
Powersched: A HPC System Power and Energy
Management Framework

Marcel Marquardt
Hewlett Packard Enterprise

Böblingen, Germany
marcel.marquardt@hpe.com

Jan Mäder
Hewlett Packard Enterprise

Böblingen, Germany
jan.maeder@hpe.com

Tobias Schiffmann
Hewlett Packard Enterprise
Schwalbach a.T., Germany
tobias.schiffmann@hpe.com

Dr. Christian Simmendinger
Hewlett Packard Enterprise

Böblingen, Germany
christian.simmendinger@hpe.com

Dr. Torsten Wilde
Hewlett Packard Enterprise

Munich, Germany
wilde@hpe.com

Abstract—Modern processors and thus HPC systems consume
huge amounts of power. Energy-efficiency is an important topic,
not only due to rising energy prices. Some HPC sites are
even restricted by the energy infrastructure and run systems
which can at peak utilization consume more than is available.
This overprovisioning is tolerable, as many applications do not
cause the system to draw peak power. However, the current
common strategy of using static power limits for all compute
nodes is suboptimal, as applications are impacted differently
by it. In this paper, we present the Powersched framework,
which is part of HPEs vision towards a holistic system power
management software stack. It continuously profiles applications
using hardware performance counters, and runs an energy
optimization algorithm to steer them into an energetic sweetspot
using mean-shift clustering and in-band power limits. The state
of the entire cluster is supervised to ensure that shared power
budgets of overprovisioned systems are not exceeded. A test
run using a selection of benchmark applications could show an
average energy saving of around 14% with an average runtime
increase of less than 2%.

Index Terms—Power, Energy, Overprovisioned, HPC, ML

I. INTRODUCTION

A. Motivation

While supercomputers, beyond theory and experiment, have
become the third pillar of academic and industrial research,
they can consume huge amounts of energy. For example,
the fastest supercomputer Frontier (according to the Top500
list, Nov 2022) required more than 20 Megawatts of power
during its HPL benchmark run. This rising power consumption
already has led to a situation where large HPC sites want to
reduce stranded or trapped facility power and cooling capacity
to the deployment of hardware. Over-provisioned supercom-
puters, where the peak power demand of all compute nodes
in the system can exceed the power available at a given site.
In addition, energy prices have dramatically increased over
the last year, especially in Europe. One strategy is to reduce
power consumption by static power capping, but this leads to a
substantial drop in overall application performance. However,
not all applications are equal. Compute bound codes may
suffer from lower CPU power limits and the resulting clock

speed reduction, memory bound codes however can be limited
without impacting performance significantly. This opens up
an opportunity to significantly reduce energy-consumption
without a drastic increase in runtimes, depending on the
application profile. Over-provisioned supercomputers can stay
within their power budget without sacrificing performance
if power is shifted from application that don’t need it to
applications that benefit from additional power.

B. Problem Statement
Leveraging these potential power-savings is not trivial,

especially for over-provisioned systems. As the applications
are submitted by users, static analysis can not be used, thus
requiring runtime profiling in the background. An optimal
power limit then has to be determined based on the profile. On
over-provisioned systems, the global power budget addition-
ally cannot be exceeded, requiring system-wide coordination.
Any solution also has to integrate with the scheduler to not
exceed the power budget by starting too many jobs. One big
challenge is to develop a framework that can support the
widely different system configurations with different CPUs
and even heterogeneous systems with GPUs.

C. Our Solution
The Powersched framework presented in this paper is part

of HPE’s vision towards a holistic system power manage-
ment software stack. It implements a reliable and extensible
framework for in-band application aware power and energy
management. It can manage over-provisioned systems while
simultaneously steering HPC workloads into their energetic
sweet-spot. Powersched records CPU profiling data while
changing system runtime parameters, such as the available
power per CPU package. Using Machine Learning, it derives
an optimal sweet-spot for the given workload and its profiling
counter footprint.

D. Structure of this paper
This paper is split in four parts: in section II, related

existing projects are discussed which fall in the scope of



the given problem. Section III then covers the architecture of
the Powersched framework, while section IV goes into detail
on the current energy-optimization algorithm based on mean-
shift clustering. Our early results using this strategy are then
presented in section V.

