
Early Experiences on the OLCF Frontier System
with AthenaPK and Parthenon-Hydro

John K. Holmen
Oak Ridge Leadership Computing Facility

Oak Ridge National Laboratory
Oak Ridge, USA

holmenjk@ornl.gov

Philipp Grete
Hamburg Observatory
University of Hamburg

Hamburg, Germany
pgrete@hs.uni-hamburg.de

Verónica G. Melesse Vergara
Oak Ridge Leadership Computing Facility

Oak Ridge National Laboratory
Oak Ridge, USA

vergaravg@ornl.gov

Abstract—The Oak Ridge Leadership Computing Facility
(OLCF) has been preparing the nation’s first exascale system,
Frontier, for production and end users. Frontier is based on
HPE Cray’s new EX architecture and Slingshot interconnect and
features 74 cabinets of optimized 3rd Gen AMD EPYC CPUs for
HPC and AI and AMD Instinct 250X accelerators. As a part of
this preparation, “real-world” user codes have been selected to
help assess the functionality, performance, and usability of the
system. This paper describes early experiences using the system
in collaboration with the Hamburg Observatory for two selected
codes, which have since been adopted in the OLCF Test Harness.
Experiences discussed include efforts to resolve performance
variability and per-cycle slowdowns. Results are shown for a
performance portable astrophysical magnetohydronamics code,
AthenaPK, and a mini-application stressing the core function-
ality of a performance portable block-structured adaptive mesh
refinement (AMR) framework, Parthenon-Hydro. These results
show good scaling characteristics to the full system. At the largest
scale, the Parthenon-Hydro miniapp reaches a total of 1.7×1013

zone-cycles/s on 9,216 nodes (73,728 logical GPUs) at ≈ 92%
weak scaling parallel efficiency (starting from a single node using
a second-order, finite-volume method).

Index Terms—Adaptive Mesh Refinement, Performance Porta-
bility, High-Performance Computing, Parallel Computing

I. INTRODUCTION

Leadership-class high performance computing (HPC) sys-
tems are featuring increasingly more hardware, in particular,
GPU accelerators. For example, the petascale U.S. Depart-
ment of Energy (DOE) Titan supercomputer featured 18,688
AMD Opteron CPUs and 18,688 NVIDIA K20X GPUs
across 18,688 nodes and the DOE Summit supercomputer,
Titan’s successor, features 9,360 IBM POWER9 processors
and 28,080 NVIDIA V100 GPUs across 4,680 nodes. Among
forthcoming exascale systems, the DOE Frontier system fea-
tures 9,408 nodes with 9,408 AMD “Optimized 3rd Gen
EPYC” CPU processors and 37,632 AMD MI250X GPUs and

Notice of copyright: This manuscript has been authored by UT-Battelle,
LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of
Energy. The United States Government retains and the publisher, by accepting
the article for publication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or
reproduce the published form of this manuscript, or allow others to do so, for
United States Government purposes. The Department of Energy will provide
public access to these results of federally sponsored research in accordance
with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-
access-plan).

the DOE Aurora system will feature >20,000 Intel Xeon Max
CPUs and >60,000 Intel PVC GPUs across >10,000 nodes.

The increasing size of these systems poses challenges for
those preparing such systems for production and end users
due to the increasing number of potential points of failure.
Among challenges to consider are hardware resiliency and
performance variability [1]. These challenges require greater
attention to detail when working to ensure the functionality,
performance, and usability of such leadership-class systems as
a part of acceptance testing.

An important part of acceptance testing is code selection.
For effective testing, it is desirable that selected codes are
representative of those anticipated to be run on the system.
An approach taken by the Oak Ridge Leadership Computing
Facility (OLCF) as a part of Frontier acceptance testing to help
ensure representativeness has been to collaborate with past
users who plan to use the new system. Such collaborations are
beneficial to both parties and helpful for selecting more “real-
world” codes making diverse use of the system’s software
stack. For the OLCF, this helps identify issues sooner. For
the user, this helps achieve scientific discoveries sooner.

