
Estimating energy-efficiency in quantum
optimization algorithms

Rolando P. Hong Enriquez
Hewlett Packard Labs

Milpitas, CA USA
rhong@hpe.com

Rosa M Badia
Barcelona Supercomputing Center

Barcelona, Spain
rosa.m.badia@bsc.es

Barbara Chapman
Hewlett Packard Enterprise

New York, NY USA
barbara.chapman@hpe.com

Kirk Bresniker
Hewlett Packard Labs
Milpitas, CA USA

kirk.bresniker@hpe.com

Aditya Dhakal
Hewlett Packard Labs

Milpitas, CA USA
aditya.dhakal@hpe.com

Eitan Frachtenberg
Hewlett Packard Labs
Portland, OR USA

eitan.frachtenberg@hpe.com

Gourav Rattihalli
Hewlett Packard Labs
Milpitas, CA USA

gourav.rattihalli@hpe.com

Ninad Hogade
Hewlett Packard Labs
Ft Collins, CO USA

ninad.hogade@hpe.com

Pedro Bruel
Hewlett Packard Labs
Milpitas, CA USA

bruel@hpe.com

Alok Mishra
Hewlett Packard Labs
Milpitas, CA USA

alok.mishra@hpe.com

Dejan Milojicic
Hewlett Packard Labs
Milpitas, CA USA

dejan.milojicic@hpe.com

Abstract—Since the dawn of Quantum Computing (QC), theo-
retical developments like Shor’s algorithm, proved the conceptual
superiority of QC over traditional computing. However, such
quantum supremacy claims are difficult to achieve in practice
due to the technical challenges of realizing noiseless qubits. In the
near future, QC applications will need to rely on noisy quantum
devices that offload part of their work to classical devices. A
way to achieve this is by using Parameterized Quantum Circuits
(PQCs) in optimization or even machine learning tasks.

The energy consumption of quantum algorithms has been
poorly studied. Here we explore several optimization algorithms
using both, theoretical insights and numerical experiments, to
understand their impact on energy consumption. Specifically,
we highlight why and how algorithms like Quantum Natural
Gradient Descent, Simultaneous Perturbation Stochastic Approx-
imations or Circuit Learning methods, are at least 2× to 4× more
energy efficient than their classical counterparts. Why Feedback-
Based Quantum Optimization is energy-inefficient and how a
technique like Rosalin, could boost the energy-efficiency of other
algorithms by a factor of ≥ 20×.

Index Terms—quantum optimization, circuit learning, shot
optimization, error mitigation, heterogeneous computing, sustain-
ability.

I. INTRODUCTION

A. Quantum Technologies

Even after nearly a century of quantum theory, the race to
practical Quantum Computing (QC) is still in full swing [1].
To minimize decoherence and other errors in QC, popular
technologies like superconducting transmon qubits [3] rely
on extremely low temperatures to fine-tune the manipulation
of the quantum states. Maintaining these low temperatures,
although not directly related to the calculations, is energy-
expensive. Alternative low-temperature QC technologies, or

instance diamond nitrogen vacancy (NV) qubits [4] and pho-
tonic quantum computers [7], are also emerging.

Perhaps one of the most challenging quantum computing
technologies to implement, both theoretically and pragmat-
ically, is topological quantum computer which will use the
elusive Majorana qubits [30]. Although these computers are
mostly theoretical at the moment, the technology to build them
is within reach. While topological quantum computers might
have advantages to solve some problems, their technology as
envisioned today might still be dependent of relatively low
temperatures although this is still an area of active research
[5].

It is too soon to predict how and when these competing
technologies will survive the quantum race. Additionally,
besides the energy spent on cooling systems, we must also
consider the energy requirements of the quantum calculations
themselves. Lastly, besides qubit technologies, algorithmic
choices can also make a difference for sustainability. In fact,
in this work we explore the energetic advantages of quantum
optimization algorithms over classical ones under the current
computing models that implement quantum algorithms as
hybrid workflows on heterogeneous classic/quantum devices.

B. Hybrid Workflows and Quantum Algorithms

The discovery of quantum error correction codes injected
new energy into QC research and development. However, we
are still far from producing fault-tolerant quantum comput-
ers [8]. If the sequence of gates in a quantum circuit (i.e.,
its ”depth”) is anything but short, the propagation of errors
soon renders the calculation useless. Acknowledging these
challenges, the research community has adopted a pragmatic
approach: in the long-term, researchers continue to investigate

the building of precise and scalable quantum computers; in the
short-term, they try to solve practical computational problems
by mixing classical and quantum computers.

One research area is the development of hybrid work-
flow environment that include computations to be executed
in quantum computers and classical supercomputers. These
hybrid environments require dynamic runtimes that optimize
the execution of the applications considering all the computer
resources, both quantum and classical. There are multiple chal-
lenges to solve. First, there is no standard for the development
of quantum applications. Second, it is unclear how to decide
which parts of the application should run in the quantum
system and which in the classical system. Finally, there is no
clear solution to communicating data between the quantum
and classic systems. Concomitantly, the adoption of serverless
technology in heterogeneous quantum/classic computing en-
vironments like IBM Qiskit runtime [11] could enhance the
design flexibility for hybrid workflows and algorithms by fine-
tuning and facilitating the use of these technologies by the
final users [6]. These novelties, however, are still only on the
development roadmap and to the best of our knowledge no
implementation has yet been integrated and/or released in any
mayor quantum computing library.

II. ENERGY CONSUMED IN QUANTUM OPERATIONS

Different quantum technologies should almost necessarily
differ greatly in their power fairly scarce. A full-stack energy
model for superconducting qubits was however described in
a recent thesis [39]. Of practical utility, their final results can
be use to correlate the power consumption to the shape of the
circuit that runs on a QC. Here, shape is the rectangle formed
by the number of qubits (Nqubit) and the depth of the circuit
(Ndepth). The area of the shape Ashape = Nqubit × Ndepth,
is a proxy for the quantum memory used in the calculation.
After estimating the energy consumption per gate the power
consumption of the full circuit can also be estimated [39].

To estimate energy consumption per gate we leverage the
work of Daniel Jaschke and Simone Montangero [40], that
recently discussed green quantum advantage of a few algo-
rithms and hardware platforms and also provided estimates that
enabled computing the energy consumed by different quantum
gate technologies. An estimate for the energy consumed by a
quantum circuit can be written

Ecircuit = (g × r × Psystem) / ωgate, (1)

where g is the number of gates in the circuit, r is the number
of circuit repetitions needed to achieve the required fidelity,
Ppower is the total system power during circuit execution
including cooling, and ωgate is the estimated gate application
frequency. We plugged g = 1, r = 1000, and numbers for
different quantum technologies into Equation 1 to compute
estimates for the energy consumed by Rydberg Atoms and
Superconducting technologies, and we used a different esti-
mate from Jaschke and Montangero [40] to compute estimates
for the Trapped Ion technology. Our estimates for the energy

Quantum Tech. Gate operation energy (J)

Rydberg Atoms ≈ 15× 103

Trapped Ion ≈ 15.0
Superconducting ≈ 0.18

TABLE I
APPROXIMATE ENERGY CONSUMED DURING THE OPERATION OF GENERIC

QUANTUM GATES USING DIFFERENT QUANTUM COMPUTING
TECHNOLOGIES. HARDWARE [40]

q0 : RY (π4) RZ (0.432) • •

q1 : RY (π3) RZ (−0.123) • RY (0.543) •

q2 : RY (π7) RX (0.233)

c : /1
0

��

Fig. 1. Parametrized Quantum Circuit (PQC) used in the experiments.

consumed by a quantum gate using these technologies is
shown in Table II.