II. BACKGROUND AND RELATED WORK

The Energy Aware Runtime (EAR) library [1] can optimize
the energy efficiency of an application by using node-local
energy optimization techniques. EAR works mainly for MPI
applications. It intercepts MPI calls and detects the outer loop.
EAR then generates an application signature (using iteration
time, average DC node power, main memory transactions per
instructions, and cycles per instruction) and uses this signature
together with a system signature to project time and power ac-
cording to a power model. The best fitting projection is applied
to fulfill a specified energy policy. This is done independently
on each node of a job. EAR does not manage any power
constraints. Our approach uses deterministic measurements to
determine the optimum setting for each cluster, and applies
the optimal setting automatically by matching an application
to a cluster.

The Bull Dynamic Power Optimizer (DPO) [2] uses a
hardcoded frequency to set either a low or high processor
frequency based on an Instruction per Cycle (IPC) threshold.
For example, if IPC is below 12.5, a frequency of 1.5GHz is
applied. If IPC is above 12.5, a high frequency of 2.0GHz is
applied. DPO optimization is node-local, and DPO does not
manage any power constraints.

The Global Extendible Open Power Manager (GEOPM)
[3] works by intercepting MPI or OpenMP calls. GEOPM
identifies the out loops and then uses a full frequency sweep to
identify the optimal frequency or power limit that fulfills the
requested optimization policy. This frequency or power limit
is then applied till the next loop is identified. GEOPM can
manage a job power cap, but does not manage system-wide
power budget or a job which is running across multiple power
domains. The full frequency sweep for every loop leads to
high resource requirements for GEOPM.

III. POWERSCHED FRAMEWORK

A. Requirements

The problem statement leads to the following requirements,
which are divided into the areas of heterogeneous systems,
overprovisioned systems and energy optimization.
The requirement to support overprovisioned systems dictates
that the framework must work at a holistic level, as a simple
node locale solution would not be sufficient. To work on a
holistic level the framework needs the ability to interact with
the job scheduler to interact with the cluster and take control
of the resource allocation. Additionally the framework must be
able to move power between nodes, to shift power to work-
loads that can utilize it most efficiently. To enable the users
to some level of control over the management mechanisms
configurable power distribution policies is required.

Fig. 1. Architecture diagram

To support modern computing clusters and make the frame-
work adaptable to future system architectures, the framework
must support heterogeneous systems. With the proliferation
of accelerators such as GPUs and the imminent development
of APUs, support for multiple components in one node is
required.

The third key requirement is an energy optimization mech-
anism, that works without additionally user input our static
code analysis and instead relays only on system metrics
and hardware counters. Utilizing these counters workload
profiles and application phase changes should be dynamically
identified. Based on these identified workload profiles the
optimizer should assign a power cap representing the most
energy efficient run time configuration to the compute nodes.
To work within a given over all cluster energy budget the
optimizer should furthermore be able to shift power between
jobs to make the best use of the limited power.

B. Architecture

Powersched addresses these requirements with the architec-
ture shown in figure 1. It consists of three main components:
a Budget Manager daemon, one APAR daemons per node
and a scheduler integration. These communicate through a
Publish/Subscribe messaging system.

The Budget Manager daemon is the central authoritative
entity. It keeps track of the current state of the system,
including which jobs are running on which nodes, what power
cap is set on them and how much of the power budget is
remaining. Using this holistic view on the system, it decides
the power level for all existing jobs and tells the scheduler
how many nodes it can use for scheduling new jobs. When
it receives measurements from the APAR daemons, it uses
the energy optimization algorithm to determine the best power
level. The budget manager then attempts to satisfy this request
with the available budget. Any left-over budget is used to
facilitate new jobs.

Which energy optimization algorithm is actually used is
not fixed, however. Powersched defines an abstract interface,
so different implementations can be provided and chosen by



the user. In principle, these implementations are a simple black
box with the current measurements as input and the new
power caps as outputs. Currently, a clustering implementation
is provided, which is discussed in section IV in more detail.