This paper describes early experiences using the pre-
production DOE Frontier supercomputer in collaboration with
the Hamburg Observatory for two selected codes, which have
since been adopted in the OLCF Test Harness [2]. Experiences
discussed include efforts to resolve performance variability
and per-cycle slowdowns. Results are shown for a performance
portable astrophysical magnetohydronamics code, AthenaPK,
and a mini-application stressing the core functionality of a
performance portable block-structured adaptive mesh refine-
ment (AMR) framework, Parthenon-Hydro. These results show
good scaling characteristics to the full Frontier system. At the
largest scale, the Parthenon-Hydro miniapp reaches a total of
1.7×1013 zone-cycles/s on 9,216 nodes (73,728 logical GPUs)
at ≈ 92% weak scaling parallel efficiency (starting from a
single node using a second-order, finite-volume method). Note,
zone-cycles/s is a measure of raw performance corresponding
to the number of mesh cells updated per second.

The remainder of this paper is structured as follows. Section
II provides background discussion. Section III describes the
applications used. Section IV describes the scaling studies
conducted. Section V describes performance variability issues

and resolutions. Section VI describes system testing efforts.
Section VII concludes this paper.

II. BACKGROUND

A. Frontier

Frontier is an exascale supercomputer maintained at the
OLCF. Frontier is currently Number 1 on November 2022’s
Top500 list with an High-Performance Linpack (HPL) score
of 1.102 EFlop/s [3]. The system is comprised of 9,408 HPE
Cray EX235a nodes, each with one 64-core AMD EPYC
7A53 “Optimized 3rd Gen EPYC” CPU and four AMD
MI250X GPUs, each with 2 Graphics Compute Dies (GCDs).
Figure 1 shows the node architecture. Each compute node has
512 GB of DDR4 memory and 512 GB of high-bandwidth
memory (HBM2E), 64 GB per GCD. The CPU is connected
to the GPUs via AMD’s Infinity Fabric which delivers a
bandwidth of 36+36 GB/s. All GCDs on a Frontier node are
interconnected via Infinity Fabric delivering up to 50+50 GB/s
for GCDs across GPUs, and up to 200+200 GB/s for GCDs on
the same GPU. Compute nodes on Frontier are interconnected
via HPE’s Slingshot 11 interconnect. Note, a GCD is referred
to as a logical GPU for the remainder of this paper.

B. The OLCF Test Harness

The OLCF Test Harness [5] (OTH) is an open-source,
python-based framework used to orchestrate acceptance testing
for the OLCF’s pre-production systems. The OTH was initially
introduced in 2007 [6] and was used for acceptance testing
of each Jaguar [7] upgrade, which brought the system from
25 teraflops in 2005 to more than 1 petaflop in 2008. This
framework was designed to closely mimic the activities per-
formed by real users of HPC systems. These activities include
building a scientific application, generating a batch script,
submitting the batch script to the job scheduler, and verifying
application results after the job completes. The framework is
also able to simulate the execution of “real-world” production
workloads that fully occupy an HPC system for an extended
period of time using a diverse set of applications. More details
on the requirements, design, structure, and evolution of the
framework can be found in a recent article [5].

The OLCF Test Harness is available on GitHub [2] with
contributions welcome and encouraged.

C. Parthenon

Parthenon [8] is a performance portable block-structured
adaptive mesh refinement framework whose roots go back
to the host-only Athena++ [9] code. Performance portability
in Parthenon is achieved through an intermediate abstraction
layer that exposes a simplified interface to Kokkos [10] and
is tailored to the ease of use by Parthenon (or downstream
code) developers. Key features of Parthenon include a flexible,
plug-in package system with dependencies (e.g., to logically
separate solvers), abstract variables including “sparse” ones
that may not need to be allocated on the entire mesh (e.g., to
reduce memory consumption in multi-material simulations),

particles, and multi-stage integrators with support for task-
based parallelism.

From a performance point of view, the most relevant design
decisions in Parthenon include a device-first approach (i.e.,
work data is only allocated in device memory and only trans-
ferred between host-device for IO), using asynchronous, one-
sided MPI communication directly between device buffers,
and transparent packing of data across blocks (to increase
work size within kernels and reduce launch latency). The
latter is controlled by the pack_size runtime parameter that
determines how many blocks are logically packed in a larger
data container. Based on past experience, the default value
of pack_size=-1, indicating to create only a single pack
containing all blocks belonging to a rank, resulted in the best
performance for many application scenarios when running on
GPUs.

