
Flexible Slurm Configuration for Large-Scale HPC
Mr Steven Robson

EPCC, The University of Edinburgh
Edinburgh, UK

s.robson@epcc.ed.ac.uk

Mr Kieran Leach
EPCC, The University of Edinburgh

Edinburgh, UK
k.leach@epcc.ed.ac.uk

Dr Stephen Booth
EPCC, The University of Edinburgh

Edinburgh, UK
s.booth@epcc.ed.ac.uk

Mr Greg Blow
EPCC, The University of Edinburgh

Edinburgh, UK
g.blow@epcc.ed.ac.uk

Mr Maciej Hamczyk
EPCC, The University of Edinburgh

Edinburgh, UK
m.hamczyk@epcc.ed.ac.uk

Mr Philip Cass
EPCC, The University of Edinburgh

Edinburgh, UK
p.cass@epcc.ed.ac.uk

Abstract—EPCC operates a variety of services including
ARCHER2, commissioned by UK Research and Innovation
(UKRI) on behalf of the UK Government as the UK’s Tier-1
supercomputing service, and Cirrus, a UKRI Tier-2 HPC service.

EPCC had historically operated services using the PBS Pro
scheduler, including HECToR and ARCHER, the previous na-
tional Tier-1 services, and Cirrus until mid 2020. In 2020 EPCC
began to host ARCHER2, operating with the Slurm scheduler,
as well as conducting a rebuild and upgrade of Cirrus, during
which Slurm was deployed in place of PBS Pro.

Since 2020, EPCC have developed a number of approaches
for management and configuration of the Slurm scheduler
which have significantly improved service manageability and user
experience. We will describe the key features of these approaches
in this paper.

We will present our conclusion from the past several years
working with Slurm, considering that:

• Slurm has proved valuable in its configurability and flexi-
bility as a scheduler;

• Scheduler configuration setup can be usefully shared across
different services even though they have different require-
ments and levels of heterogeneity

• Automation can considerably reduce the effort required by
staff supporting Slurm

Index Terms—scheduling, HPC, service management

I. BACKGROUND

EPCC operates a variety of services including ARCHER2,
commissioned by UK Research and Innovation (UKRI) on
behalf of the UK Government as the UK’s Tier-1 national
supercomputing service, and Cirrus, a UKRI Tier-2 national
HPC service.

EPCC has historically operated services including HECToR
and ARCHER, the previous UK national Tier-1 supercomput-
ing services.

A. ARCHER2

The ARCHER2 system is an HPE Cray EX supercomputer
with an estimated peak performance of 28 Pflop/s. The ma-
chine has 5,860 compute nodes, each with dual AMD EPYC
7742 64-core processors at 2.25GHz, giving 750,080 cores
in total connected by a Slingshot-10 interconnect. ARCHER2
is the successor system to ARCHER, a 4,920-node Cray
XC30 system which was also operated and supported by

EPCC. These systems have been managed and financed by the
Engineering and Physical Science Research Council (EPSRC)
and UK Research and Innovation (UKRI).

In operating and supporting both these services, EPCC has
acted in both the Service Provision (SP) and Computational
Science and Engineering (CSE) roles. Under the SP role,
EPCC is responsible for system management and adminis-
tration as well as the operation of the Service Desk. Under
the CSE role, EPCC is responsible for deploying application
software not included in the programming environment sup-
plied by HPE as well as for assisting users with application
software development and management, providing training,
administering funding calls for software development projects,
and running an outreach programme. These responsibilities
are in addition to hosting the ARCHER2 service at EPCC’s
Advanced Computing Facility (ACF) data centre.

B. Cirrus
The Cirrus system is an HPE SGI 8600 system operated as

a UKRI Tier-2 service. Cirrus operates with a mix of 352 CPU
nodes (each with 2x Intel Xeon E5-2695 36 core at 2.1 GHz)
and 38 GPU nodes (each with 4x Nvidia Tesla V100-SXM2-
16GB) connected by a mix of FDR and HDR Infiniband.

C. Slurm
Slurm is a scheduler originally announced by Laurence

Livermore National Laboratory in 2003 [1]. Slurm today has
a wide range of contributors and is maintained by SchedMD
[2]. EPCC first adopted Slurm for a major system with the
rebuild of the Cirrus system in 2020.