On each compute node runs an instance of the APAR node-
local daemon. It serves as an interface to the system hardware
and executes decisions made by the Budget Manager, i.e.,
setting the given power caps. One APAR daemon per jobs
additionally takes on the function of the Job daemon, which
is called APAR lead in figure 1. In addition to setting power
caps, it, also has the task of measuring hardware performance
counters. As it is assumed that a job produces similar load
across its nodes, Powersched operates currently on a per-job
basis, meaning that all nodes of a job have the same power
cap. This may change in the future.

The Scheduler integration ensures that the Job scheduler
starts jobs only on nodes with enough power allocated to them
by the Budget Manager. Both Slurm and PBS are currently
supported by using dynamic resources (or GRES) that indicate
if the node has enough power. Hooks and scripts keep the
resource values synchronized with the Budget Manager and
also notify Powersched of new and finished jobs.

Publish-Subscribe Messaging is used for communication
between the different parts of the framework. This allows
sending node, job and system-wide messages easily. As it
leverages existing message brokers, Powersched benefits from
their robustness and features.

Its Configuration is probably the most important part of the
framework. As many things within the framework are defined
through interfaces and have several possible implementations,
the configuration is very powerful and allows tailoring to
specific systems. It includes details about the nodes within
the cluster, which of them share a given power limit, what
hardware components they have, but also system level options
like the kind of energy-optimization algorithm to use. To
ensure a consistent configuration for all components and
prevent having to change node images for each change, only
the budget manager reads the configuration files and distributes
it via the messaging layer whenever requested.

C. Components

In order to address heterogeneous systems with different
hardware components like multiple CPUs and GPUs, another
abstraction was introduced. As there are too many compo-
nents and configurations to support individually, Powersched
provides only a set of connectors to system/vendor APIs. Users
then define their own components through the configuration by
specifying which connectors to use. This is very flexible, as
connectors can be reused and adding more is also easy. Each
component consists of:

• a measure interface implementation
• a power interface implementation
• power draw information
• information for energy optimization
The measure interface is responsible for obtaining the

metrics used for energy optimization. Currently, only LIKWID

is supported, but connectors for Perf or PAPI could be easily
added. A connector defines a start, stop and poll function
where the latter is called by Powersched periodically to get
new measurements. This allows connectors for both push and
poll based APIs. Which metrics can be measured depends on
the implementation and has to be tuned to the optimization
algorithm. For the LIKWID connector, the event groups are
given through the configuration.

A power interface connector basically provides a single
method for setting power caps. Currently, an AMD HSMP
implementation is supported, but a connector for Intel CPUs
could be easily added using the RAPL API, as well as other
higher-level APIs.

In addition to these interfaces, some metadata is also part
of the component configuration. This includes the minimum
and maximum values supported for power caps, as well as
information necessary for the energy optimizer. The latter can
contain for example an expression that calculates the num-
ber of retired instructions from measurements. This depends
however on the used implementations.

As some values may differ between instances of the same
component type, Powersched allows defining component pa-
rameters which can be used as a placeholder within the com-
ponent configuration. The actual values are given in the node
configuration when specifying its components. A prominent
example is the CPU socket index, which is required by the
power interface. With parameters, a dual-socket node can use
the same component type.

D. Deployment

Apart from the daemons, Powersched consists of mea-
sure, power and energy optimization implementations. As the
framework evolves, their number will grow, which poses the
issue that only a few are actually used. Distributing all of
them as well as their dependencies as one unit is not efficient.
Instead, Powersched separates them in separate packages that
can be installed separately as needed.

IV. ENERGY OPTIMIZATION

An integral part of the framework is to move the power
budget intelligently between applications. This is achieved by
an energy optimization algorithm that decides the best power
level for a given application phase based on measurements.
For this purpose, we developed a machine-learning-based
model that can dynamically predict an optimal power cap
for corresponding job nodes based on hardware performance
counters. These counters are special registers of a processor
in which hardware-related activities are tracked.