The combination of those features allows for a flexible
(though not necessarily non-trivial) configuration of runtime
parameters that affect the overall performance of an identical
simulation depending on the machine characteristics and scale.
For example, an overdecomposition of the entire mesh in more
than one block per rank allows for overlapping computation
and computation. However, this changes various performance-
critical parameters at the same time such as total number
of messages exchanged, individual message sizes, or the
“distance” of messages (i.e., rank-local, node-local, and inter-
node). In addition, the logical block packing also affects
performance as messages associated with a buffer-filling kernel
can only be sent once the entire kernel is done. Therefore,
there exists a trade-off between the number of buffers filled
in a single kernel and the total work inside that kernel. These
characteristics are explored in more detail in Sec. V.

Parthenon is a collaborative project developed on
GitHub [11] with contributions welcome and encouraged.

In addition to AthenaPK and Parthenon-hydro described in
the following two subsections, other downstream codes on top
of Parthenon exist such as phoebus [12], RIOT, and KHARMA
based on the iharm3d code [13].

D. AthenaPK
AthenaPK (Athena-Parthenon-Kokkos), the successor of K-

Athena [14], is a general purpose (astro)physical magneto-
hydronamics code which serves as a performance-portable
(through Kokkos use), AMR-capable (through Parthenon use)
conversion of Athena++. It implements the hydrodynamics
solvers from Athena++ and supplemented them with a di-
vergence cleaning magnetohydrodynamics solver. The code
is used for simulations of magnetized galaxy clusters with
feedback from active galactic nuclei, cloud crushing in galactic
outflows, and magnetohydrodynamic turbulence.

AthenaPK is available on GitHub [15] with contributions
welcome and encouraged.

E. Parthenon-Hydro
Parthenon-Hydro is a minimal implementation of algorithms

solving the Euler equations. It is a ∼1400 line C++ mini-
application whose main purposes are to illustrate use of

Fig. 1. Frontier node architecture [4]. Note, NICs are directly connected to the GPUs in contrast to earlier systems like Summit.

various Parthenon features combined in practice as well as
to serve as an external integration and performance test.
The mini-application supports 1D, 2D, and 3D compressible
hydrodynamics on uniform and (static and adaptive) multi-
level meshes.

Parthenon-Hydro is available on GitHub [16] with contri-
butions welcome and encouraged.

III. TEST SETUP

All tests were conducted using the linear_wave prob-
lem generator that is implemented in both AthenaPK and
Parthenon-Hydro. It allows a user to initialize various types
of linear (magneto)hydrodynamic waves, e.g., an acoustic
wave, that travels through the domain at an angle, i.e., not
aligned with any mesh direction. This setup has multiple
properties that are well-suited for testing. For example, the
work per cell (i.e., also per block as a fixed block size is
used) is constant across the entire mesh allowing for an easy
distribution of work across devices and a predictable wallclock
time per cycle. Similarly, the simulation timestep per cycle is
effectively constant making deviations (e.g., from erroneous
MPI messages) easy to spot at a high level. Likewise, given the
known analytic solution to the evolution, error norms can be
calculated to verify the correctness of the numerical solution
(and its convergence). Finally, the simplicity of the setup
allows for a straightforward modification of mesh and block
sizes in combination with performance critical parameters like
the number of blocks contained in a pack (i.e., handled jointly
in a single kernel).

IV. SCALING STUDIES

Weak-scaling studies were performed on Frontier for both
AthenaPK and Parthenon-Hydro. These studies used 8 MPI
processes per node to provide 1 MPI process for each logical

GPU on node. For both applications, problems were scaled
such that each logical GPU used a 5123 uniform, static mesh
with block and mesh sizes adjusted to use a large portion
of the available high-bandwidth memory (HBM2E). Here, a
block corresponds to a unit of work submitted to the GPU for
execution.