Cirrus was originally deployed using the PBS Pro scheduler.
During a 2020 rebuild and upgrade of the system Cirrus was
migrated to Slurm. This was chosen in order to be in line with
the anticipated arrival of ARCHER2 using Slurm.

ARCHER2 was delivered by HPE with Slurm in place
of PBS Pro which had historically supported Tier-1 national
services including HECToR and ARCHER.

D. SAFE
EPCC develops and operates a service management web

application known as SAFE [3]. Details of job accounting

Fig. 1. A screenshot of SAFE showing an individual user account on
ARCHER2. Of particular note here is the ”Remaining Budget” denoted in
CUs. 1 CU is equivalent to 1 node hour.

from the Slurm scheduler are uploaded to SAFE. SAFE
is also used by users to create and manage their machine
accounts, and by project managers to allocate and report on
project resources. Resources allocated and managed in this
way include disk space and compute node time. The SAFE was
originally developed as the ”Service Administrative Function”
or SAF for the HPCx service which was operated by STFC
Daresbury and EPCC starting in December of 2002. SAFE has
evolved and supported HPCx, HECToR, ARCHER and now
ARCHER2 along with a variety of other services. Throughout
this time SAFE has been under constant development. The
current production database was originally configured for
HECToR and the oldest registered account dates to December
of 2006. This provides a significant degree of continuity to
users of UKRI national services.

E. Rundeck

Rundeck is an application supporting automation of com-
mon system administration tasks [4]. It can offer access to an
array of user defined administrative scripts and actions both
via a web interface and API access. At EPCC Rundeck is used
to automate the vast majority of system administration tasks
including, but not limited to:

• User creation and management within Identity Manage-
ment Systems such as OpenLDAP and FreeIPA;

• directory creation and management;
• file system quota management; and
• management of user definition and budget within sched-

ulers.

F. Motivation

In working to configure and manage Slurm on systems
including ARCHER2 and Cirrus, EPCC have developed a
number of approaches for management and configuration of
the Slurm scheduler which have significantly improved service
manageability and the user experience. We describe a number
of these approaches below.

II. SAFE INTEGRATION AND BUDGET MANAGEMENT

In order to improve efficiency and reduce the required staff
effort EPCC has for some time, across both the HECToR and
ARCHER services, automated the deployment of budgets and
the collection of accounting data from and to the SAFE. Under
PBS Pro this was a relatively simple process of budget files
being copied into place on a regular basis and accounting files
being copied out on the same basis. This provided all the
integration that was, at the time, required.

The move to Slurm has required us to look at this again
and develop a very different approach. In order to properly
manage users it is now necessary that user accounts be created
in Slurm and that these be properly managed. It is also no
longer possible to simply copy files in and out to provide and
access budget and accounting data. We discuss below how we
have approached the automation of user and data management
of Slurm via the SAFE for services including ARCHER2 and
Cirrus

A. Integration of Slurm and SAFE

During the HECToR and ARCHER services SAFE automa-
tion was conducted by:

• Automated copying of files using scp; or
• a perl based script which would access tickets over http

and action these. This required the sysadmin team to
manually run the script for each ticket or batch of tickets

During early planning for the ARCHER2 service the de-
cision was made to move all automation to the Rundeck
application discussed previously. A series of tickets were
defined in Rundeck to conduct various actions. All Rundeck
tickets for the ARCHER2 service which carry out direct
actions, including those interacting with Slurm, are intended
to be:

• Atomic: in each case individual actions are created as
tickets; and

• idempotent: tickets should be re-runnable without adverse
impact or failure.

”Macro” tickets are then defined which call the tickets
directly interacting with ARCHER2. These tickets can call
several individual ”micro” tickets in sequence and handle the
communication of data to and from the SAFE.

In order to run tickets the following process takes place:
1) A user change or internal SAFE process occurs which

requires a change within the Slurm environment.
2) The SAFE validates all user input.
3) The SAFE connects to Rundeck over HTTP on a private

network.
4) Via a webhook notification the SAFE calls the relevant

macro ticket, providing whichever variables are required.
5) Rundeck actions the appropriate micro ticket or tickets

which first validate the input provided where appropri-
ate.

6) Based upon the node filter Rundeck uses ssh to access
to the relevant node - in this case an ARCHER2 login
node.

Fig. 2. A diagram showing the process by which Rundeck tickets are run by
the SAFE

7) The appropriate commands are then run based upon
the script in each micro ticket (the Rundeck user being
configured as a Slurm administrator).