A. Algorithm

The Powersched framework currently utilizes 37 of these
events to classify application behavior. Since the number of
performance counters is limited, the events are divided into
four blocks and are each measured over a duration of 2 minutes
so that a measurement interval lasts 8 minutes. This duration
also ensures a steady solver state.



Fig. 2. Graphical representation of the clustering optimization workflow.

TABLE I
COUNTERS AND EVENT SETS USED FOR AMD ZEN2 ARCHITECTURE

Eventset 1 Eventset 2
FIXC1 ACTUAL CPU CLOCK ACTUAL CPU CLOCK
FIXC2 MAX CPU CLOCK MAX CPU CLOCK
PMC0 RETIRED SSE AVX FLOPS ALL DATA CACHE ACCESSES
PMC1 CPU CLOCKS UNHALTED L1 DTLB MISS ANY L2 HIT
PMC2 RETIRED INSTRUCTIONS CPU CLOCKS UNHALTED
PMC3 RETIRED BRANCH INSTR ICACHE FETCHES
PMC4 RETIRED MISP BRANCH INSTR RETIRED INSTRUCTIONS
PMC5 MERGE DATA CACHE REFILLS ALL
DFC0 DATA FROM LOCAL DRAM CHANNEL DATA OUT TO REMOTE 2
DFC1 DATA TO LOCAL DRAM CHANNEL DATA OUT TO REMOTE 3
DFC2 DATA OUT TO REMOTE 0 DATA OUT TO REMOTE 4
DFC3 DATA OUT TO REMOTE 1 DATA OUT TO REMOTE 5

Eventset 3 Eventset 4
FIXC1 ACTUAL CPU CLOCK ACTUAL CPU CLOCK
FIXC2 MAX CPU CLOCK MAX CPU CLOCK
PMC0 ICACHE L2 REFILLS LS DISPATCH LOADS
PMC1 ICACHE SYSTEM REFILLS DATA CACHE REFILLS LOCAL ALL
PMC2 REQUESTS TO L2 GRP1 ALL NO PF DATA CACHE REFILLS REMOTE ALL
PMC3 L1 DTLB MISS ANY L2 MISS CPU CLOCKS UNHALTED
PMC4 HWPREF DATA CACHE FILLS LOCAL ALL RETIRED INSTRUCTIONS
PMC5 HWPREF DATA CACHE FILLS REMOTE ALL LS DISPATCH STORES
CPMC0 L3 ACCESS
CPMC1 L3 MISS
DFC0 DATA FROM LOCAL DRAM CHANNEL DATA OUT TO REMOTE 2
DFC1 DATA TO LOCAL DRAM CHANNEL DATA OUT TO REMOTE 3
DFC2 DATA OUT TO REMOTE 0 DATA OUT TO REMOTE 4
DFC3 DATA OUT TO REMOTE 1 DATA OUT TO REMOTE 5

These events are then used as input for a clustering model.
In order to evaluate how well different clustering methods
can be applied to our data set and which method gives better
results, it was decided to implement a partitioning clustering
method algorithm and a density-based method algorithm to
compare the results. The mean-shift algorithm was chosen as
a representative of the partition clustering method because it
does not require a predefined number of clusters compared
to other algorithms of the partition method. The DBSCAN
algorithm was chosen as a representative of the density-based
method because this algorithm can detect outliers, the so-
called noise, and thus possibly achieve a better result than
the mean-shift algorithm, where each point is assigned to a
cluster. Clustering is considered good if it has high separation
between clusters and high cohesion within a cluster. The

silhouette score [4], [5] was used for evaluation. The silhouette
coefficient is defined for the interval [-1,1]. Positive values
indicate strong separation between clusters, while negative
values indicate mixing clusters or overlapping clusters. If the
silhouette coefficient is zero, it means that the data is evenly
distributed in the Euclidean space. The result of the work was
that the DBSCAN achieved a silhouette coefficient of 0.62,
whereas the mean-shift achieved a silhouette coefficient of
0.74. The distribution of the applications among the clusters
formed was also evaluated. In this regard, the mean-shift
algorithm was also clearly ahead of the DBSCAN algorithm.
The mean-shift algorithm grouped each application into a
single cluster at a time, while the DBSCAN algorithm had
applications distributed across multiple clusters. In addition,
outlier detection proved to be more of a disadvantage than



an advantage, as the DBSCAN algorithm classified entire
applications as noise in extreme cases.

