
Scalable High-Fidelity Simulation of Turbulence
With Neko Using Accelerators

Niclas Jansson
PDC Center for High Performance Computing

KTH Royal Institute of Technology
Stockholm, Sweden

njansson@kth.se

Martin Karp
Computational Science and Technology

KTH Royal Institute of Technology
Stockholm, Sweden

makarp@kth.se

Jacob Wahlgren
Computational Science and Technology

KTH Royal Institute of Technology
Stockholm, Sweden

jacobwah@kth.se

Stefano Markidis
Computational Science and Technology

KTH Royal Institute of Technology
Stockholm, Sweden

markidis@kth.se

Philipp Schlatter
Engineering Mechanics

KTH Royal Institute of Technology
Stockholm, Sweden
pschlatt@mech.kth.se

Abstract—Recent trends and advancements in including more
diverse and heterogeneous hardware in High-Performance Com-
puting are challenging scientific software developers in their pur-
suit of efficient numerical methods with sustained performance
across a diverse set of platforms. As a result, researchers are
today forced to re-factor their codes to leverage these powerful
new heterogeneous systems. We present Neko – a portable frame-
work for high-fidelity spectral element flow simulations. Unlike
prior works, Neko adopts a modern object-oriented Fortran 2008
approach, allowing multi-tier abstractions of the solver stack and
facilitating various hardware backends ranging from general-
purpose processors, accelerators down to exotic vector processors
and Field-Programmable Gate Arrays (FPGAs). Focusing on the
performance and portability of Neko, we describe the frame-
work’s device abstraction layer managing device memory, data
transfer and kernel launches from Fortran, allowing for a solver
written in a hardware-neutral yet performant way. Accelerator
specific optimisations are also discussed, with auto-tuning of
key kernels and various communication strategies using device-
aware MPI. Finally, we present performance measurements on a
wide range of computing platforms, including the EuroHPC pre-
exascale system LUMI, where Neko achieves excellent parallel
efficiency for a large DNS of turbulent fluid flow using up to
80% of the entire LUMI supercomputer.

I. INTRODUCTION

With exascale computing capabilities on the horizon, we
have transitioned to more heterogeneous architectures. Tradi-
tional homogeneous scalar processing machines are replaced
with heterogeneous machines that combine scalar processors
with various accelerators, such as GPUs. While offering high
theoretical peak performance and high memory bandwidth,
to efficiently exploit these systems, well-suited numerical
algorithms, complex programming models and significant
programming investments are necessary. Furthermore, most
known pre and exascale systems currently planned or installed,
e.g. Frontier and LUMI, contain a substantial amount of ac-
celerators. Thus, the challenge of porting and tuning scientific
codes for these new platforms can no longer be ignored.

Computational Fluid Dynamics (CFD) is a natural driver
for exascale computing, with a virtually unbounded need for
computational resources for accurate simulation of turbulent
fluid flow, both for academic and engineering usage. However,
established CFD codes build on years of verification and
validation of their underlying numerical methods, potentially
preventing a complete rewrite of a code base and rendering
disruptive code changes a delicate task. Therefore, porting es-
tablished codes to accelerators poses several interdisciplinary
challenges, from formulating suitable numerical methods, per-
forming hardware-specific tuning to applying sound software
engineering practices to cope with disruptive code changes.

In this paper, we describe our work on developing a device
abstraction layer for Neko – a portable framework for high-
fidelity spectral element flow simulations, enabling scalable
high-fidelity turbulence simulations on accelerated systems.

The outline of the paper is the following; In Section II
an overview of the current state of the art for porting CFD
software to accelerators is presented. A description of Neko
is given in Section III, following by a description of the
accelerator strategy and implementation in Section IV. A
performance evaluation and conclusions outlining future work
is given in Section V - VI.