8) The micro ticket then either passes back output from the
actions conducted or handles any errors appropriately.

9) Output is then passed back to the macro ticket which
communicates the result back to the SAFE again over
HTTP via a webhook notification.

This process can be seen outlined in figure 2. In this way
the following actions for Slurm are managed on ARCHER2:

• Creation and removal of users;
• creation and removal of budgets/accounts;
• the locking and unlocking of budgets/accounts;
• the creation of reservations.
As an example both the macro and micro tickets for the

creation of reservations can be found at [5].

B. Data Extraction from Slurm to SAFE
In addition to the on-demand processes above, the SAFE

and Rundeck also interact in order to extract accounting data
from Slurm on a regular basis. In order to achieve this Rundeck
activates tickets on a daily basis which ssh to the ARCHER2
login node, collect job and subjob data and post this back to
the SAFE via HTTPS to a data ingest endpoint.

This allows the SAFE to store Slurm accounting persistently
and to support accurate reporting to users of accounting
data. This data includes details of jobs run and energy used
and is available both to individual users and the principal
investigators of each project. This accounting data is also used
to manage budgets as discussed below.

C. Automated Implementation of Budgeting Controls

On the ARCHER2 and Cirrus services projects are assigned
allocations for compute time along with storage allocations.
Time allocations run for a finite period of time, and a non-
overlapping sequence of allocations can be configured for a
project. The currently active allocations control the state of
budgets implemented in Slurm. These budgets are assigned to
the project as a whole and then designated project managers
may optionally assign sub-budgets to individual users or
groups of users, and move time between sub-budgets.

For each budget and sub-budget defined in this way an
account is created in Slurm with the appropriate users associ-
ated to said account. Users then run work against the relevant
account and this is reported to the SAFE through the data
extraction process discussed above.

When the SAFE identifies, through the data uploaded, that
the budget for an account has been exceeded, a Rundeck
ticket is actioned to lock the relevant account. Should further
compute time be added (or a new allocation become active) an
equivalent ticket is actioned to unlock the account in question.

Locking and unlocking are achieved by setting the account’s
MAXTresMins attribute which represents the number of min-
utes for which a user can use a given TRES resource for each
job they submit. This is set to be zero when locking an account
and -1 (infinite) when an account is unlocked. This can be
managed independently for both CPU and GPU resources, as
shown below.

#Lock the CPU account for budget01
sacctmgr -i modify account where cluster=

archer2 Account=budget01 set maxtresmins=
cpu=0

#Lock the GPU account for budget01
sacctmgr -i modify account where cluster=

archer2 Account=budget01 set maxtresmins=
gres/gpu=0

#Unlock the CPU account for budget01
sacctmgr -i modify account where cluster=

archer2 Account=budget01 set maxtresmins=
cpu=-1

#Unlock the GPU account for budget01
sacctmgr -i modify account where cluster=

archer2 Account=budget01 set maxtresmins=
gres/gpu=-1

III. APPROACHES FOR SYSTEM MANAGEABILITY

A. Preconfigured QoS

For much of the early life of the ARCHER2 service it was
time consuming, and required a service outage, to make any
changes to the Slurm configuration files. This restriction meant
that the definition of partitions and QoS permitted to access
partitions could not be updated in a responsive manner.

Fig. 3. A diagram showing the layout of maintenance partitions on Cirrus

In order to support flexibility during the early life of the
service, when modifications to the scheduler were anticipated
to support evolving user requirements, a number of QoS names
were defined against the standard node partition. The standard
node partition was configured [6] with the additional QoS
names highpriority, reservation, testing, weekend and profiling,
These were included to support potential future requirements.
Whilst not currently defined in Slurm, if QoS matching these
descriptions are needed in future they can be created with
a simple and immediate sacctmgr command, rather than any
change being required to the Slurm configuration files.

B. Maintenance partitions

In order to support the ability of both EPCC and contractor
staff to conduct maintenance on our services and sections of
those services EPCC has adopted the practice of deploying
maintenance partitions to all Slurm services. Partitions are
defined for each sensible section of the system in question
- for example a physical rack, or GPU nodes.

These partitions can then be used to submit test jobs or
equivalent work against relevant sections of the system whilst
the primary, user accessible, partitions are disabled. This has
in the past been used to demonstrate proper operation of the
system after maintenance on specific sections of the system,
to diagnose problems on sections of a system and to conduct
benchmarking work.