After the mean-shift turned out to be significantly better
for application detection, the silhouette score could be further
improved through some adjustments. Instead of clustering on
the raw event values, we introduced derived metrics, which
are calculated from the raw measurements. Additionally, to
distinguish more nuanced differences in the individual areas
in the clustering, three cluster groups are introduced which are
clustered using separate models: operations, caches, and data.
Operations include events related to branching and retired
instructions. Caches include events related to the translation
lookaside buffer (TLB), instruction (ICache), data (DCache),
L2, and L3 caches. The last group is data, which includes
events related to data movements as well as Numa information.
Each cluster group yields a cluster ID for each measurement:
an operation ID, a caches ID, and a data ID. These three IDs
then form a cluster-ID array or fingerprint. Using these two
improvements, the algorithm now reaches a silhouette score
of 0.85 – an improvement of 0.23.

The third and final step is a lookup table that maps each
fingerprint to a sweet-spot, which is the power level on with
a workload runs most efficiently in terms of instructions per
watt.

B. Initialization

The proposed algorithm requires training before it can be
used for inference. The first step of this initialization is data
collection. In this step we run a selection of benchmarks to
generate different kinds of workload (e.g. compute bound,
memory bound or mixed). To determine the most efficient
power level for each workload, each benchmark is run several
times with different power limits. While running, we periodi-
cally take measurements of the 37 events.

After all benchmark runs are completed, the data is prepared
for the following steps by calculating the derived metrics and
grouping them into the three cluster groups. These form the
inputs of the mean-shift models. We also calculate the sweet-
spot of each measured application phase here, as it is required
later to generate the lookup table. This process starts with
calculating the instructions per watt for each measurement. We
then group all measurements of the same application phases
together, i.e., all first measurements of application XY. Each
group should contain measurements for every power level, and
the one with the most instructions per watt is selected as the
sweet-spot for this application phase.

For each power level, we train the mean-shift clustering
models for the three cluster groups with the prepared data
measured on that level. Afterward, we generate the sweet-
spot lookup table. To generate this table, we collect all
measurements with the same fingerprint and power level. For
each measurement within such a group, we look up the sweet-
spot that was previously determined for the given application
phase. The power level that is found most often as a sweet-
spot among the measurements is saved as the sweet-spot of
that fingerprint.

C. Inference

During inference, the same measurements are performed as
in the training phase, as well as calculating the derived metrics
and grouping them into the three cluster groups. The trained
mean-shift models for the currently applied power level is used
to obtain a fingerprint. Afterward, we check if a corresponding
sweet-spot is present in our lookup table. If yes, this power
level is returned as the sweet-spot of the current application
phase. If no sweet-spot is defined for the given fingerprint, no
decision can be made and the current power level is retained.

V. EVALUATION

In this section, we evaluate the energy optimization algo-
rithm discussed in section IV. As a second step, we also
discuss the architectural bottlenecks of the solution.

A. Performance

Before proceeding, it is important to note that the results
come from an early prototype and the current implementation
may behave differently. Since our solution aims to increase
the energy efficiency by optimizing the instructions per watt,
Kilowatt-hour (kWh) is used as the evaluation criteria. To
evaluate our tool, five applications are used initially:

• the Conjugate Gradient (CG) and Integer Sort (IS) bench-
marks from the NAS Parallel Benchmarks [6]

• the MPI versions of Halo3d and Halo3d-26 which are
part of the Ember ECP proxy application [7]

• the Swfft ECP proxy application [8]
The NAS Parallel Benchmarks were used to train the

models, while the other benchmarks were additionally used for
evaluation to investigate how well it works with applications
that were not included in the training set. Each application
was run across two nodes. As a test platform, a small cluster
with an Infiniband fabric is used. Each node is based on the
HPE ProLiant DL385 Gen10 and has two 64-core AMD Epyc
7702 CPUs with hyper-threading disabled. To exclude possible
hardware influences, each application was executed equally
on all available nodes. To smooth out differences between
runs, each application was started four times with our dynamic
power capping and four times without.