These per-gate energy estimates enable the estimation of
the total energy consumed by a quantum circuit using the
superconducting technology. With an estimate of the energy
consumption per gate Eg , the number of qubits Nq , and the
depth Nd of a quantum circuit, we can estimate the circuit
total energy consumption ET by

ET = Eg ×Nq ×Nd. (2)

We can experiment with a small example of the quantum
circuit shown in Figure 1, comprised of 4 parameters that form
two parameterized layers, each containing 2 parameters. The
circuit operates on 3 qubits, involves 12 gates, and has a depth
of 7. Assuming an energy consumption per gate of ≈ 0.18J for
a superconducting quantum computing system, from Table II,
and using Equation 2, the total energy consumption of the
circuit in Figure 1 is ≈ 3.78J . We conducted experiments by
running this circuit on various IBM superconducting quantum
simulators and devices, and we recorded their respective run-
times, as presented in Table II. The total power consumption
per circuit Pcir is written Pcir = ET /Trun, where Trun is
the total runtime on each device, and the power consumption
per gate Pg is written Pg = Pcir/g, where g is the number
of gates on the circuit. The results of these computations are
also shown in Table II.

Device Runtime Power/circuit Power/gate
(s) (W) (W)

ibmq qasm simulator 0.554 6.823 0.569
simulator mps 1.230 3.073 0.256
simulator statevector 0.859 4.400 0.367
ibmq lima 4.441 0.851 0.071
ibmq belem 4.090 0.924 0.077
ibmq quito 4.610 0.820 0.068

TABLE II
POWER CONSUMPTION PER GATE FOR A QUANTUM CIRCUIT SHOWN IN

FIGURE 1 ON VARIOUS IBM SIMULATORS AND DEVICES

We observe in Table II that real quantum devices (such
as IBM’s ibmq_lima, ibmq_belem, and ibmq_quito)
have longer runtimes for quantum circuits than simulators
(such as ibmq_qasm_simulator, simulator_mps, and
simulator_statevector). This could be due to a variety
of factors, including noise, poor connectivity, and a scarcity of
resources. Environmental factors such as temperature fluctu-
ations, magnetic fields, and vibrations cause noise and errors
in real quantum devices. These errors can cause qubits to
lose their quantum state, resulting in inaccurate measurements.
Simulators, on the other hand, lack these environmental factors
and can simulate ideal quantum circuits with perfect qubits.

Furthermore, connectivity between qubits in real quantum
devices is limited by the physical constraints of the device,
which means that operations between qubits that are not
directly connected may require additional operations which
can increase the circuit’s runtime. Simulators quite often
assume complete connectivity between qubits and can perform
operations on any pair of qubits with no extra overhead. Real
quantum devices have limited resources, such as the number
of qubits and operations that can be performed in a single
run. This means that more complex circuits may need to
be broken down into smaller parts, which can lengthen the
circuit’s overall runtime.

The longer runtime of quantum circuits on real devices
compared to simulators is primarily due to the effects of noise,
limited connectivity, and device resources. We also acknowl-
edge that while simulators can provide a faster and more ideal
simulation of quantum circuits, real devices provide a more
accurate representation of the challenges and limitations of
current quantum technology.

III. QUANTUM OPTIMIZATION

One way to capitalize on the strengths of heterogeneous
hardware environments is to reformulate problems of interest
as a variational optimization problem [9]. The intuition is to
offload some of the subroutines to classical computers. This
lowers the requirements for the quantum calculations (e.g.,
circuit depth) and consequently also reduces the error rate, en-
ergy consumption, and overall cost for using quantum devices.
Ideally, we should execute in the quantum computer only the
subroutines that are intractable or hard for classical computers.
In this context, the reformulation of quantum optimization
as a variational problem usually implies that the classical
computer will take care of some form of pre-processing to
parameterize a quantum circuit. The quantum computer will
execute and perform measurements on the quantum circuit.
These measurements will be post-processed and passed to
classical optimizations or machine-learning (ML) algorithms.
Either way, parameters are updated on every iteration to
minimize a cost function [12]. As we discuss in the next few
sections, working with Parametrized Quantum Circuits (PQCs)
allows additional performance improvements in optimization
problems as they are a core element in variational approaches.

The following sections target specific quantum optimization
algorithms and strategies. Although not a complete list by

any means, these algorithms have been selected to reflect
the growing variety of ways in which quantum optimization
algorithms can operate. For each algorithm, we have included
sections for theory and numerical experiments. Our take on
the theoretical background is biased by design to highlight
the reasons for energy-related execution advantages of the
methods. The numerical experiments are intended to display
prototypical use cases of these algorithms and a comparison
with classical counterparts where appropriate. In most cases
these experiments were performed using the code repository
from the PennyLane framework [38] and the IBM qiskit
runtime [10].

A. Quantum Natural Gradient (QN-GD)
1) Theory: Vanilla Gradient Descent (V-GD) aims to mini-

mize a cost as a function of parameters in the Euclidean space.
However, Euclidean geometry might be sub-optimal [35] and
so we find in practice that different parametrizations of the
cost might need different learning rates or step sizes. The
shortcomings of V-GD can be addressed by multiplying the
Euclidean gradient with the Fisher Information Matrix (F).
This procedure transforms V-GD from an optimization in
Euclidean space to another one in the space of the probability
distributions (i.e., the probability distribution of outputs gener-
ated by a certain input). The resulting optimization is known as
natural gradient descent [35]. Working with PQCs has several
implications (e.g., quantum states in Hilbert spaces). Here, the
assumption of Euclidean geometry in the parameter space is
clearly inadequate [36]. As in the classical case, we can fix
this by multiplying the Euclidean gradient, this time with the
Fubini-Study metric tensor (g+), which unsurprisingly reduces
to F in the classical case [37]. This generalization is known
as Quantum Natural Gradient Descent (QN-GD) [26].

Besides increasing the chances of finding the true minima
of the system independently of the parameterization used,
the introduction of QN-GD has implications regarding to the
number of quantum circuit executions and consequently to the
energy spend in these calculations. First let us briefly examine
how V-GD proceeds to better understand the difference with
its quantum version.

V-GD and several other classic optimizations that are cur-
rently used in quantum calculations uses an approach called
parameter-shift rules to evaluate the partial derivatives (i.e., the
gradient). Full derivation of these rules can be found in [27].
In this paper, the authors derived several specific rules. For
simplicity, here we only show an abstract general framework
just to illustrate the point in circuit evaluation.

If we reduce to a case of a single unitary gate U(θi)
that depends on a parameter θi, then a simplified circuit
quantum function that aims to estimate the expected value
of a Hamiltonian H based on the measurement of the random
hermitian observable B could be written as:

H = ⟨ψ|U†(θi)BU(θi)|ψ⟩

Significant work on deriving parameter-shift rules goes first
into expressing the unitary conjugation above as a linear

transformation T acting over B and differentiable in θi, that
is:

U†(θi)BU(θi) = Tθi(B)

∇θiH = ⟨ψ|∇θiTθi(B)|ψ⟩

Lastly, some effort has to be expended on expressing this
gradient as a linear combination of the same transform T but
in two different values for the parameter (e.g., θi+s, θi−s):

∇θiTθi(B) = c[Tθi+s
(B)− Tθi−s

(B)]

where c is a general multiplier and the shift s depends
on the transformation and in general does not need to be
infinitesimal. Ultimately, the last equation also means that to
determine this gradient we need only two quantum circuit
evaluations on the shifted parameters. This is a simplified
case and other parameter-shift rules require additional circuit
evaluations [28].

On the other hand, QN-GD differs from V-GD mainly in
the evaluation of the Fubini-Study metric tensor g+ which has
a set of interesting properties with applications in pure mathe-
matics and quantum physics. However, regarding quantum op-
timization, although the use of g+ is theoretically justified, this
tensor cannot be directly evaluated on quantum hardware and
therefore its implementation relies on several approximations.
Specifically, the library PennyLane [38] implements the block-
diagonal approximation to estimate the Fubini-Study metric
tensor [26].