An example can be seen in figure 3 which shows the
layout of maintenance partitions on Cirrus. These maintenance
partitions are:

• 1. maintenance-all: A partition encompassing all compute
nodes

• 2. maintenance-r1: A partition covering all nodes in the
e-cell r1

• 3. maintenance-r2: A partition covering all nodes in the
e-cell r2

• 4. maintenance-cpu: A partition covering all CPU nodes
• 5. maintenance-gpu: A partition covering all GPU nodes

C. Jinja-2 templating modifications

In the deployment of Slurm configuration to the various
nodes of ARCHER2 the Cray EX software stack takes the

input of a Jinja-2 template. Jinja-2 is a templating engine
which allows python code to be inserted within the text of
a template file.

This was, at delivery, used to define items within the
slurm.conf file such as the definition of the various compute
nodes and the IP and hostname of the Slurm controller node.
Two further modifications have been made since this point
which we consider worthy of note.

Firstly, in order to use a single slurm.conf template between
the main ARCHER2 system and the Test and Development
System which supports it we have included logic to manage
the differences between the two services. As can be seen below
the configuration for energy data gathering is defined based
upon the name of the cluster:

{% if cluster_name == ’archer2’ %}
AcctGatherEnergyType=acct_gather_energy/

pm_counters
{% elif cluster_name == ’tds’ %}
AcctGatherEnergyType=acct_gather_energy/ipmi
{% endif %}

Secondly, in cooperation with HPE, configuration has been
deployed to weight compute nodes as either HighMem or
StandardMem based upon the information recorded in the
system’s hardware database. This supports us in weighting
high memory nodes such that they are used by standard jobs
only when all standard nodes are already in use, in order
to as far as possible keep them available for users with a
high memory requirement. This has also allowed us to define
partitions composed of the sets of high and standard memory
nodes. The configuration items for these can be seen below,
and the full configuration template file can be found at [6].

{{ ’,HighMem Weight=1000’ if node.RealMemory >
262144 }}

{{ ’,StandardMem Weight=500’ if node.
RealMemory < 262145 }}

IV. PRIORITY MANAGEMENT

When transitioning to the ARCHER2 service a primary
concern was ensuring that users migrating from ARCHER
had a comfortable and, as far as possible, familiar experience.
To enable this we set out to create a scheduling environment
which was reminiscent of that on ARCHER whilst also taking
advantage of features available in Slurm which had not been
available in PBS Pro.

On the ARCHER and ARCHER2 systems we organise and
have organised jobs based on a number of factors. The first of
these is assigned queue or QoS priority. Priority is typically
either low, standard or high.

The vast majority of work falls into the standard priority
band – this work should always run ahead of low priority work
but behind high priority work. Low priority work is typically
uncharged or charged at a reduced rate but will only run when
there is no suitable standard or high priority work to run in its
place. High priority is typically limited to specific use cases

– COVID-19 research has been the primary use case of high
priority capability on ARCHER2 to date.

The second factor considered in scheduling work is time.
This may include the amount of time a job has been queueing
for, the length of a job or both. Finally, the size of a job will
be taken into consideration - expressed as a node count or
proportion of the whole system.

A. Priority on ARCHER

queuepriority + nodecount+walltime(hours)+(eligibletime(hours)∗100)
10 + adminpriority

Shown above is the PBS Pro priority formula used over the
final years of the ARCHER service. In this formula only
queue and admin priority are fully weighted – the other factors
considered are divided by ten before being added to the queue
priority and admin priority.

As discussed above the queue priority is set into bands
of high, standard and low. Admin priority allows system
managers to increase or decrease the priority of individual jobs
however this facility was not actively used on the ARCHER
service.

The other factors considered in this formula are node count,
wall time – representing the planned length of a job - and
eligible time, representing the length of time a job has been
queueing. Node count is the number of nodes requested by
the job being submitted. Wall time is then included at a
rate equivalent to one additional node per hour of wall time.
Eligible time is then at a rate equivalent to one hundred
additional nodes per hour.

Given that ARCHER had 4920 nodes the maximum benefit
in priority terms that a large job could receive was around two
days – that is to say that a newly submitted job attempting to
use the full system would be considered equivalent in priority
to a theoretical zero node job which had been submitted 49
hours ago.

