

Early Experiences on the OLCF Frontier System with AthenaPK and Parthenon-Hydro

John K. Holmen, Oak Ridge National Laboratory

Philipp Grete, Hamburg Observatory, University of Hamburg Verónica G. Vergara Larrea, Oak Ridge National Laboratory

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

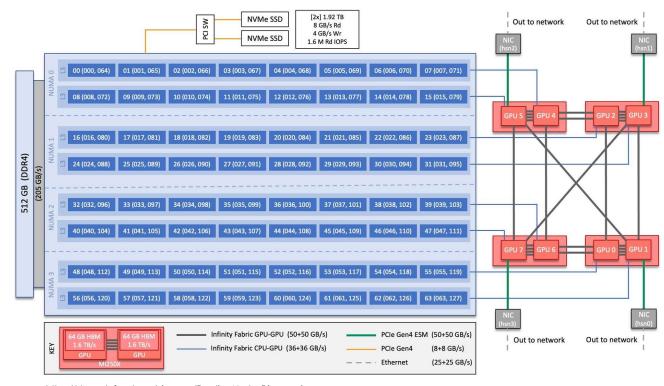
Motivation

- Nation's first exascale system, Frontier, is being prepared for production and end users
- Acceptance testing critical for ensuring functionality, performance, and usability
- Code selection is important
- Talk captures early experiences on Frontier with two selected codes
 - AthenaPK and Parthenon-Hydro

https://www.flickr.com/photos/olcf/52117623843/in/album-72177720299483343/

Frontier

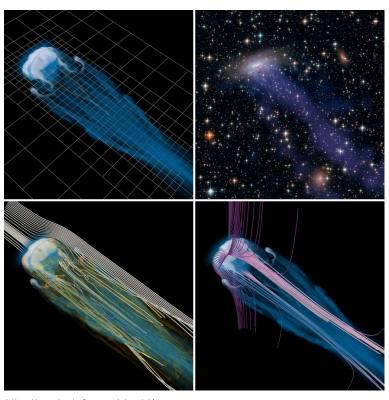
- Frontier consists of 9,408 HPE Cray EX235a nodes
 - One 64-core AMD EPYC 7A53 CPU and four AMD MI250X GPUs per node
 - 512 GB of DDR4 memory and 512 GB of high-bandwidth memory per node
- Interconnected via HPE's Slingshot
- Lustre file system, Orion, with 679 PB usable namespace
- #1 on November's Top500 List



https://www.flickr.com/photos/olcf/52117623763/in/album-72177720299483343/

Frontier Node Configuration

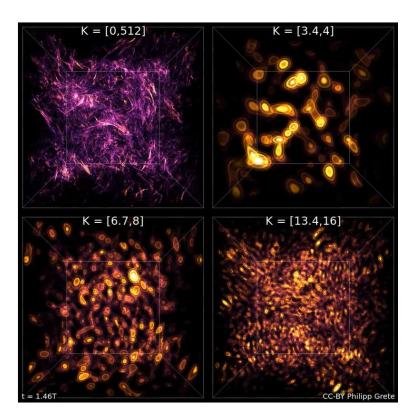
- 8x L3 cache regions each spanning 8x cores
- 8x GCDs each mapped to an L3 cache region
- 4x NUMA domains per node
- 2x L3 cache regions per NUMA



https://docs.olcf.ornl.gov/_images/Frontier_Node_Diagram.jpg

AthenaPK

- AthenaPK is an astrophysical magnetohydronamics (MHD) code
 - https://arxiv.org/abs/2202.12309
- MHD is the study of the dynamics of electrically conducting fluids
 - e.g., plasmas, liquid metals
- AthenaPK has been used to simulate:
 - magnetized galaxy clusters
 - cloud crushing in galactic outflows
 - magnetohydrodynamic turbulence



https://pgrete.de/images/cloud_l.jpg

AthenaPK

- AthenaPK combines Athena++ with Parthenon and Kokkos
 - https://github.com/parthenon-hpclab/athenapk
- Parthenon is an adaptive mesh refinement framework
 - https://github.com/parthenon-hpclab/parthenon
- Kokkos is a performance portability layer
 - https://github.com/kokkos/kokkos