Figure 2 shows the weak-scaling results for AthenaPK for
different numerical methods (requiring different amounts of
work per block and different amounts of data to be com-
municated) and different block decompositions. In all cases,
weak scaling efficiencies are ≳ 90% going from one to
9,216 Frontier nodes (73,728 logical GPUs). However, some
subtle differences are already visible in the outliers (points)
of the box plots. For both combinations of numerical methods
(simple in the left two columns and more complex in the right
two columns of Fig. 2) the test case using a single pack of four
blocks (of size 128 × 5122 cells each) showed significantly
more outliers (points in the box plot) at larger (100+) node
counts than the test case using two packs each containing one
256× 5122 block, cf., first and third panel versus second and
fourth panel of Fig. 2. In the former case, a larger number
of MPI messages are put on the network simultaneously as
MPI_Start is called for all communication buffers of all
blocks in a single pack effectively simultaneously. This is
already a first indication of the interconnect related perfor-
mance variability presented and discussed in the following
Sec. V. In the best case, AthenaPK achieved a total of
5.4 × 1012 zone-cycles/s (3.4 × 1012) for a second (third)-
order, finite-volume magnetohydrodynamics method with 89%
(91%) scaling efficiency across 8,192 Frontier nodes (65,536
logical GPUs) using a block size of 256 × 512 × 512 and a
pack size of 1.

Similar weak-scaling results are shown for Parthenon-Hydro
in Fig. 3 for varying block sizes. 1.7×1013 zone-cycles/s (for

108

zo
ne

-c
yc

le
s/

s/
no

de

100 102 104

nodes

0.0

0.5

1.0
pa

ra
lle

l e
ff.

HLLE/PLM: nghost=2
block: 128x512x512
pack_size=-1

100 102 104

nodes

HLLE/PLM: nghost=2
block: 256x512x512
pack_size=1

100 102 104

nodes

HLLD/PPM: nghost=3
block: 128x512x512
pack_size=-1

100 102 104

nodes

HLLD/PPM: nghost=3
block: 256x512x512
pack_size=1

Fig. 2. AthenaPK weak-scaling performance from 1 to 9,216 Frontier nodes. Top panels show a box plot over 50 cycles with the boxes being so compact
that they are not visible. Individual points are boxplot outliers. Bottom panels show the corresponding parallel efficiency. The two left columns use a simpler
numerical method (HLLE Riemann solver with piecewise linear, PLM, reconstruction) and the right two columns a more complex method (HLLD Riemann
solver with piecewise parabloic, PPM, reconstruction require one more ghost cell layer to be communicated). Each logical GPU handled 5123 cells split into
either one pack (pack_size=-1) of four 128× 5122 blocks or two packs containing one 256× 5122 block each.

1.2 × 109

1.4 × 109

1.6 × 109
1.8 × 109

2 × 109

zo
ne

-c
yc

le
s/

s/
no

de

100 101 102 103 104

nodes

0.0

0.5

1.0

pa
ra

lle
l e

ff.

block: 128x512x512
pack_size=1

100 101 102 103 104

nodes

block: 256x512x512
pack_size=1

100 101 102 103 104

nodes

block: 512x512x512
pack_size=1

Fig. 3. Parthenon-Hydro weak-scaling performance from 1 to 9,216 Frontier nodes. Same plot type as Fig. 2. Here, the pack_size is fixed to 1, i.e., there
are as many independent packs as there are blocks on each logical GPU: four blocks of 128 × 5122 cells, two blocks of 256 × 5122 cells, and one 5123

block, respectively, from left to right.

a second-order, finite volume hydrodynamics method) were
achieved with 92% scaling efficiency across 9,216 Frontier
nodes (73,728 logical GPUs) using a block size of 5123 and a
pack size of 1, but in all cases the parallel efficiency remained
≳ 90% up to 9,216 Frontier nodes.

Overall, these results for AthenaPK and Parthenon-Hydro
are encouraging as this is among the largest number of logical
GPUs that both applications have been run across. Additional
weak- and strong-scaling results for these applications and
cross-system comparisons can be found in a recent article [8].

V. PERFORMANCE VARIABILITY

During strong-scaling studies with AthenaPK, random per-
cycle performance slowdowns were observed. Figure 5 shows
the magnitude of slowdowns for a problem using a 10243

uniform, static mesh strong-scaled from 8 to 512 Frontier
nodes. The likelihood of per-cycle slowdowns increases as the
node count increases with individual cycles being ≳ 100×
slower than expected at the largest scale. Moreover, different
performance characteristics seem to emerge. For example,
while for 8, 64, and 128 nodes slower cycles are not clustered,
multiple clusters exist in the 256 nodes case spreading over
several tens of cycles between 90-100 % of peak performance.