The weighting given to eligible time was originally lower on
the ARCHER service, with a much greater effective priority
given to larger jobs. The original job sort formula applied no
multiplier to eligible time meaning that each hour in the queue
was equivalent to only one compute node. Even a moderately
size job of 256 nodes would immediately be given priority
over a ten day old theoretical zero node job – a job using half
the system would be given priority over a hundred day old
job.

As demand on ARCHER increased during 2016 wait times
for some users became particularly long – the users in ques-
tion being those with smaller jobs. After reviewing available
options a multiplier was added to the eligible time – taking the
equivalent node count per hour to ten. This was then increased
so that the equivalent node count per hour reached 100, as
above.

With this change in place wait times on the system became
more acceptable – at a review the following year it was
identified that all but 0.5% of jobs were running within three

days and that 75% of jobs were waiting less than 6.5 hours to
run.

By the time of the transition to ARCHER2 the ARCHER
priority formula was considered successful and the original
aim for ARCHER2 was to replicate this as closely as possible.

B. Priority on ARCHER2

Whilst PBS Pro takes a formula as input for scheduling
priority, as shown above, under Slurm priority is defined
as a number of variables set in the slurm.conf file. Under
ARCHER2 the relevant variables were originally planned as:

PriorityType = priority/multifactor
PriorityWeightQOS=10000
PriorityWeightAge=500
PriorityMaxAge = 14-0
PriorityWeightJobSize=100

This configuration was designed to result in the equivalent
configuration to the priority formula shown below.

(10, 000 ∗ queuepriority(0− 1)) + (500 ∗ jobage(0− 1)) + (100 ∗ jobsize(0− 1))

Each of the factors considered is calculated by Slurm as a
number between zero and one – this is then multiplied by the
weight assigned to the item. No priority is assigned for any
factor for which no weight has been set.

The first factor, QoS priority, is equivalent to queue priority
for ARCHER and is based upon the QoS a user has submit-
ted to. The QoS priority is very heavily weighted (10,000)
compared to other factors – for jobs in the high priority QoS
this will result in a priority of 10,000, for the standard QoS a
priority of 1,000 and for the low QoS a priority of 2.

The second factor used here is the age of a job – the length
of time for which it has been queueing. Whilst not directly
technically equivalent, job age is similar in intent and function
to eligible time in PBS Pro. A maximum age to be considered
has been set which limits consideration at 14 days. Given the
weighting of this factor at 500, priority would be assigned
on a scale from 0 to 500 where a brand new job would be
assigned zero and a job which was submitted 14 or more days
ago would be assigned 500.

The next factor is job size. Given the weighting at 100,
priority will be assigned on a scale from 0 to 100 where 0
represents a (theoretical) 0 node job and 100 represents a full-
system job.

Given that the maximum available priority for the size of a
job is 100 and the maximum available priority for a job’s age
is 500 for 14 days or more a job can gain up to three days
worth of priority from its size – the advantage in hours and
days at various sizes is shown in table I.

As discussed above the intent in these settings is to broadly
replicate the setup which was in place on the ARCHER system
as this was considered to be effective and fair to users. The
maximum advantage available to a job based on size differs
somewhat but is broadly comparable – 67 hours for 5,860
nodes as compared to 49 hours for 4,920 nodes.

Job size Advantage over zero-size job
512 6 hours
1024 12 hours
2048 1 day
4096 2 days
5860 3 days

TABLE I
ADVANTAGE TIMES FOR VARIOUSLY SIZED JOBS OVER A THEORETICAL

ZERO SIZED JOB

In the same way that we did for the ARCHER service,
we monitor scheduling and engage with users to ensure that
scheduling works for all users and workloads on ARCHER2.
As part of this work it became clear early in the service that
some users were able to submit large amounts of work and
effectively fill the scheduler for significant amounts of time.
As such it was decided to implement the ”fairshare” facility
provided by Slurm, which had been used to support scheduling
on the 1,024 node ARCHER2 pioneer system.