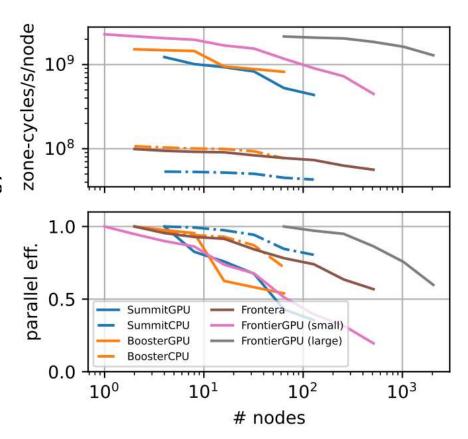
https://pgrete.de/dl/vids/Shell_Decomposition-Grete_et_al_2017_PoP.mp4

Parthenon

- Performance portable block-structured adaptive mesh refinement framework
 - Originates from Athena++
 - Performance portable via Kokkos
- Achieves performance by:
 - Device-first approach for data,
 - Packing of data across blocks to hide launch latency, and
 - Device-to-device communication via asynchronous, one-sided MPI
- Available on GitHub with contributions welcomed:
 - https://github.com/parthenon-hpc-lab/parthenon

Parthenon-Hydro

- Parthenon is a finite volume, compressible hydrodynamics sample implementation (i.e., miniapp) using Parthenon
- 1,400 lines of C++ showing use of Parthenon interfaces
 - Serves as an external integration and performance test
- Supports 1D, 2D, and 3D compressible hydrodynamics on uniform and (static and adaptive) multi-level meshes
- Available on GitHub with contributions welcomed:
 - https://github.com/parthenon-hpc-lab/parthenon-hydro


Kokkos

- C++ library enabling portable, thread-scalable code optimized for CPU, GPU, and MIC architectures
 - Back-ends to models such as CUDA, OpenMP, HIP, and SYCL
- Provides abstractions to control:
 - how/where kernels are executed,
 - where data is allocated, and
 - how data is mapped to memory
- Enables performance portability
- Developers remain responsible for writing performant code

 *OAK RIDGE
 National Laboratory

Large-Scale Simulation

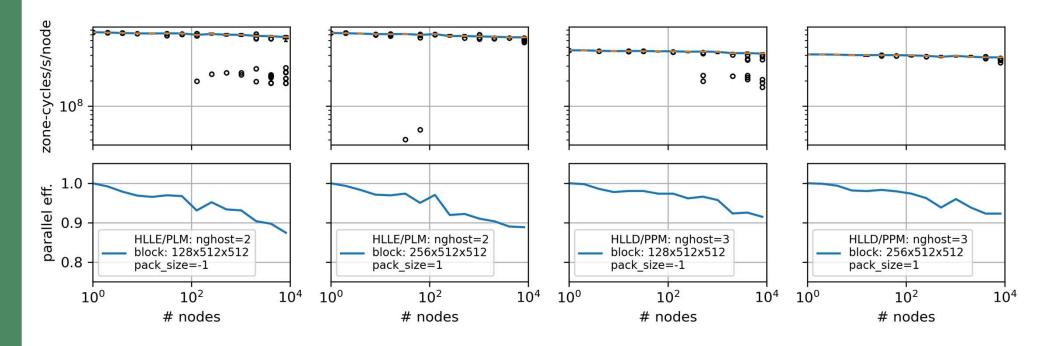
- Codes target large-scale simulation across diverse systems
- Demonstrated scalability across leadership-class systems
 - e.g., Frontera, Frontier, Summit
- Scalability achieved in a portable manner
- Addressed challenges with performance portability layers
 - e.g., Kokkos

Figure 10. Strong scaling of PARTHENON-HYDRO on uniform grids on various supercomputers with raw performance in zone-cycles per second per node (top), parallel efficiency (bottom). On Summit GPUs (CPUs) the mesh size was fixed to

Grete, Philipp, et al. "Parthenon—a performance portable block-structured adaptive mesh refinement framework." *The International Journal of High Performance Computing Applications* (2022): 10943420221143775.