At 512 nodes, bands of cycles exist at the 35 % level indicating
a significant loss in performance (in addition to the extreme
cases of ≲ 1%).

To better understand these differences, a series of exper-
iments were performed across 1024 Frontier nodes using a
16384×8192×8192 uniform, static mesh. These experiments
explored different block sizes, numbers of blocks per logical
GPU, numbers of blocks per pack, and numbers of packs
per logical GPU. The block size impacts the total number of
MPI messages being sent (and their size). For smaller block
sizes more messages of smaller sizes (on average) need to be
exchanged whereas for larger blocks fewer, larger messages
are being sent. In the extreme case of using a single block
per device only, one message is being sent/received to/from
each of the 26 neighboring blocks. The number of blocks per
pack implicitly impacts the number of messages being put on
the network simultaneously. More specifically, a single pack
translates to filling all communication buffers with all blocks
in a single kernel and then calling MPI Start back-to-back for
all communication buffers. Having more than one pack allows
for data of the first pack to be already sent while the other
buffers are being filled.

Figure 5 shows the per-cycle performance for these experi-

0 200
cycle

0.0

0.2

0.4

0.6

0.8

1.0

zc
s/

m
ax

(z
cs

)

8 nodes

0 1000 2000
cycle

64 nodes

0 2000 4000
cycle

128 nodes

0 2000 4000
cycle

256 nodes

0 1000 2000
cycle

512 nodes

Fig. 4. AthenaPK per-cycle performance (in normalized zcs, zone-cycles per seconds) in a strong-scaling setup (10243 mesh) from 8 to 512 Frontier nodes.

ments. The first three top panels compare the per-cycle perfor-
mance for a block size of 1283 (i.e., 64 blocks per GCD) split
into 1, 64, and 2 packs, respectively. When using few packs (1
or 2) the performance of individual cycles peaks at 1.9×1012

zone-cycles/s but their median value is only 0.5 × 1012 zcs.
In contrast, using 64 packs, i.e., one pack per block, the
performance is consistent at 1.4×1012 zcs. Given the identical
number of messages (and their sizes) in all three cases, these
per-cycle performance variations are a strong indicator that the
number of messages being put on the network simultaneously
is a significant performance concern at these scales on Frontier.
This also aligns with the results for block sizes of 128× 5122

split into a single pack (top right panel of Fig. 5) or four packs
(bottom left panel). Again in the former case where more
messages are being sent/received simultaneously, per-cycle
variations between 0.5–2.1 × 1012 zcs are observed whereas
in the latter case the performance is effectively constant. This
constancy in performance also applies to the test cases with
blocks of 256× 5122 and 5123 cells, for which fewer (larger
on average) messages are being exchanged by construction.

In general, using 4 or more blocks per pack resulted in
greater variation and using 1 block per pack resulted in the
most consistent performance. The run configuration that best
balanced peak performance and performance variability was
a block size of 5123, a block count of 1 per logical GPU, a
block count of 1 per pack, and a pack count of 1 per logical
GPU. In other words, an overdecomposition of the mesh in
more blocks than devices is currently not recommended on
Frontier. Similar past tests on different machines with similar
architecture, e.g., the JUWELS Booster with four Nvidia A100
GPUs with direct connection to four NICs, did not show any
significant variations.

In addition to AthenaPK parameter tuning, experiments
were also performed with Parthenon-Hydro to explore the
impact of the MPICH RANK REORDER METHOD envi-
ronment variable on performance. This environment variable
is used to specify various types of MPI rank placement and has
4 options: (1) round robin rank ordering, which is specified
by setting the environment variable to 0, (2) SMP style
rank ordering, which is specified by setting the environment

variable to 1, (3) folded rank ordering, which is specified
by setting the environment variable to 2, and (4) a custom
user-defined rank ordering, which is specified by setting the
environment variable to 3.