II. CURRENT STATE OF THE ART

Today, most CFD solvers with the ambition of targeting
various heterogeneous platforms in a performant way are
trying to address the related challenges by putting the platform
abstraction layer on the actual kernel implementation in their
solvers, and utilize generic libraries. Prime examples are,
Kokkos [1], a library consisting of a performance portable
abstraction layer in C++ targeting both CPU and GPU archi-
tectures and OCCA [2], a library and DSL, or rather a kernel
language, with just-in-time compilation for various backends.
Both have successfully been used in various CFD codes, e.g.
NekRS [3] which is built on top of OCCA. Using these



libraries enables performance portability, but as a core part in
the software design, relying too much on their features might
introduce dependencies deep in the software stack.

Accommodating an external abstraction layer in an applica-
tion requires non-trivial integration at a deep level, either via
specific data types, e.g. Kokkos-arrays or via DSL snippets
for the OCCA library. Abstraction requiring specific data
types will implicitly enforce consumer applications to use the
same programming language or end up with a mixed-language
codebase that might become a maintenance nightmare. With
a DSL approach, the impact is less severe and can be limited
only to affect specific computational kernels. However, for all
these approaches, there is always a question about portability
and sustainability.

The success and longevity of several established CFD codes
can in part be attributed to the design choice of using a
standardised programming language, e.g., Fortran 77. Thus, as
long as any future platform has a standard-conforming Fortran
77 compiler, we would also have a working CFD solver on that
platform. Hence, portability and long-term sustainability could
be the unfortunate Achilles’ heel of abstraction layers such as
Kokkos and OCCA. Furthermore, it is also a question about
programming models and their support on current and future
platforms. Today, most heterogeneous systems with accelera-
tors are programmed using a model that offloads computation
from the host (CPU) to the accelerator (often a GPU). To
benefit from these systems, applications must consider how
the offloaded kernels are computed, and as necessary, how to
optimise memory transfers between host and accelerator. What
will happen if we suddenly get a new accelerator, which does
not operate following the current offloading convention?

Given the challenges of finding a portable programming ab-
straction, we argue that another option is to design application-
specific abstraction layers to facilitate the ease of use of
different hardware-specific kernels and solvers for a particular
programming model.

III. NEKO

To address these challenges and to enable high-fidelity fluid
simulations on accelerated systems like Frontier and LUMI,
we have developed Neko, a portable framework for high-
order spectral element-based simulations. The framework is
implemented in modern Fortran 2008 and adopts a modern
object-oriented approach allowing for multi-tier abstractions
of the solver stack and facilitating various hardware backends
[4]–[7]. Using Fortran as the language of choice instead of
recently more popular languages such as C++ or Python might
at first seem like an odd choice, particularly for developing a
new code. However, Neko has its roots in the spectral element
code Nek5000 [8] from UChicago/ANL introduced in the mid-
nineties, tracing its origins to MIT’s older code NEKTON 2.0.
Furthermore, research groups at KTH have extensively used
the scalable Nek5000 and also further developed its Fortran
77 codebase, thus leaving a non-negligible trace of more than
thirty years of verified and validated Fortran code, which, if
rewritten into, e.g., C++ would have to go through a very

solver_t

case_t

space_tgs_t

mesh_t

coef_t ax_t field_t

gs_sx_tgs_cpu_t gs_gpu_t

ax_sx_tax_cpu_t ax_gpu_t

Fig. 1: An illustration of a canonical flow case in Neko, with
typical derived types (gray), abstract types (red) with actual
implementation in extended derived types (green).

expensive and time-consuming revalidation and reverification
process before it could be used in production. Therefore, by
using modern Fortran, already validated Fortran 77 kernels
can directly be integrated into Neko, with only a minimal
revalidation process.

Neko integrates in time the incompressible Navier–Stokes
equations, ensuring single-core/accelerator efficiency via fast
tensor product operator evaluations. For high-order methods,
assembling either the local element matrix or the full stiffness
matrix is prohibitively expensive. Therefore, a key to achieving
good performance in spectral element methods is to consider
a matrix-free formulation, where one always works with the
unassembled matrix on a per-element basis. Gather–scatter
operations ensure the continuity of functions on the element
level, operating on both intra-node and inter-node element
data.