Formally, we start from a parametrized quantum circuit
U(θ), with the parameters (θ1, θ2, ..., θd) distributed in L cir-
cuit layers. On each layer we can have non-parametrized gates
Nl and parametrized gates Pl(θl) with θl = {θ(l)1 , θ

(l)
2 , ..., θ

(l)
n }

with nl parameters. Then for simplicity, it can be proven that
a block diagonal approximation of the Fubini-Study tensor has
the form:

θ1 θ2 · · · θL

G(1) 0 · · · 0 θ1
0 G(2) · · · 0 θ2
...

...
. . .

...
...

0 0 · · · G(L) θL

Here Gl is a sub-matrix for layer l with dimensions nl×nl.
Gl is a covariance matrix built using the observables measured
after the evaluation of all the previous layers (for details see
[26]). This approximation implies that the number of circuit
evaluations for QN-GD is Neval = 2 × d + L. As we saw
before, for V-GD, this number is simply Neval = 2× d

2) Numerical experiments: We ran numerical experiments
to compare the optimization convergence of V-GD and QN-
GD for two systems. The first simulates a single qubit circuit
and the second represents a generic PQC from Fig. 1.

As expected, the single-qubit calculation converged faster.
For QN-GD we reached convergence with ≈ 250 circuit

Fig. 2. Comparing optimization convergence rates between V-GD and QN-
GD for: (a) a single qubit and (b) the Parametrized Quantum Circuit (PQC)
from Fig. 1.

evaluations for a single qubit and ≈ 500 circuit evaluations
for the PQC. Fig. 2

On the other hand, QN-GD was decisively superior. With
respect to QN-GD, V-GD used 3.2× more circuit evaluations
to optimize a single qubit and 3× more circuit evaluations to
optimize the PQC from Fig. 1.

To estimate the energy-efficiency of QN-GD over V-GD
we could assume that (a) to obtain the expected value of
the cost function we would need to run a quantum circuit
Nshots = 1000 times for every point in Fig. 2, (b) the number
of steps saved would be Nsaved = 550 for the single qubit
and Nsaved = 1000 for the PQC, and (c) that the energy and
power to run these circuits only once can be directly used
or derived from Tables I and II. Then to estimate the energy
savings we simply do Nshots×Nsaved×Energy. These give
us ≈ 3.7×103 J (≈ 6.8 kW) for the PQC and ≈ 100 J (≈ 0.3
kW) for a single qubit (for context, a typical laptop uses ≈
50W).

B. Simultaneous Perturbation Stochastic Approximation
(SPSA)

1) Theory: The parameter-shift rules [27] require two cir-
cuit evaluations around the selected parameter θ1,2d = θ∗d ± s
(using the shift s = π

4 for rotational gates Rx, Ry, Rz). From
here, the partial derivatives (and gradients) used in several
quantum optimization algorithms can be directly obtained.
However, exact gradients are not strictly needed to minimize a
cost function. Gradient approximations can be used as well and
this is the strategy of the method(s) described in this section.
A way to obtain an approximate gradient is using a stochastic
factor δ instead of a fixed analytical shift s. As we will see, this
can have practical advantages. In an optimization that relies
on a parameter vector θ of size p there are two basic ways
to proceed: (1) the stochastic factors can be included for each
element of the parameter vector at the time followed by an
evaluation of the cost function; this path leads to the Kiefer-
Wolfowitz Finite Difference Stochastic Approximation method
(FDSA) [31], (2) the stochastic factors can be included in
every element of the parameter vector at the same time and
the evaluation of the cost function can be done just twice at
the end. This leads to the Simultaneous Perturbation Stochastic
Approximation method (SPSA) [32]. In practice, for quantum
algorithms this means that for FDSA the number of evaluations
of the cost function (circuit executions) scales linearly with p

while for SPSA we only have to evaluate the circuit twice
independently of the size of the parameter vector θ. Besides
this difference, the update rule for these algorithms is similar
to the classical Vanilla Gradient Descent (V-GD):

θ̂k+1 = θ̂k − akĝk(θ̂k)

Where ĝk is the approximate gradient estimated with pa-
rameters θ̂k and ak > 0 is the learning rate.

The approximate gradient can be found with this expression:

ĝki(θ̂k) =
y(θ̂k + ck∆k)− y(θ̂k − ck∆k)

2ck∆ki

Here ∆k = (∆k1,∆k2, ...,∆kp)
T is a p-dimensional ran-

dom perturbation vector. It has been shown that if ∆k is chosen
appropriately, the simultaneous perturbation is just as effective
for optimization as the FDSA approach and can be performed
at the fraction of its computational cost. As we mentioned
in the section about Quantum Natural Gradient Descent (QN-
GD), the introduction of the Fubini-Study metric tensor (gij)
improves upon V-GD by generalizing the restrictions imposed
by an optimization in the Euclidean space of parameters. This
generalization increases the probability of finding a global
minima but is not scalable. gij is a p × p tensor and there-
fore its calculation turns into a computational burden when
performing complex quantum circuits with a large number
of parameterized gates. To alleviate these problems, Quantum
Natural SPSA (QN-SPSA) merges the innovations from both
SPSA and QN-GD by making stochastic approximations of
both the gradient and the Fubini-Study metric tensor [33].

2) Numerical experiments: From the theory section above
we learned that the number of parameters to optimize is
an important part of this method, the circuits used here are
slightly larger than in the previous section on QN-GD. In
particular we used a construct template from the Pennylane
library called qml.StronglyEntanglingLayers based on [34].
In the simplest case, by selecting a circuit that should run
in Nqubits = 4 and Nlayers = 5 we create a circuit with
d = Nqubits×Nlayers×3 = 60 trainable parameters (rotational
gates), and Nqubits × Nlayers = 20 non-trainable parameters
(CNOT gates).

We also now know that the number of gradient or circuit
evaluations (Neval) for V-GD and SPSA differs noticeably. For
V-GD it depends on the number of parameters d, rendering
Neval = 2× d×Nsteps = 120×Nsteps while for SPSA this
number is Neval = 2 × Nsteps independently of the number
of parameters to optimize.

The different convergence rates between V-GD and SPSA
considering the number of circuit executions or evaluations
Neval is shown in Fig. 3. For this case, the scaling dif-
ference considering the number of parameters d is certainly
pronounced (120×). On the other hand, if we consider the
advantage of SPSA to arrive to the same minimized value
of the cost function, then this advantage is 3×. However, it
is to be expected that these gains become more important
as we evaluate circuits with ever larger number of trainable

Fig. 3. Comparing optimization convergence rates between V-GD, and SPSA.

parameters d. All being considered, we can now estimate
the energy savings from using SPSA in the 80 gate circuit
used in this section. Once again we will a number of shots
Nshots = 1000 for every point in Fig. 3, the number of
saved steps from the figure is Nsaved = 400 and we already
described our circuit before as containing a number of gates
Ngates = 80, which we will assume to have identical energy
consumption at any position in the circuit and have energy
consumption values as those reported in tables I and II for
superconducting qubits. The energy we can save by using
SPSA instead of V-GD to optimize our circuit is then ≈ 5.7
kJ (≈ 17.9 kW).