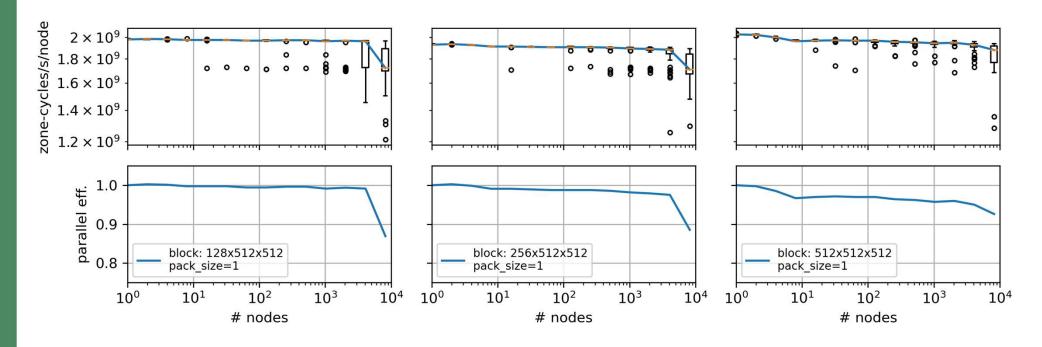
Experiments

- Modeled a 3-dimensional linear wave problem
 - Implemented in both AthenaPK and Parthenon-Hydro
- Per-cell work constant across domain
 - Easy distribution across devices
 - Predictable wallclock times
- Experiments vary domain decomposition approaches
 - Manages the size and amount of MPI messages

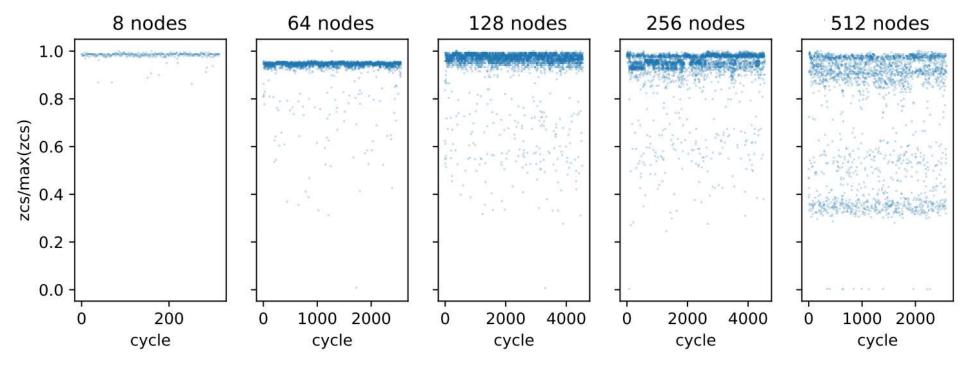


Domain Decomposition

- Domains are decomposed into blocks of cells
- Blocks can be logically packed using a pack_size parameter
 - Increases work size within kernels and reduces launch latency
- Explored various blocks sizes, numbers of blocks per GCD, numbers of blocks per pack, and numbers of packs per GCD
- Block size impacts the number and size of MPI messages sent
 - Smaller block sizes -> more, yet smaller, messages
 - Larger block sizes -> fewer, yet larger, messages
- Packs allow data to be sent while other buffers are being filled