For (1), the first rank is on the first node, the second rank
is on the next node, and so on, until all nodes have one rank,
then the next rank after that is on the next available core on
the first node. For (2), ranks are placed consecutively until the
node is filled up, then on to the next node. For (3), ranks are
populated down the node list like (1) but then the next ranks
are populated back up the node list in reverse order.

Using Parthenon-Hydro, experiments were performed across
128 Frontier nodes to examine the impact of each rank order
method. The fold method was found to have the most positive
impact on runs, dropping an MPI Allreduce bottleneck from
18.4% to 4.1% and dropping execution time from 12.1 seconds
to 9.5 seconds while also smoothing per-cycle consistency.
More details on MPICH RANK REORDER METHOD can
be found on the Blue Waters User Portal [17].

VI. SYSTEM TESTING

A. Code Selection
Code selection is an important part of system testing.

The OLCF has found selecting user codes helpful for their
ability to stress interesting third-party library combinations
while making “real-world” use of a system. AthenaPK and
Parthenon-Hydro were strategically chosen to be added to the
OTH for a variety of reasons. A primary reason has been
that these codes have successfully demonstrated large-scale
performance portability across various leadership-class HPC
systems [8]. The codes achieve this by making effective use
of the Kokkos performance portability layer at scale. This is of
particular interest to the OLCF due to the widespread use of
Kokkos among Exascale Computing Project codes [18]. Other
reasons include that the code is well documented, easy to
build, run, and scale, and the developer community is friendly
and supportive.

B. Test Design
Frontier system tests fall in two basic categories: (1) large-

scale tests and (2) “every node” tests. Large-scale tests tend to

0 10 20 30 40
cycle

0.5

1.0

1.5

2.0

zo
ne

-c
yc

le
s/

s
 [1

012
]

block: [128 128 128]
 blocks per GCD: 64
 blocks per pack: 64

packs per GCD: 1

0 10 20 30 40
cycle

block: [128 128 128]
 blocks per GCD: 64
 blocks per pack: 1
packs per GCD: 64

0 10 20 30 40
cycle

block: [128 128 128]
 blocks per GCD: 64
 blocks per pack: 32

packs per GCD: 2

0 10 20 30 40
cycle

block: [128 512 512]
 blocks per GCD: 4
 blocks per pack: 4
packs per GCD: 1

0 10 20 30 40
cycle

0.5

1.0

1.5

2.0

zo
ne

-c
yc

le
s/

s
 [1

012
]

block: [128 512 512]
 blocks per GCD: 4
 blocks per pack: 1
packs per GCD: 4

raw data
median
mean

0 10 20 30 40
cycle

block: [256 512 512]
 blocks per GCD: 2
 blocks per pack: 2
packs per GCD: 1

0 10 20 30 40
cycle

block: [256 512 512]
 blocks per GCD: 2
 blocks per pack: 1
packs per GCD: 2

0 10 20 30 40
cycle

block: [512 512 512]
 blocks per GCD: 1
 blocks per pack: 1
packs per GCD: 1

Fig. 5. AthenaPK per-cycle performance across 1024 Frontier nodes. The mesh size was fixed to 16384 × 8192 × 8192 and block size, block count, and
pack count were varied.

target 1/8, 1/4, 1/2, and full system use with scales in between
stressed as needed. “Every node” tests are based on single-
node tests and used to launch a collection of individual single-
node jobs across the system.

“Every node” tests are a new type of test added to the OTH
for Frontier acceptance testing. An example of an “every node”
test is launching 9,408 single-node AthenaPK tests across
Frontier in a single job. Running in this manner has been
helpful for isolating “bad” nodes and node failures. These
tests have been valuable for their ability to quickly pinpoint
problematic nodes in the system.

