployment system organization
Automated deployment

The deployment system is made of BASH scripts and Spack configuration files located
in the following directories:

fixes/: patches to adapt Spack for Pawsey-specific use cases.
repo/: Pawsey-written Spack package recipes.
shpc_registry/: custom Singularity-HPC (SHPC) recipes.
scripts/: BASH scripts used to automate the deployment process.
systems/<system>: a directory containing configuration files specific to a
system.

The scripts/install_software_stack.sh is the top-level script that executes the
installation from start to finish except licensed software, that need some manual work.

16 / 22



The ⟨system⟩ directory
Automated deployment

1 Spack config files for each deployment level.
site configs apply to all users, and provide general
settings.
project configs overrides paths for project-wide
installations.
spackuser configs are used by Pawsey staff to
deploy system-wide software.

2 environments specify the software to be installed
system-wide, grouped in categories.

3 settings.sh sets a number of variables to
customise the deployment process (system-wide
installation path, build directories, containers to
install).

4 Module file template for Spack to generate module
files. 17 / 22



Deployment execution
Automated deployment

1 Deploy Spack with customised configuration for the
particular system.

2 Need to install a newer Python version, with Spack,
for Spack to work correctly.

3 Singularity is needed to install Singularity-HPC for
container deployment.

4 Spack environments can be installed in parallel, and
at the same time containers are deployed with
SHPC.

5 Finally, we deal with licensed software, customise
module files where necessary, and create directory
trees in the system-wide and user-private
deployment levels.

18 / 22



Rebuilds, upgrades, and maintenance
Automated deployment

The same deployment can be updated by interactively adding new software.
Re-deploy stack regularly (every 6 months) to take advantage of newer compilers
and libraries.
Stack has to be re-deployed when the Cray environment changes.
Multiple deployments can be live on the system at the same time. This will ensure
year-long support.

19 / 22



Evaluation

1st deployment: May 2022
Minimal automation, each supporting script executed manually.
Instrumental to validate each step of the process.
Troubleshooting of installing some packages with latest compilers, generation of
module files, interplay between CPU architectures and Cray environment.
Deployment took two weeks.

2nd deployment: November 2022
Very first iteration of the automated process.
New person responsible for deployment, good test for usability and reproducibility.
Minimise required human interaction by introducing the “driver” script and
collecting all the settings in a settings.sh file.
After several test iterations, we managed to deploy the software stack in a day.

20 / 22



Future work

Minimise external dependencies, build everything with Spack.
Better resolution of conflicts when creating module files.
Integration of ROCm to build GPU-enabled packages.
Reframe testing triggered by the deployment scripts.

21 / 22



Thanks for
listening. Any
questions?

22 / 22