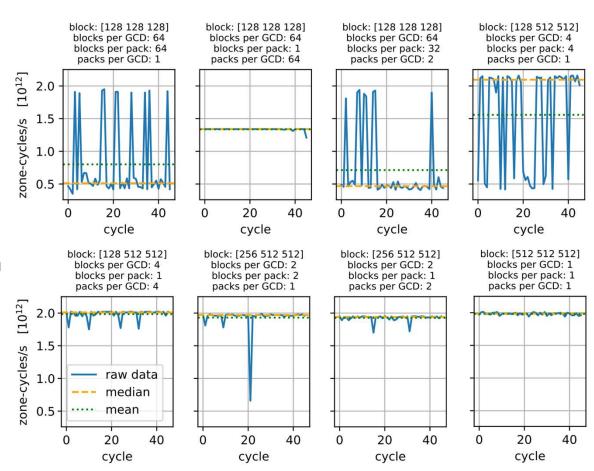

Weak-Scaling Studies: AthenaPK

• >90% weak-scaling efficiency achieved to 9,216 Frontier nodes


Weak-Scaling Studies: Parthenon-Hydro

• >90% weak-scaling efficiency achieved to 9,216 Frontier nodes

Performance Variability



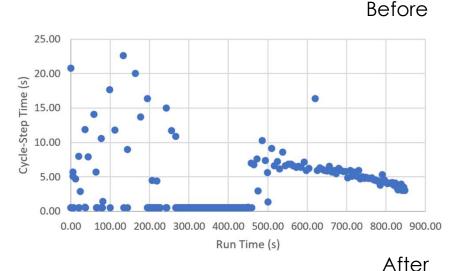
• Initial experiments had per-cycle slowdowns as large as 80%

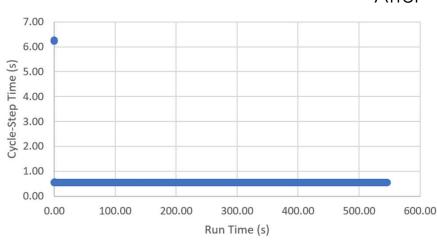
Performance Variability

- Experimented with:
 - block sizes,
 - blocks per GCD, and
 - blocks per pack
- In general:
 - 1 block per pack results in the most consistent performance
 - 4 blocks per pack or more results in greater variation

System Testing: Code Selection

- User codes helpful for stressing interesting third-party library configurations and "real-world" system use
- AthenaPK and Parthenon-Hydro added for various reasons
 - Successful performance portable demonstrations of leadership class system use
 - Effective use of MPI+Kokkos at large-scale
 - Easy to build, run, and scale
 - Well documented
 - Friendly and supportive developer community


System Testing: Problem Design


- Two types of Frontier test: large-scale and "every node"
- Large-scale tend to target 1/8, 1/4, 1/2, and full system use
 - Other node counts explored as issues are identified
- "Every node" based on single-node tests
 - Launch a group of individual single-node jobs across the system, e.g.,:
 - Launching 9,408 single-node AthenaPK tests across Frontier in a single job
 - Helpful for isolating "bad" nodes and node failures
 - Invaluable for ability to pinpoint problematic nodes

System Testing: Early Challenges

- Early "every node" tests had significant per-cycle slowdowns
- Early tests output per-node data to the same directory
- During runtime, rank 0 checks once per cycle for the existence of a file in the run directory
 - Non-issue for large-scale runs
- Individual directories for per-node data resolved slowdowns

Conclusions

- Early experiences have been smooth
 - Issues easily worked around
 - Good performance achievable
- MPI+Kokkos scales well across Frontier
 - >90% weak-scaling efficiency achieved across 9,216 nodes
- Successful collaboration has been beneficial to both parties
 - Helped OLCF identify problematic nodes
 - Helped Hamburg Observatory demonstrate capabilities

Future Work

- At the OLCF:
 - Continue to extend Frontier's test coverage
 - Seeking similar opportunities to collaborate with users
 - Specifically, extending coverage of performance portability layers
 - e.g., Kokkos, OCCA, RAJA, SYCL/DPC++
- At the Hamburg Observatory:
 - INCITE runs on Frontier simulating magnetized plasma jets from active galactic nuclei
 - More detailed evaluation of the ordering of filling buffers and sending messages
 - Development efforts to decouple the global block packing from a communication related pack

Innovative and Novel Computational Impact on Theory and Experiment (INCITE) Program for 2024

- Seeking proposals for high-impact, computationally intensive research campaigns in a broad array of science, engineering and computer science domains.
- Proposals are due June 16, 2023.
- INCITE Informational Webinars are scheduled for April 25 & May 2, 2023.
- Early career track continues in 2023.
- For more information, visit http://www.doeleadershipcomputing.org/

ORNL is managed by UT-Battelle, LLC for the US Department of Energy $\,$