C. Quantum circuit structure learning (Rotosolve and Rotos-
elect)

1) Theory: PQC optimizers often takes advantage of
parameter-shift rules [27]. This neat trick evaluates phase-
shifted expectation values of the circuit and returns the gra-
dient which is used to minimize the cost function (that can
be encoded as a Hamiltonian). Two circuit evaluations per
optimization step are needed to accomplish this. The methods
in this section use a similar phase-shifted strategy but avoid
the gradient calculation. Both Rotosolve and Rotoselect have
a similar theoretical justification [13]. Starting from param-
eterized gates of the form Ud = exp(−i(θd/2)Hd), where
θd ∈ (−π, π] and Hd is a Hermitian unitary operator (i.e., we
are using rotation gates Rx, Ry, Rz). Then, the expected value
of the Hamiltonian as a function of the selected gate, given
that all other parameters and gates are fixed, has a sinusoidal
form: ⟨M⟩θd = A sin(θd + B) + C. The characterization of
the sinusoidal function can be done by estimating the values
of A, B and C which can be derived from sampling the
expected values of the Hamiltonian at specific angles of the
gate. Finally, a closed-form expression for the optimal angle
(the one that minimized the Hamiltonian) can also be found:

θ∗d = θ− π

2
−arctan

(
2⟨M⟩θ − ⟨M⟩θ+π

2
− ⟨M⟩θ−π

2

⟨M⟩θ+π
2
− ⟨M⟩θ−π

2

)
+2kπ

This expression implies that for a selected gate we can
calculate the optimal value analytically (gradient-free) using
three circuit evaluations. Furthermore, as the values for any
of the rotation gates for θd = 0 are identical (Rx(0) =
Ry(0) = Rz(0) = 1) then for circuits with a number of
parameterized gates equal to 1, 2, and 3 we will need 3, 5,
and 7 circuit evaluations respectively. The difference between
Rotosolve and Rotoselect relies only in the scope of the
optimization cycle. If we have fixed gates and we restrict
the optimization to the parameters, the resulting algorithm
is Rotosolve. If for every optimization step we also include
the type of gate (Rx, Ry, Rz), then the resulting algorithm
is Rotoselect. Either way, within each optimization cycle a
greedy approach is followed: for each generated or fixed gate
and every parameter the optimized values are calculated while
leaving all the other parameters and gates fixed. The process
continues until a stopping criterion is met.

2) Numerical experiments: we performed numerical exper-
iments to compare both rotosolve and rotoselect with V-GD.
The algorithms were tested on a toy circuit using only three
qubits each running a single rotational gate at the same time
(Nqubit = 2, Ndepth = 1, Nparameters = 2). In Fig. 4 we
display the optimization of the corresponding Hamiltonian as
a function of circuit evaluations (Neval).

Fig. 4. Comparing optimization convergence rates between V-GD, rotosolve
and rotoselect. We used a simple circuit with two parametrized gates running
on 2 qubits.

As we did in previous sections, we are using parameter-shift
rules [27] for V-GD, that is, we made two circuit evaluations
per circuit. Therefore, V-GD for this small circuit reaches
a minimum after ten optimization steps. For the cases of
rotosolve and rotoselect we reach the minimum in a single
step. This case, however, this means that for rotosolve one
step takes seven circuit evaluations. With such a small number
of optimization steps we would not have understood that
both V-GD and rotosolve were stuck in a local minimum
if not by the implementation of rotoselect. Indeed, rotoselect
reaches a deeper minimum in the cost function by optimizing
also the type of gates to be used (circuit structure learning).
Despite both rotosolve and rotoselect making additional circuit

evaluations per optimization step, both algorithms found equal
or better solutions than V-GD with less than half number
of circuit evaluations overall. That is, in this example, the
new algorithms had an advantage of ≥ 2.6× with respect
to V-GD. The circuit used in this section is fairly small so
the energy savings in absolute values is negligible but we
reported for completion. Assuming as usual a number of shots
Nshots = 1000 and the steps saved from using rotosolve and
rotoselect are respectively 35 and 25. Then the energy savings
of these algorithms with respect to V-GD are ≈ 12 J (≈ 40 W)
and ≈ 9 J (≈ 28) kW, for rotosolve and rotoselect respectively.

D. Frugal shot optimization (Rosalin)

1) Theory: In quantum computing lingo, a shot is a single
execution of a quantum algorithm or circuit in a quantum
device. This idea has become the de-facto metric for pricing
the rental of quantum devices and there are at least two
powerful reasons why this metric is unlikely to disappear.
First, current quantum devices are noisy, which means that
to create the illusion of a logical qubit, the information must
be encoded into several physical qubits using sophisticated
quantum error correction techniques [29]. Depending on the
technology, the number of physical qubits to accomplish this
varies significantly. A promising solution to this problem
could be the implementation of the elusive Majorana qubit
for topological quantum computing [30]. However, even if
a noiseless quantum computing is built, the second reason
for having multiple shots for any calculation is the non-
deterministic nature of quantum computing.

To the best of our knowledge, there is no general formula
or solution to estimate the number of shots required to run
a quantum algorithm to a certain accuracy. Nevertheless, in
this section though we describe a method that can be use to
optimize the number of shots in some optimization problems.
The method is called Random Operator Sampling for Adaptive
Learning with Individual Number of Shots (Rosalin) [14].

Rosalin’s approach to minimize the number of shots starts
by breaking the problem of estimating a cost function that can
be expressed as the expected value of a Hamiltonian C = ⟨H⟩.
The underlying assumption is that our Hamiltonian can be
expanded as the weighted sum of measurable and generally
non-commuting operators {hi}:

H =

N∑
n=1

cihi

In the sense of quantum mechanics, non-commuting oper-
ators represent variables that cannot be simultaneously mea-
sured, such as the classic example of position and momentum
in Heisenberg’s uncertainly principle. The practical implica-
tion is that the expected value of the Hamiltonian can then be
calculated from the expected values of the individual operators
or variables ⟨hi⟩, and that a different number of shots might be
needed (and optimized) for each one of them. Rosalin’s goal
can thus be framed as follows: given a budget of shots, can we
find how to redistribute them on the variables (i.e., sampling

hi) for a maximum impact of every shot while providing an
unbiased estimation of ⟨H⟩? As we will briefly describe below,
Rosalin combines a sampling redistribution strategy with the
core ideas of an adaptive optimizer named individual Coupled
Adaptive Number of Shots (iCANS) [15].

Conceivably, there are several ways in which we could
redistribute the shots to sample the variables ⟨hi⟩, although not
all of them will lead to an unbiased estimation of ⟨H⟩ and its
variance. In [14], the authors describe some of these strategies
in detail, but here we will just list them: (1) Uniform determin-
istic sampling where the shots are equally distributed among
the N variables hi; (2) Weighted deterministic sampling, where
the shots are distributed in proportion to the coefficients ci of
the variables; (3) Weighted random sampling (WRS), a variable
hi will be selected for sampling with probability:

pi =
|ci|∑N
n=1 |ci|

and finally (4) Weighted hybrid sampling (WHS), a com-
bination of (2) and (3) above. It is important to notice that
the first two methods are deterministic and the last two
have at least some stochastic elements. To have any hope
of obtaining unbiased estimators of ⟨H⟩ and its variance, we
should avoid using the deterministic methods by themselves.
The introduction of randomness is the factor that ultimately
allows us to have unbiased estimators with as little as a single
shot in Rosalin. In fact, in [14], the authors used the last
two strategies calling the resulting algorithms Rosalin1 and
Rosalin2 respectively.