Fairshare is intended to ensure that all users have equivalent
access to shared resource, prioritising work to be run by users
who have run less work recently. The variables ”PriorityDe-
cayHalfLife” and ”PriorityWeightFairshare” were added to the
priority configuration in slurm.conf as below:

PriorityType = priority/multifactor
PriorityWeightQOS=10000
PriorityWeightAge=500
PriorityMaxAge = 14-0
PriorityWeightJobSize=100
PriorityDecayHalfLife = 2-0
PriorityWeightFairshare=300

This resulted in the equivalent priority formula shown
below:

(10, 000 ∗ queuepriority(0− 1)) + (500 ∗ jobage(0− 1)) + (100 ∗ jobsize(0− 1)) + (300 ∗ fairshare(0− 1))

The configuration added gives us a fairshare factor. This is
calculated based on the previously submitted and completed
work of different groups on the system with groups and
users who have run less work recently given greater priority.
Consideration of work run is discounted at a rate with a half-
life of 2 days - a piece of work run 2 days ago would have half
the impact on the priority of a new job than a job run yesterday
would. The half life ensures that fairshare consideration is only
given to recent work. As the fairshare factor is weighted at
300, previous work can be counted as the equivalent of up to
8 days of queuing time.

With the fairshare adjustment in place we have found that
users are generally satisfied with the scheduling on ARCHER2
which we consider offers fair access to our diverse user
community.

V. INTEGRATION OF LUA SCRIPTING FOR IMPROVED USER
EXPERIENCE

During the HECToR and ARCHER services a number of
Python hook scripts were deployed at various points in the

job life-cycle to manage job submission and user experience.
Under Slurm on ARCHER2 and Cirrus these have been
replaced by a single Lua script which runs at the time of job
submission.

This script supports job management and user experience
in a number of ways as discussed below. This discussion is
based around the ARCHER2 job submit script [7].

A. Logging and general tests

A number of details of the job, as submitted, are logged.
This includes details of the account the job is submitted under
and the features requested. This supports the system support
team when it is necessary to investigate problems with jobs
on the system and has improved the ability of the team to do
so.

A number of options which the users may not have specified
are then set explicitly to a default:

• Minimum memory per node and per cpu
(min mem per node, min mem per node) is set
to 0 and

• the number of tasks and the number of tasks per node
(num tasks, ntasks per node) is set to 1.

This ensures standard and predictable behaviour, including in
partition tests which follow, for users and the support team.
Where this action is taken this is also logged.

B. Partition tests

The next part of the script conducts a series of partition
tests to confirm that the job submitted is appropriate for the
partition it has been submitted to. Actions taken by this section
of the script include:

• Rejecting jobs which request memory - as we budget
based upon core, node or GPU hours this is not permitted;

• setting jobs in certain partitions (standard and highmem
on ARCHER2) to be node exclusive;

• rejecting jobs which specify the GPU partition and which
fail to specify a number of GPUs, or which specify a
number of cores - as we budget GPU jobs on based upon
GPU hours this is not permitted;

• specify the number of allocated cores for GPU jobs scaled
to on the number of GPUs requested;

• reject jobs submitted to the serial partition which request
a number of nodes or exclusivity;

• reject jobs where no partition has been specified and
• reject jobs specifying or excluding particular nodes,

except where this is conducted under a maintenance
partition.

As previously all tests and actions are logged.

C. QoS and reservation tests

A number of tests are then run which ensure that reservation
and QoS requirements are met. The first action taken is to
specify the correct reservation for any job submitted under the
”short” QoS. This reservation and the associated QoS keeps
nodes available for users to run short (20 minute or less) jobs
as part of their development process.

A number of tests are then run which reject jobs which:
• Attempt to use the short QoS reservation without using

the short QoS;
• attempt to access another reservation without using the

”reservation” QoS;
• have been submitted to the long QoS but request a

walltime which would fit into the standard QoS and
• have been submitted without specifying a QoS.

As previously all tests and actions are logged.

D. Time and working directory tests

The final two sets of tests confirm the correctness of the
time and working directory attributes of the job. Firstly where
a user has not set a time limit for their job either:

• This is specified as 20 minutes where a user has submitted
their work to the short QoS or

• a warning message is provided to the user stating that
as no time limit has been specified the default will be
applied, and that this default is short (1 hour).

Finally the working directory provided is validated to ensure
that the relevant file system is available on the partition
selected. Where this is not the case a warning message is
provided to the user. Again these tests and actions are logged
to support investigation where necessary.