C. Early Challenges

When initially designing “every node” tests, issues were
encountered with individual AthenaPK cycle-steps performing
orders of magnitudes slower than others. Figure 6 shows
an example of these performance differences. Upon further

0.00

5.00

10.00

15.00

20.00

25.00

0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00 900.00

Cy
cl

e-
St

ep
 T

im
e

(s
)

Run Time (s)

Output to a Single Directory

Fig. 6. Sample AthenaPK ”every node” test performance (in wallclock
seconds per cycle) of a random node when using a single directory on the
shared file system as the run directory for all nodes.

investigation, it was discovered that the manner in which the
code checks for a manual output trigger was the source of the

slowdowns. Specifically, during runtime rank 0 checks once
per cycle for the existence of a file called output_now in the
run directory. While this is no issue for large scale simulation
as only a single rank performs the check, it caused problems
for the “every node” tests that were originally all launched
within the same run directory located on a shared file system.
In the most extreme case, the stat() system call would be
called several 10,000× per second on the same file (more than
one call per second from each of the 9,408 ranks) resulting in
significant delays. Shifting to use of individual run directories
for per-node tests resolved the slowdowns. Figure 7 shows an
example of the resulting performance.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0.00 100.00 200.00 300.00 400.00 500.00 600.00

Cy
cl

e-
St

ep
 T

im
e

(s
)

Run Time (s)

Output to Per-Node Directories

Fig. 7. Sample AthenaPK ”every node” test performance (in wallclock
seconds per cycle) of a random node when using individual run directories
on the shared file system for all nodes.

VII. CONCLUSIONS

The increasing size of leadership-class HPC systems poses
challenges for those preparing such systems for production
and end users. When working to ensure the functionality,
performance, and usability of such leadership-class systems,
code selection is an important part of acceptance testing. An
approach taken by the OLCF as a part of Frontier acceptance

testing to help ensure the representativeness of selected codes
has been to collaborate with past users who plan to use the
new system.

This paper described early experiences using the pre-
production ORNL’s exascale Frontier system in collabora-
tion with the Hamburg Observatory for two selected codes,
which have since been adopted in the OLCF Test Harness.
Experiences discussed included efforts to resolve performance
variability and per-cycle slowdowns. Results were shown
for a performance portable astrophysical magnetohydronamics
code, AthenaPK, and a mini-application stressing the core
functionality of a performance portable block-structured adap-
tive mesh refinement (AMR) framework, Parthenon-Hydro.
These results showed good scaling characteristics to the full
Frontier system. At the largest scale, the Parthenon-Hydro
mini-application reached a total of 1.7×1013 zone-cycles/s on
9,216 nodes (73,728 logical GPUs) at ≈ 92% weak scaling
parallel efficiency (starting from a single node using a second-
order, finite-volume method).

For the OLCF, next steps include continuing to extend
Frontier’s test coverage by identifying similar opportunities
to collaborate with users. A specific goal of this effort is to
identify codes using various performance portability libraries
to extend coverage of performance portability layers such
as Kokkos [10], OCCA [19], RAJA [20], and SYCL [21] /
DPC++ [22] on Frontier. For the Hamburg Observatory, next
steps include science runs on Frontier targeting magnetized
plasma jets from active galactic nuclei. Moreover, a more
detailed evaluation of the ordering of filling buffers and
sending messages (e.g., by effective distance, i.e., rank-local,
node-local, or inter-node) and decoupling the global block
packing from a communication related packs (to optimize raw
compute and communication separately) is planned.

ACKNOWLEDGMENT

The authors would like to thank the Parthenon and Kokkos
communities for being open, approachable and supportive.
The authors would also like the thank the OLCF for early
access to Frontier. This research used resources of the Oak
Ridge Leadership Computing Facility, which is a DOE Of-
fice of Science User Facility supported under Contract DE-
AC05-00OR22725. This project has received funding from the
European Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Skłodowska-Curie grant agreement
No 101030214.

REFERENCES

[1] P. Sinha, A. Guliani, R. Jain, B. Tran, M. D. Sinclair, and S. Venkatara-
man, “Not all gpus are created equal: characterizing variability in large-
scale, accelerator-rich systems,” arXiv preprint arXiv:2208.11035, 2022.

[2] OLCF. (2023) Olcf test harness. [Online]. Available:
https://github.com/olcf/olcf-test-harness

[3] E. Strohmaier, J. Dongarra, H. Simon, and M. Meuer. (2022) November
2022 — TOP 500. Https://top500.org/lists/top500/2022/11/.

[4] OLCF. (2023) Frontier user guide - olcf user documentation. [Online].
Available: https://docs.olcf.ornl.gov/systems/frontier user guide.html

[5] V. G. V. Larrea, M. J. Brim, A. Tharrington, R. Budiardja, and
W. Joubert, “Towards acceptance testing at the exascale frontier,” in
Proceedings of the Cray User Group 2020 conference, 2020.