We need some additional background to understand the
other main component of Rosalin, which is essentially a slight
modification of iCANS. The starting point to understand is that
shot frugality comes from the study of continuity in smooth
uniform functions. These characteristics are related to the
learning rate (α)used in most optimizations algorithms, most
notably, gradient descent. Generally speaking, if α is selected
to be small, convergence (at least to a local minimum) is
practically guaranteed at the cost of performing a large number
of optimization steps. Ideally, it would be convenient to have
an analytical expression for the open bound of the gradient
as this would help us select a proper learning rate. In [15],
the authors use a strong form of function continuity, named
Lipschitz continuity, to explore these issues. By definition, a
function is Lipschitz-continuous if there is an L (Lipschitz
constant) that fulfills the condition:

∥∇f(θt+1 −∇f(θt))∥ ⩽ L∥θt+1 − θt∥

for all θt+1 and θt and where ∥.∥ is the l2 euclidean norm.
It can be proven that gradient descent converges as long as
α ⩽ 2

L [16]. Crucially, even though L is an unknown property
of the cost function and cannot generally be exploited in
machine learning. For cost functions encoded in the type of
Hamiltonians described in this section we can estimate an
upper bound for L as:

L <

N∑
n=1

|ci|

As we have hinted in other sections (see Quantum Circuit
Learning), analytical solutions can also be found (and L can be
accessed) if the variables of the Hamiltonian are for instance
single qubit rotation gates. In Rosalin, after a first sampling
pass using a small number of shots for each operator hi,
the usual optimization routine is followed—estimation of the
gradient gi and its variance vi using the classic updating rules
to perform a step of gradient descent. But an innovation is
introduced at this point: the estimation of the expected gain
per shot (improvement in ⟨H⟩) for every single operator hi
(or parameter θi). This improvement takes the form:

γi =
1

si

[(
α− Lα2

2

)
g2i −

Lα2

2si
vi

]
For the next iteration we can calculate a new number of

shots si for each operator hi as the number of shots that
maximizes γi:

si =

(
2Lα

2− Lα

)
vi
g2i

Aside from these core features, the algorithm is fine-tuned
with additional heuristics as well as hyper-parameters for
convergence smoothness and regularization.

2) Numerical experiments: If to create a Hamilnonian we
use, for instance, the set of rotational Pauli matrices (X , Y , Z)
as the generators for our operators hi then a valid Hamiltonian
could be:

H = 3I ⊗X + 6I ⊗ Y + I ⊗ Z

With coefficients c = [3, 6, 1]. Following the theory ex-
plained before, it is possible to recreate sampling strategies
for the number of shots on each gate. Besides this toy exam-
ple, the same analysis would be more effective for complex
Hamiltonians with a large number of operators hi.

Fig. 5. Comparing optimization convergence rates between V-GD, the Adam
optimizer and Rosalin.

We performed numerical experiments using a small Hamil-
tonian explicitly expressed using five non-commuting oper-
ators with their coefficient cihi. The resulting circuit has
two qubits and the calculations within the circuit were dis-
tributed in two layers. Following the theory described above
for Rosalin, the cost function build from our Hamiltonian
uses a minimal number of shots Minshots to determine the
expected value for each operator ⟨hi⟩, then monitors how
fast the number of shots si recommended for each operator
hi changes and adapts the recommendations for the next
optimization step accordingly. At each optimization step k,
the expected value of the global Hamiltonian is calculated as
usual; ⟨H⟩k =

∑
ci⟨hi⟩k.

Under equivalent conditions of using the parameter-shift
rule [27] to estimate the parameter gradients, the number
of shots needed for Rosalin to estimate is at least 20 times
shorter than the corresponding number of shots for the Adam
optimizer or V-GD. Energetically, for our small Hamiltonian,
this only means a savings of 18 J (≈ 56 kW). However,
Rosalin’s advantage should be more than 20 times for larger
circuits, and the total energy savings should also scale up
quickly—although here we do not make any strong claims
regarding scalability beyond what seems reasonable to assume
given the theory behind these methods.

E. Combinatorial optimization (FALQON/QAOA)

1) Theory: In this section we describe the basics of two
optimization algorithms: the Quantum Approximate Optimiza-
tion Algorithm (QAOA) [20] and the Feedback-based ALgo-
rithm for Quantum OptimizatioN (FALQON) [21]. These algo-
rithms have similar applications and theoretical backgrounds.
Particularly, a deeper understanding of the relationship be-
tween Hamiltonians and quantum circuits is needed. The
motivation for this relationship comes from both directions,
theory and implementation, and appears complementary. On
one side, all but the simplest quantum systems evolve in time
and are therefore dynamic; here we might be interested in
mapping physical reality to quantum calculations. On the other
hand, to solve certain optimization problems, it might be useful
to think of a quantum circuit as a time-dependent physical
Hamiltonian.

Although for the general case the of a complex Hamiltonian
to an efficient quantum circuit remains more an art than a
science a lot of progress has been made characterizing some
of the building blocks of these mappings. The success of
these constructs relies in understanding that the time evolution
is the link that allows the generation of quantum circuits
from Hamiltonians. Plainly stated, even a circuit gate can be
seen as an implementation of time evolution under a well-
crafted Hamiltonian. That is, a gate is a transformation of the
input state described by a unitary time evolution operator that
depends explicitly on the Hamiltonian (H) and a scalar time
t (although t can be substituted by a generic scalar γj):

U(H, t) = e−iHt/ℏ = e−iγjH

In principle, using these newly defined gates to build larger
circuits for generic Hamiltonians with many non-commuting
terms should be a simple task:

H = H1 +H2 +H3+, ...,+HN

In practice, this is an NP-hard problem because of the
exponential growth of the Hilbert space with the size of
U(H,t) [17]. Additionally, current quantum computers are still
too noisy [18] and it is desirable to keep the circuit depth as
shallow as possible. These limitations currently impose circuit
generation based on approximate time evolution operators that
can be derived using the Trotter-Suzuki (or Lie) formulas [19].
In the simplest forms, this Trotterization mechanism states that
for m × m real or complex matrices A and B this formula
holds:

eA+B = lim
n→∞

(eA/neB/n)n

The approximation to the exact Hamiltonian then can be
written as:

U(H, t, n) =

n∏
j=1

∏
k

e−iγjH/n

where H =
∑

kHk and U approaches to the exact solution
e−iγjH as n grows to N .

One last piece of theory needed for these algorithms comes
from quantum Lyapunov control methods [22], which aim to
identify ways to control the dynamics of a quantum system
using feedback loops. To use this framework, we can imagine
encoding the solution to our optimization in a cost Hamiltonian
Hc and ”drive” its expected value to a minimum using another
Hamiltonian Hd. That is H = Hc + β(t)Hd, where the time-
dependent term β(t) is a control equation that tries to capture
the ”driving/drifting” strategy. Ideally, we want to create a
procedure that minimizes monotonically the expected value
of the cost Hamiltonian ⟨Hc⟩ = ⟨ψ(t)|Hc|ψ(t)⟩ by choosing
β(t) such as:

d

dt
⟨ψ(t)|Hc|ψ(t)⟩ ≤ 0,∀t

There is ample flexibility to choose β(t) to satisfy these
constraints. An iterative approach is by selecting:

d

dt
⟨ψ(t)|Hc|ψ(t)⟩ = A(t)β(t)

A(t) = ⟨i[Hc, Hd]⟩t
β(t) = −A(t)

Which gives us one strictly decreasing minimization of the
cost Hamiltonian by design:

d

dt
⟨ψ(t)|Hc|ψ(t)⟩ = −|⟨i[Hc, Hd]⟩t|2 ≤ 0

It can be shown that a Trotterization of these [Hc, Hd]
Hamiltonians can take the shape:

U(T) = e−iβnHd∆te−iHc∆t, ..., e−iβ1Hd∆te−iHc∆t

= Ud(βn)Uc, ..., Ud(β1)Uc,

We can see each term Ud(βk)Uc with k = 1, 2, 3, ..., l as a
layer in a quantum circuit. Each layer requires a βk, which in
FALQON is obtained from the previous layer: βk+1 = −Ak.
Additionally, by manipulating ∆t, the algorithm can alter-
nate the execution of Ud and Uc in the same layer. These
features allow us to make estimations of ⟨Hc⟩ that improve
monotonically with the evaluations of additional layers in the
quantum circuit. Therefore, FALQON does not need external
(classical) optimization algorithms; everything happens in the
quantum device. On the other hand, QAOA introduces an
additional set of parameters in the cost Hamiltonian. A layer
in QAOA then looks like Ud(βk)Uc(γk). The optimization in
QAOA, that now can be expressed as the minimization of
⟨ψ(β⃗, γ⃗)|Hc|ψ(β⃗, γ⃗)⟩, happens simultaneously by an external
classic optimizer over the 2l parameters β⃗ = (β1, β2, ..., βl)
and γ⃗ = (γ1, γ2, ..., γl). Therefore, despite using similar
equations, QAOA is fundamentally different from FALQON.