The power consumption with and without dynamic power
capping are shown in table II. For better comparability, the
mean value of the four measurements per application is shown.
In the column ”energy savings”, the percentage reduction in
kWh was calculated. This column clearly shows that it was
possible to increase the energy efficiency of all five applica-
tions. Thus, an energy saving of 14.382% can be achieved on
average. Another aspect is the change in runtime, which is
shown in the ”runtime extension” column. Here, an increase
in the runtime of 1.65% on average can be observed, which
is a relatively small value compared to the energy savings.

B. Bottlenecks

Although the performance of the model looks very promis-
ing, the clustering approach also has its drawbacks. For
one, a large training dataset with diverse application profiles



TABLE II
COMPARISON OF ENERGY CONSUMPTION PER BENCHMARK IN KWH WITH AND WITHOUT DYNAMIC POWER CAPPING (DPC)

with DPC without DPC
Benchmark kWh runtime in Sec. kWh runtime in Sec. energy savings in % runtime extension in %
CG 0,8149 4043 0,8875 3982 8,18 1,53
IS 0,5415 2943 0,6392 2906 15,28 1,27
Halo3d 0,7558 4189 0,9269 4177 18,46 0,28
Halo3d-26 0,8785 4831 1,0504 4733 16,36 2,07
Swfft 0,4193 2267 0,4855 2199 13,63 3,09

is required for the mean-shift to accurately detect clusters.
Additionally, measurements on all power levels are required
to generate the sweet-spot lookup table. This results in large
training times and the difficult choice of which benchmarks
to train on. The second drawback is that the measurements
which are obtained during operational use (inference mode)
cannot be used to improve the models. As the application is
run only once there, it is not possible to determine the accuracy
of the prediction which is required to adjust the sweet-spot
lookup table. A third potential bottleneck could be the reliance
on a steady solver state, i.e., that the application contains a
loop and each measurement covers all parts of at least one
of its iterations. This is the case for most HPC applications,
but it limits the frequency measurement can be taken. But
this limitation also comes with its benefits, as it switches
power limits less often, thus reducing overhead and making it
possible for the budget manager to enforce the global power
budget.

VI. CONCLUSION

A. Summary

In this paper, we presented a framework that can dynam-
ically optimize applications running on an HPC system at
runtime. It is capable of enforcing shared power budgets and
is designed to be extensible to support all kinds of cluster
configurations, including heterogeneous systems. Each node
runs a local daemon, called APAR, that measures system
metrics and sets in-band power limits. A system daemon,
called Budget Manager, maintains a holistic view of the sys-
tem, integrates with the job scheduler, and communicates with
the APAR daemons to ensure no power budget is exceeded.
Additionally, the Budget Manager runs an energy optimization
algorithm that determines the optimal power limit for each job
without significantly impacting the application performance.
This allows saving power, especially for memory-bound jobs,
which can be used to start more jobs than otherwise possible
on an over-provisioned system.

Our current algorithm for energy optimization is based on
mean-shift clustering and uses hardware performance counters
collected by LIKWID to determine the optimal power limit
of an application phase. It calculates derived metrics, groups
them into operations, caches and data related events, which
are then clustered separately using a mean-shift model for the
given group and power level. The resulting fingerprint is then
used to look up the optimal power limit. Using this, we could

show an average energy saving of around 14% with an average
runtime increase of less than 2%.

However, Powersched is not fixed to LIKWID and this opti-
mization algorithm. It defines plugin interfaces for measuring,
power limit setting and energy optimization, so that they can
be easily swapped out or extended.

B. Future Work

While the Powersched framework is already very capa-
ble, future improvements are planned. For one, alternative
algorithms for energy optimization will be investigated, like
reinforcement learning or analytical approaches. These may
reduce the initial learning overhead and could allow improving
during production use.

Another area of interest is the reduction of input events
and exploration of other tunable settings of the hardware, like
changing frequencies. Especially, out-of-band metrics could be
beneficial, as they are less intrusive, but also less specific.