[6] A. Tharrington, “An overview of nccs xt3/4 acceptance testing,” in
Proceedings of the Cray User Group 2007 conference, 2007.

[7] A. S. Bland, W. Joubert, R. A. Kendall, D. B. Kothe, J. H. Rogers, and
G. M. Shipman, “Jaguar: The world’s most powerful computer system–
an update,” Cray Users Group, 2010.

[8] P. Grete, J. C. Dolence, J. M. Miller, J. Brown, B. Ryan, A. Gas-
par, F. Glines, S. Swaminarayan, J. Lippuner, C. J. Solomon et al.,
“Parthenon—a performance portable block-structured adaptive mesh
refinement framework,” The International Journal of High Performance
Computing Applications, p. 10943420221143775, 2022.

[9] J. M. Stone, K. Tomida, C. J. White, and K. G. Felker, “The athena++
adaptive mesh refinement framework: Design and magnetohydrody-
namic solvers,” The Astrophysical Journal Supplement Series, vol. 249,
no. 1, p. 4, 2020.

[10] C. Trott, D. Lebrun-Grandie, D. Arndt, J. Ciesko, V. Dang, N. Elling-
wood, R. Gayatri, E. Harvey, D. S. Hollman, D. A. Ibanez et al.,
“Kokkos 3: Programming model extensions for the exascale era,” IEEE
Transactions on Parallel and Distributed Systems, 2021.

[11] Parthenon Collaboration. (2023) Parthenon. [Online]. Available:
https://github.com/parthenon-hpc-lab/parthenon

[12] Miller, Jonah and Ryan, Ben and Dolence, Josh and Roberts, Luke.
(2023) phoebus. [Online]. Available: https://github.com/lanl/phoebus

[13] B. S. Prather, G. N. Wong, V. Dhruv, B. R. Ryan, J. C.
Dolence, S. M. Ressler, and C. F. Gammie, “iharm3d: Vectorized
general relativistic magnetohydrodynamics,” Journal of Open Source
Software, vol. 6, no. 66, p. 3336, 2021. [Online]. Available:
https://doi.org/10.21105/joss.03336

[14] P. Grete, F. W. Glines, and B. W. O’Shea, “K-athena: a performance
portable structured grid finite volume magnetohydrodynamics code,”
IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 1,
pp. 85–97, 2020.

[15] Parthenon Collaboration. (2023) Athenapk. [Online]. Available:
https://github.com/parthenon-hpc-lab/athenapk

[16] ——. (2023) Parthenon-hydro. [Online]. Available:
https://github.com/parthenon-hpc-lab/parthenon-hydro

[17] NCSA. (2022) Blue waters user portal - topology considera-
tions. [Online]. Available: https://bluewaters.ncsa.illinois.edu/topology-
considerations

[18] T. M. Evans, A. Siegel, E. W. Draeger, J. Deslippe, M. M. Francois,
T. C. Germann, W. E. Hart, and D. F. Martin, “A survey of software
implementations used by application codes in the exascale computing
project,” The International Journal of High Performance Computing
Applications, vol. 36, no. 1, pp. 5–12, 2022.

[19] D. S. Medina, A. St-Cyr, and T. Warburton, “Occa: A unified approach
to multi-threading languages,” arXiv preprint arXiv:1403.0968, 2014.

[20] R. D. Hornung and J. A. Keasler, “The raja portability layer: overview
and status,” Lawrence Livermore National Laboratory (LLNL), Liver-
more, CA, Tech. Rep., 2014.

[21] M. Rovatsou, L. Howes, and R. Keryell,
“Khronos Group SYCL 2020 Specification,” 2019,
https://www.khronos.org/registry/SYCL/specs/sycl-2020/pdf/sycl-
2020.pdf.

[22] J. Reinders, B. Ashbaugh, J. Brodman, M. Kinsner, J. Pennycook, and
X. Tian, Data Parallel C++: Mastering DPC++ for Programming of
Heterogeneous Systems using C++ and SYCL. Springer Nature, 2021.