Besides the implications of these two strategies for the
number of circuit evaluations, QAOA seems to be more likely
to get trapped in local minima than FALQON. Certainly,
facilitated by their similar theoretical background, both ap-
proaches can complement each other when solving complex
optimization problems.

2) Numerical experiments: Although both QAOA and
FALQON can be applied to a variety of optimization problem,
they are both usually found in the context of the Maximum Cut
problem (MAX-CUT) in network theory. We run numerical
experiments to measure execution differences between QAOA
and FALQON running on a MAX-CUT problem with a small
network of five nodes.

Fig. 6. Minimization of the energy cost for a MAX-CUT problem on a five
node network using QAOA, FALQON and a combination of both algorithms.

The results of the optimizations for this use case are not
completely unexpected given the theoretical background on
both methods. QAOA is a well-known optimization proce-
dure, but Fig. 6 shows that it can be suboptimal in finding

the global minimum of the cost function. While for simple
networks, this is less likely to happen, for complex networks
getting trapped in local minima rapidly becomes a liability.
Regarding energy consumption though, QAOA uses quantum
devices for the evaluation of the cost function and any other
classically implemented optimization method to estimate the
gradients, which means that it can be implemented with two
circuit evaluations per training parameter per optimization step
when using parameter-shift rules [27]. This is energetically
convenient for small quantum circuits but as we saw (see
SPSA section), it scales badly with the number of parameters.

In contrast to QAOA, FALQON seems to be relentless in
the search for the global minima, but it comes at a cost. While
it avoids using classical devices and optimization algorithms
altogether, it relies on the execution of circuits with increasing
size at every step. Therefore, the energy consumption per
step increases with every circuit evaluation instead of been
constant like QAOA. It is, however, energetically efficient in
that FALQON avoids the communication overhead between
quantum and classical devices but the energy savings related
to this are difficult to estimate.

Ignoring the overhead of the communication between clas-
sical and quantum devices, we can still estimate the energy
consumption of the purely quantum calculation. For instance,
a circuit with 25 gates performing five optimization steps will
consume 22.5kJ (≈ 70 kW) in QAOA and 45kJ (≈ 140
kW) in FALQON. These numbers clearly show that FALQON
can rapidly grow disadvantageous if its performance is not
monitored carefully. For large optimization projects, it might
be preferable to estimate or benchmark the consumption of
both methods and use a combination of them as shown in
Fig. 6. That effort would include, for instance, short runs
of the energy-consuming FALQON algorithm to start the
optimization or whenever we get trapped in a local minima,
and longer runs of QAOA to minimize the cost function at
relatively low energy consumption per step. Fig. 6 shows that
this strategy is likely to outperform both individual methods
while compromising on energy efficiency.

F. Differentiable quantum transforms (DQTs)

1) Theory: In this section, we describe one strategy for
quantum error mitigation implemented under the powerful
framework of differentiable quantum transforms (DQTs) [23].
The idea of differentiation is commonplace in optimization and
machine learning. DQTs provide a useful abstraction to differ-
entiation and is implemented in the PennyLane library [23],
[38]. In previous sections we have already used differentiation
in the context of PQCs. That is, if we view a PQC as a
quantum function or quantum program S with m parameters
θ = (θ1, θ2, ..., θm) then we simply say that S is differentiable
if dS/dθi is defined for every possible value of each θi.
The parameter-shift rules [27] that we have already used to
calculate partial derivatives in previous sections explicitly take
advantage of the differentiability of PQCs. In this context,
differentiation itself is a function transform in the sense that
takes as input a function with differentiable variables θ (i.e.,

PQC or f(θ)) and returns another function, the derivatives
(g(θ) = ∇f(θ)). Now a transform T could also have n
parameters τ = (τ1, τ2, ..., τn). A DQT is a function that
preserves the differentiability of its transformation while itself
being differentiable (dT /dτi is defined for all τi). Addition-
ally, DQTs are composable; that is, if T and U are DQTs
then V = T · U is also a DQT. This composability property
facilitates the use of complex transformations in quantum
computing. Here we use one application of DQTs relevant
to quantum optimization: error mitigation.

Contemporary quantum computing requires programmers to
be able to work with noisy devices [18]. Therefore, to obtain
precise results, quantum calculations will necessarily have to
be backed by some form of error-mitigation techniques. Ide-
ally, experts should have coding access to low-level hardware
control. For instance, by manipulating the pulse duration on
each gate, programmers could study noise scaling and re-
calibrate the gates of superconducting qubit devices. However,
such level of access is rarely made available to programmers;
but even if it was available, programmers would still need
expert knowledge of the underlying physics in those devices.
In this sense the manipulation of noise at gate or circuit level
and DQTs able to facilitate these studies are truly valuable
today.

In the framework of DQTs, error mitigation is a transform
M that reduces the noise of a quantum function f∗(θ) giving
as output a mitigated function f̃(θ) which is closer to the exact
noiseless quantum function f(θ), that is:

f∗(θ) 7−→ f̃(θ) ≃ f(θ)

To be useful, M should still ensure that the resulting
mitigated function is differentiable (df̃(θ)/dθ should exist for
all values of θ). One such error mitigation transforms is Zero
Noise Extrapolation (ZNE) [24].

The basic idea of ZNE is to increase the noise in a quantum
calculation in a controlled and scalable way, collect data along
the way, and subsequently extrapolate back to estimate the
expected value of the calculation at zero noise level. We can
start by defining the expected value of a quantum calculation
at noise level λ as E(λ). If λ = 1 is the current noise of
the quantum calculation and λ = 0 is the ZNE we want to
estimate, then we first need to find ways to scale noise (and
measure E(λ)) for λ > 1. Although in principle, this can be
done by correlating λ with any physical measure of noise in
the system (e.g., temperature), in practice ZNE is implemented
using a trick called unitary folding.

If U is a unitary matrix (e.g., or gate, layer, circuit) then
we can replace U by U(UU†)n. Because UU† = I. The
expected value of the calculation does not change but the
number of physical operation in the device scales as 1+2n and
the noise should scale accordingly. Further theoretical details
and numerical experiments on noise scaling and extrapolation
methods to achieve ZNE are developed in [24].

2) Numerical experiments: To evaluate the noise control,
our simulations were performed on a Hamiltonian that repre-
sents a quantum version of the Ising model:

H = −J

(∑
⟨i,j⟩

ZiZj + g
∑
j

Xj

)

Here, the observables (Zi, Xi) can be represented as
rotational Pauli gates, while J and g are arbitrary energy
and coupling factors respectively. The Ising model (even the
quantum version) is one of the simplest systems for which
analytic solutions have been derived. These solutions therefore
can be evaluated directly (red dashed line in Fig. 7) and
estimated by optimization algorithms if the Hamiltonian is
mapped to a parameterized quantum circuit.

Fig. 7. Circuit optimizations highlighting the effect of the Zero Noise
Extrapolation (ZNE) error mitigation technique.

Besides giving us access to ideal and noiseless quantum
computing simulators, the library PennyLane [38] also allow
us to create ad hoc noisy channels using a choice of noise
types and a specified noise level. These noise channels can
then be added to an ideal device to simulate noisy qubits or
channels. Additionally, Pennylane has an implementation of
the error mitigation technique known as Zero Noise Extrapo-
lation (ZNE [24]) explained in the theory section above. ZNE
can be then applied to our modelled noisy device to mitigate
the errors during a calculation and obtain result that closely
resemble those obtained on actual quantum devices.