VI. CPU AND GPU FREQUENCY MANAGEMENT VIA
SLURM

A. CPU Frequency Management

As part of efforts to improve energy efficiency across
services at EPCC an investigation [8] was made of the perfor-
mance of ARCHER2 at a variety of CPU frequencies. From
this investigation it was identified that a number of software
could operate at lower CPU frequency, and therefore power
draw, with only a limited impact to performance. For some
software there was a distinct energy saving - on the order
of 10-15% - with only a moderate impact to performance
of 1-5%. Based upon this information and in the climate
of potential energy cuts due to high demand over Winter
2022/2023, a decision was made to move the default CPU
frequency from 2.25 GHz to 2 GHz to reduce the power draw
of the ARCHER2 service. The default for certain software,
where this would be expected to have an out-sized impact
on performance, was kept at 2.25 GHz. Management of the
CPU frequency was achieved through the use of a Slurm
configuration option. The CPU frequency can be set in Slurm
in one of two ways - via an environment variable or by a direct
option call when submitting your job [9]. For ARCHER2
the application software module environment was modified
such that the following environment variable is set in all user
sessions by default:

export SLURM_CPU_FREQ_REQ=2000000

For those applications where this frequency is not preferable
the frequency is overridden in the relevant software module. In
this way CPU frequency can be assigned on a per-application

basis. Since deployment of this frequency management power
draw savings on ARCHER2 have been on the order of 600
kW or 20% of system power draw.

B. GPU Frequency Management

In order to manage energy use on GPU systems on site
investigations have also been made into managing the fre-
quency of GPUs. Investigations of this on another system on
site identified that Slurm on the system was not built with
support for GPUs, and that it was not possible in the short
term to replace the Slurm version.

In order to provide GPU frequency management logic was
therefore added to the Slurm prolog script [10]. This first
parses the Slurm job parameters which are obtained via an
scontrol command. The desired frequency is then validated to
confirm that it is valid.

In order to set the GPU frequency the Nvidia System
Management Interface (nvidia-smi) is used. Once the desired
frequency has been identified and validated this frequency is
passed to the GPU as follows:

/usr/bin/nvidia-smi -ac $gpuFreqMemory,
$gpuFreq

If no value is provided then a default is passed to nvidia-
smi. The GPU memory frequency for the GPUs in question is
fixed, hence this is not user specifiable.

VII. CONCLUSIONS

We have found that Slurm has allowed us to offer effective
and efficient scheduling across a variety of systems at EPCC,
adapting well to varying system types and diverse user bases.
We consider that this has been enabled by the configurability
and flexibility of Slurm.

We have found that even with a diverse range of systems
with different requirements, levels of heterogeneity and user
bases we have been able to share a significant degree of con-
figuration between systems. This has enabled improvements
deployed to one system to be easily deployed to another.

Finally we have found that automation can considerably
reduce the effort required by systems staff to support Slurm.
Integration with SAFE and Rundeck allows all day-to-day
actions to be automated from the point of user request,
without requiring any intervention by staff. This has offered a
considerable saving in staff workload.

We finally note that Cirrus has been operating successfully
with Slurm since 2020 and that ARCHER2 has been doing
so since 2021. We have been able to maintain high levels of
user satisfaction on both these services and we consider that
the benefits of Slurm described above have made a significant
contribution to this satisfaction.

VIII. FUTURE WORK

We are keen to further develop our Slurm deployments
going forward. Items of interest include:

• Job pre-emption for urgent computing needs
• Deployment of burst-buffer file system access via Slurm

• Automated management of QoS membership and access
on a per-project or per-user basis

We would of course be pleased to engage with other sites
who are using or are interested in using Slurm with HPE
systems.

REFERENCES

[1] https://slurm.schedmd.com/slurm design.pdf
[2] https://slurm.schedmd.com/team.html
[3] https://www.epcc.ed.ac.uk/hpc-services/safe
[4] https://resources.rundeck.com/learning/an-overview-of-rundeck/
[5] https://github.com/EPCCed/Flexible-Slurm-Configuration-for-Large-Scale-HPC/

tree/main/Reservation Tickets
[6] https://github.com/EPCCed/Flexible-Slurm-Configuration-for-Large-Scale-HPC/

blob/main/archer2-slurm-template.conf
[7] https://github.com/EPCCed/Flexible-Slurm-Configuration-for-Large-Scale-HPC/

blob/main/job submit.lua
[8] https://www.archer2.ac.uk/news/2022/12/12/CPUFreq.html
[9] https://docs.archer2.ac.uk/user-guide/energy/

[10] https://github.com/EPCCed/Flexible-Slurm-Configuration-for-Large-Scale-HPC/
blob/main/gpu-frequency-prolog.sh