The last and probably most important future research topic
is optimizing heterogeneous systems with GPUs. Currently,
they are considered in the architecture, but hardware inter-
faces are lacking, and the energy optimization algorithm also
handles different components separately, which could pose
problems.

C. Outlook

The Powersched framework is able to manage over-
provisioned systems while at the same time steering HPC
workloads into their energetic sweet-spot by dynamically
changing power limits based on their hardware performance
counter footprint. Using this, we could show an average energy
saving of around 14% with an average runtime increase of less
than 2%.

REFERENCES

[1] J. Corbalan and L. Brochard, “EAR: Energy management
framework for supercomputers,” en, Barcelona Super-
computing Center (BSC) Working paper, 2019.

[2] T. d. L. Magistrale, “Analysis and dynamic optimization
of energy consumption on HPC applications based on
real-time metrics,” en, 2017.



[3] J. Eastep, S. Sylvester, C. Cantalupo, et al., “Global
Extensible Open Power Manager: A Vehicle for HPC
Community Collaboration on Co-Designed Energy Man-
agement Solutions,” en, in High Performance Computing,
J. M. Kunkel, R. Yokota, P. Balaji, and D. Keyes, Eds.,
ser. Lecture Notes in Computer Science, Cham: Springer
International Publishing, 2017, pp. 394–412, ISBN: 978-
3-319-58667-0. DOI: 10.1007/978-3-319-58667-0 21.

[4] P. J. Rousseeuw, “Silhouettes: A graphical aid to the
interpretation and validation of cluster analysis,” en,
Journal of Computational and Applied Mathematics,
vol. 20, pp. 53–65, Nov. 1987, ISSN: 0377-0427. DOI:
10 .1016 /0377- 0427(87)90125- 7. [Online]. Available:
https : / / www . sciencedirect . com / science / article / pii /
0377042787901257 (visited on 03/30/2023).

[5] J.-O. Palacio-Niño and F. Berzal, Evaluation Metrics for
Unsupervised Learning Algorithms, arXiv:1905.05667
[cs, stat], May 2019. DOI: 10.48550/arXiv.1905.05667.
[Online]. Available: http : / / arxiv. org / abs / 1905 . 05667
(visited on 03/30/2023).

[6] D. Bailey, E. Barszcz, J. Barton, et al., “The Nas Parallel
Benchmarks,” The International Journal of Supercomput-
ing Applications, vol. 5, no. 3, pp. 63–73, Sep. 1991,
Publisher: SAGE Publications, ISSN: 0890-2720. DOI:
10 . 1177 / 109434209100500306. [Online]. Available:
https: / /doi .org/10.1177/109434209100500306 (visited
on 03/30/2023).

[7] Sandia National Laboratories, Ember, en-US, May 2018.
[Online]. Available: https : / /proxyapps .exascaleproject .
org / app / ember - communication - patterns/ (visited on
03/30/2023).

[8] Argonne National Laboratory, SWFFT, en-US, Apr.
2018. [Online]. Available: https : / / proxyapps .
exascaleproject.org/app/swfft/ (visited on 03/30/2023).

https://doi.org/10.1007/978-3-319-58667-0_21
https://doi.org/10.1016/0377-0427(87)90125-7
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://doi.org/10.48550/arXiv.1905.05667
http://arxiv.org/abs/1905.05667
https://doi.org/10.1177/109434209100500306
https://doi.org/10.1177/109434209100500306
https://proxyapps.exascaleproject.org/app/ember-communication-patterns/
https://proxyapps.exascaleproject.org/app/ember-communication-patterns/
https://proxyapps.exascaleproject.org/app/swfft/
https://proxyapps.exascaleproject.org/app/swfft/

	Introduction
	Motivation
	Problem Statement
	Our Solution
	Structure of this paper

	Background and Related Work
	Powersched Framework
	Requirements
	Architecture
	Components
	Deployment

	Energy Optimization
	Algorithm
	Initialization
	Inference

	Evaluation
	Performance
	Bottlenecks

	Conclusion
	Summary
	Future Work
	Outlook