In Fig. 7 we show runs using the classical Adam optimizer
while trying to find the ground state of our Ising model. The
Adam optimizer ran purely on classical devices (CPU) while
the evaluation of the cost function was performed on quantum
simulators with different noise levels roughly categorized as
noisy, mitigated, and ideal. The runs show that, while the
noise-mitigated device closely follows the ideal one, the value
of the cost function never reaches the exact analytical solution.
Only the ideal device is able to converge to the analytical
solution. Similar results were obtained using V-GD as classical
optimizer only that the convergence to the exact solutions by
the ideal device took more optimization steps.

Although it seems obvious that error-mitigation techniques
like ZNE should have a significant impact on the energy-
efficiency of quantum optimization, unlike the other cases we
explored in this article, this effect is difficult to quantify. We
performed longer simulations using both the Adam optimizer
and V-GD (not shown) and in both cases, the noiseless
device eventually found the exact solution, but both the noisy
and error-mitigated devices converged at different values of
the cost function. We suggest that ZNE’s energy-efficiency
contributions to quantum optimization require additional in-
vestigations.

IV. DISCUSSION

In this study we explored the potential for energy-efficiency
advantages in quantum optimization algorithms with respect
to their classical counterparts. We also explored the impact of
other techniques aimed to improve specific problems affecting
quantum optimizations, such as the reduction of the number
of circuit evaluations (shots) while preserving reasonable es-
timates of the cost Hamiltonian’s expected value and the use
of error mitigation techniques during these calculations.

We approached the topic by first exploring the limited
literature on the energetic profile of quantum computation.
We supported the findings in this section with additional
estimates of energy consumption in both simulators and quan-
tum devices. Although Table I reports the energy consump-
tion for several technologies, in practice we only used the
values corresponding to superconducting qubits since they
are widespread in the platforms and libraries used in this
paper (IBM quantum devices and the Pennylane library). We
extended energy estimates from gates to a small quantum
circuit that was executed on several simulators and devices
(Table II). These experiments provided a baseline for the
variability of quantum energy evaluations in a single device
and also between different quantum devices. The same basic
assumptions for energy consumption were then extended to
other sections of the paper describing numerical experiments
with different optimization algorithms.

We also attempted to describe the theoretical basis of
each algorithm presented here, highlighting those features
with practical consequences for their energy-efficiency. For
instance, algorithms can differ in the number of quantum
circuit evaluations per optimization step they need. While
trying to account for different approaches, some common
features that can be directly linked to energy-efficiency can
be understood by analyzing the theory. Compromises between
minimization of cost function and energy efficiency appear
commonplace for several algorithms. For instance, QN-GD
needs more circuit evaluations per step than V-GD and there-
fore appears disadvantaged energetically. However, QN-GD
more than compensates for this disadvantage by searching
better for the global minimum. That is, while QN-GD executes
more circuit evaluations per optimization step, it needs fewer
steps to find the minimum and ends up saving energy. The
ultimate reason for the improved optimization efficiency in
QN-GD is the introduction of a factor (the Fubini-Study metric

tensor) that generalizes the geometry of the parameter search
space. For other algorithms, however, we observed that while
the reason for the advantage might differ (e.g., introduction
of gradient approximations for SPSA, gate optimization for
rotoselect, etc.), the effect is similar to that described for
QN-GD. However, We should notice that in some cases such
as with the FALQON algorithm, the energy efficiency can
fade rapidly if the global minimum is not found in relatively
few steps. While FALQON has the advantage of performing
its optimization purely in a quantum device, the number of
layers in the circuit grows at every iteration and therefore
each circuit evaluation becomes energetically more expensive.
As the problem to be optimized grows in scale (e.g., MAX-
CUT in ever-larger networks), it would be advisable to use
a combination of both FALQON and QAOA to exploit both
the relatively high search efficiency of FALQON and energy-
efficiency of QAOA.

Finally, we performed numerical experiments to gather
some practical evidence of energy efficiency using these
algorithms. For the most part, our numerical experiments
support the expectations behind the theoretical basis of these
algorithms. Additionally, these experiments provide examples
of the energy gains we can expect from the use of one
algorithm over the other.

While most of the optimization algorithms explored here
seem to be approximately between 2× to 4× more energy-
efficient than their classical counterparts (except FALQON),
it is general techniques like Rosalin (with ≥ 20× gains) and
potentially ZNE that show real promise in this regard.

In this contribution we tried to explore quantum optimiza-
tion algorithms and techniques with as much methodological
variety as possible. The rationale was to highlight different
strategies that are being actively developed specifically for
quantum computations. This was not trivial task, and we
could not accommodate other algorithms such as those using
specialized gates [41], techniques to escape barren plateaus
during optimization [42] or using the quantum analytic de-
scent technique to build approximate classical models of the
quantum landscape [25], just to name a few.

Finally, it is also important to recognize that our exploration
of these topics has been greatly facilitated by the code base,
demos, papers, and development communities of both Penny-
lane [38] and IBM quantum [10].

V. CONCLUSION

In this paper we explored the implications for energy-
efficiency of quantum optimization algorithms. We reviewed
the existing literature regarding the energy consumed in
quantum computing operations and performed simulations to
estimate power-based measures for both a toy circuit and
a generic superconducting qubit. Subsequently, we explored
both theoretically and numerically quantum optimization al-
gorithms and related techniques. While providing numerical
examples of energy (and power) savings for each case we
determined that some of the algorithms (QN-GD, SPSA, roto-
solve/rotoselect) are between 2× to 4× more energy-efficient

than their classical counterparts. A notable exception was
FALQON, an algorithm that unlike the others, does not use
classical devices and has energy-consuming growing circuits
on each iteration. Rosalin, a technique that can be applied to
any other optimization algorithm, showed the greatest energy-
efficiency potential, with at least ≥ 20× more energy saved
per minimization step. This improvement can be achieved by
optimizing the number of shots (repetitions) needed to esti-
mate the expected value of the cost function. Error-mitigation
techniques like ZNE, while general and clearly effective, need
additional study to assess their impact on energy consumption.

REFERENCES

[1] Gibney, E. Quantum computer race intensifies as alternative technology
gains steam. Nature. 587 pp. 342-343 (2020,11)

[2] Aboy, M., Minssen, T. & Kop, M. Mapping the Patent Landscape
of Quantum Technologies: Patenting Trends, Innovation and Policy
Implications. IIC - International Review Of Intellectual Property And
Competition Law. 53, 853-882 (2022,7), https://doi.org/10.1007/s40319-
022-01209-3

[3] Koch, J., Yu, T., Gambetta, J., Houck, A., Schuster, D., Majer, J., Blais,
A., Devoret, M., Girvin, S. & Schoelkopf, R. Charge-insensitive qubit
design derived from the Cooper pair box. Phys. Rev. A. 76, 042319
(2007,10), https://link.aps.org/doi/10.1103/PhysRevA.76.042319

[4] Childress, L. & Hanson, R. Diamond NV centers for quantum computing
and quantum networks. MRS Bulletin. 38, 134-138 (2013)

[5] Shumiya, N., Hossain, M.S., Yin, JX. et al. Evidence of a
room-temperature quantum spin Hall edge state in a higher-
order topological insulator. Nat. Mater.. 21, 1111–1115 (2022),
https://doi.org/10.1038/s41563-022-01304-3

[6] Grossi, M., Crippa, L., Aita, A., Bartoli, G., Sammarco, V., Picca, E.,
Said, N., Tramonto, F. & Mattei, F. A Serverless Cloud Integration For
Quantum Computing. (arXiv,2021), https://arxiv.org/abs/2107.02007

[7] Bourassa, J., Alexander, R., Vasmer, M., Patil, A., Tzitrin, I., Mat-
suura, T., Su, D., Baragiola, B., Guha, S., Dauphinais, G., Sabapa-
thy, K., Menicucci, N. & Dhand, I. Blueprint for a Scalable Pho-
tonic Fault-Tolerant Quantum Computer. Quantum. 5 pp. 392 (2021,2),
https://doi.org/10.22331/q-2021-02-04-392

[8] Bravyi, S., Dial, O., Gambetta, J., Gil, D. & Nazario, Z. The future of
quantum computing with superconducting qubits. Journal Of Applied
Physics. 132, 160902 (2022),https://doi.org/10.1063/5.0082975

[9] Moll, N., Barkoutsos, P., Bishop, L., Chow, J., Cross, A., Egger,
D., Filipp, S., Fuhrer, A., Gambetta, J., Ganzhorn, M., Kandala, A.,
Mezzacapo, A., Müller, P., Riess, W., Salis, G., Smolin, J., Tavernelli,
I. & Temme, K. Quantum optimization using variational algorithms
on near-term quantum devices. Quantum Science And Technology. 3,
030503 (2018,6), https://dx.doi.org/10.1088/2058-9565/aab822

[10] Qiskit contributors Qiskit: An Open-source Framework for Quantum
Computing. (2023), 10.5281/zenodo.2573505

[11] IBM-Quantum Qiskit-extensions/quantum-serverless: A programming
model for leveraging quantum and classical resources. GitHub.,
https://github.com/Qiskit-Extensions/quantum-serverless

[12] Benedetti, M., Lloyd, E., Sack, S. & Fiorentini, M. Parameterized quan-
tum circuits as machine learning models. Quantum Science And Tech-
nology. 4, 043001 (2019,11), https://doi.org/10.1088/2058-9565/ab4eb5

[13] Ostaszewski, M., Grant, E. & Benedetti, M. Structure optimization
for parameterized quantum circuits. Quantum. 5 pp. 391 (2021,1),
https://doi.org/10.22331/q-2021-01-28-391

[14] Arrasmith, A., Cincio, L., Somma, R. & Coles, P. Operator Sam-
pling for Shot-frugal Optimization in Variational Algorithms. (2020)
https://doi.org/10.48550/arXiv.2004.06252

[15] Kübler J.M., Arrasmith, A., Cincio, L., & Coles, P. An Adaptive
Optimizer for Measurement-Frugal Variational Algorithms. Quantum.
4 263 (2020) https://doi.org/10.22331/q-2020-05-11-263

[16] Balles, L., Romero, J. & Hennig, P. Coupling Adaptive Batch Sizes with
Learning Rates. Thirty-Third Conference on Uncertainty in Artificial
Intelligence (UAI) (2017), https://doi.org/10.48550/arXiv.1612.05086

[17] Khaneja, N. & Glaser, S. Cartan Decomposition of SU(2n), Constructive
Controllability of Spin systems and Universal Quantum Computing.
(2000), https://doi.org/10.48550/arXiv.quant-ph/0010100

[18] Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum4
79 (2018), https://doi.org/10.22331/q-2018-08-06-79

[19] Dhand, I. & Sanders, B. Stability of the Trotter–Suzuki decomposition.
Journal Of Physics A: Mathematical And Theoretical. 47, 265206
(2014,6),https://doi.org/10.1088/1751-8113/47/26/265206

[20] Farhi, E., Goldstone, J. & Gutmann, S. A Quantum Approximate Opti-
mization Algorithm. (2014), https://doi.org/10.48550/arXiv.1411.4028

[21] Magann, A., Rudinger, K., Grace, M. & Sarovar, M. Feedback-
Based Quantum Optimization. Physical Review Letters. 129 (2022,12),
https://doi.org/10.1103/PhysRevLett.129.250502

[22] Cong S., Meng, F.A Survey of Quantum Lyapunov Control Meth-
ods. The Scientific World Journa. Article ID 967529 (2013),
http://dx.doi.org/10.1155/2013/967529

[23] Matteo, O., Izaac, J., Bromley, T., Hayes, A., Lee, C., Schuld, M., Száva,
A., Roberts, C. & Killoran, N. Quantum computing with differentiable
quantum transforms. (2022), https://doi.org/10.48550/arXiv.2202.13414

[24] Giurgica-Tiron, T., Hindy, Y., LaRose, R., Mari, A. & Zeng, W. Digital
zero noise extrapolation for quantum error mitigation. 2020 IEEE Inter-
national Conference On Quantum Computing And Engineering (QCE).
pp. 306-316 (2020), https://doi.org/10.1109/QCE49297.2020.00045

[25] Koczor, B. & Benjamin, S. Quantum analytic descent. Physical Review
Research. 4 (2022,4),https://doi.org/10.1103/PhysRevResearch.4.023017

[26] Stokes, J., Izaac, J., Killoran, N., Carleo, G. Quantum Natural Gradient.
Quantum. 4 pp. 269 (2020,5), https://doi.org/10.22331/q-2020-05-25-
269

[27] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J. & Killoran, N. Eval-
uating analytic gradients on quantum hardware. Physical Review A. 99
(2019,3),https://doi.org/10.1103/PhysRevA.99.032331

[28] g, D., Izaac, J. Wang C. & Yen-Yu Lin C. General
parameter-shift rules for quantum gradients. Quantum. 6, 677
(2022),https://doi.org/10.22331/q-2022-03-30-677

[29] Roffe, J. Quantum error correction: an introductory
guide. Contemporary Physics. 60, 226-245 (2019,7),
https://doi.org/10.1080/00107514.2019.1667078

[30] Aguado, R., Kouwenhoven L. Majorana qubits for topological
quantum computing Physics Today. 73, 44 (2020,6),
https://doi.org/10.1063/PT.3.4499

[31] Kiefer, J., Wolfowitz. Stochastic Estimation of the Maximum of a
Regression Function. The Annals of Mathematical Statistics. 23(3),
462–466. (1952),http://www.jstor.org/stable/2236690

[32] Spall, J. Multivariate stochastic approximation using a simultaneous
perturbation gradient approximation. IEEE Transactions On Automatic
Control. 37, 332-341 (1992)

[33] Gacon, J., Zoufal, C., Carleo, G. & Woerner, S. Simultaneous Pertur-
bation Stochastic Approximation of the Quantum Fisher Information.
Quantum. 5 pp. 567 (2021,10), https://doi.org/10.22331/q-2021-10-20-
567

[34] Schuld, M., Bocharov, A., Svore, K. & Wiebe, N.
Circuit-centric quantum classifiers. Physical Review A. 101
(2020,3),https://doi.org/10.1103/PhysRevA.101.032308

[35] Amari, S. Natural Gradient Works Efficiently in
Learning. Neural Computation. 10, 251-276 (1998,2),
https://doi.org/10.1162/089976698300017746

[36] Yamamoto, N. On the natural gradient for variational quantum eigen-
solver. (arXiv,2019), https://arxiv.org/abs/1909.05074

[37] Mondal, D. Generalized Fubini-Study Metric and Fisher Information
Metric. (arXiv,2015), https://arxiv.org/abs/1503.04146

[38] Bergholm et al. PennyLane: Automatic differentiation
of hybrid quantum-classical computations. (arXiv,2018),
https://arxiv.org/abs/1811.04968

[39] Fellous-Asiani, M. The resource cost of large scale quantum computing.
(arXiv,2021), https://arxiv.org/abs/2112.04022

[40] Jaschke, D. and Montangero, S. Is quantum computing green? An
estimate for an energy-efficiency quantum advantage. Quantum Science
and Technology. (2022)

[41] Wiersema, R., Lewis, D., Wierichs, D., Carrasquilla, J. & Killoran,
N. Here comes the SU(N): multivariate quantum gates and gradients.
(2023), https://doi.org/10.48550/arXiv.2303.11355

[42] Grant, E., Wossnig, L., Ostaszewski, M. & Benedetti, M. An initial-
ization strategy for addressing barren plateaus in parametrized quantum
circuits. Quantum. 3 pp. 214 (2019,12), https://doi.org/10.22331/q-2019-
12-09-214