A. Abstraction layer

When designing a flexible and maintainable framework for
computational science, a major issue is finding the right level
of abstraction. Too many levels might degrade performance,
while too few results in a code base with many specialised
kernels at a high maintenance cost. The weak form of the
equation used in the Spectral Element Method allows Neko to
recast equations in the form of the abstract problem to keep the
abstractions at the top level and reduce the amount of platform-
dependent kernels to a minimum. In Neko, this is realised
using abstract Fortran types, with deferred implementations of
required procedures. For example, to allow for different formu-
lations of a simulation’s governing equations, Neko provides
an abstract type, defining the abstract problem’s matrix-vector
product. The type comes with a deferred procedure compute
that would return the action of multiplying the stiffness matrix
of a given equation with a vector. In a typical object-oriented
fashion, whenever a routine needs a matrix-vector product, it
is always expressed as a call to compute on the abstract



base type and never on the actual concrete implementation.
Abstract types are all defined at the top level in the solver stack
(as illustrated in Fig. 1) during initialisation and represent
large, compute-intensive kernels, thus reducing overhead costs
associated with the abstraction layer. Furthermore, this ab-
straction also accommodates the possibility of providing tuned
matrix-vector products for specific hardware, only providing
a particular implementation of compute without having to
modify the entire solver stack, as illustrated in Fig. 1 with the
hardware-specific green boxes.

IV. IMPLEMENTATION ON ACCELERATORS

Regardless of the abstraction in Neko, modern Fortran will
not provide a method for interfacing with accelerators; thus,
a second programming model is needed. Despite a popular
choice when porting Fortran codes to accelerators, a decision
was taken early on in the development of Neko not to rely
on vendor-specific solutions (e.g. CUDA Fortran) for the
accelerator implementation due to their reduced portability.
Another popular strategy to enable accelerators in Fortran
codes is to use directives-based approaches, e.g. OpenACC or
OpenMP, to offload work to the accelerator. Albeit promising
result has been shown for porting Nek5000 to GPUs [9], initial
testing with Neko revealed reduced performance and compiler
immaturity, not seldom due to our extensive use of modern
Fortran’s object-oriented features.

A. Device abstraction layer

Instead of vendor-specific solutions or directives-based ap-
proaches, Neko uses a device abstraction layer to manage de-
vice memory, data transfer and kernel launches from Fortran.

Designed based on the necessary memory management
features needed on the Fortran side; functionality to allo-
cate/deallocate device memory, associate an array in Fortran
with an array allocated on the device and methods for moving
data between memory spaces. Internally the interface uses
pointers (c_ptr) from Fortran’s c-bindings to keep track
of device memory, and behind this interface, Neko calls the
native accelerator implementation written in, e.g. CUDA, HIP
or OpenCL via c-interfaces for each supported accelerator.
Interfaces are defined inside Neko for each supported backend,
covering all necessary API calls, e.g. memory management
and device synchronisation, as well as enumerators defining,
e.g. error codes and direction of data transfer as illustrated in
Listing 1 for Neko’s HIP interface.

This way, we can keep the Fortran side of Neko’s device
layer close to the native accelerator implementation. For
example, to allocate s bytes of data on a device and keep
track of the allocation with the pointer ptr, the interface
provides a function device_alloc(ptr, s), which calls
the native memory allocation routine depending on which
accelerator backend Neko has been configured to support, as
illustrated in Listing 2. However, since it is rather uncommon
to allocate memory in terms of bytes in Fortran, a couple of
helper functions, device_map(x, x_d, n), are defined
to map a Fortran array x to a device pointer x_d. These

Listing 1: Part of Neko’s HIP interface.
!> Enum @a hipError_t
enum, bind(c)

enumerator :: hipSuccess = 0
...

end enum

!> Enum @a hipMemcpyKind
enum, bind(c)

enumerator :: hipMemcpyHostToHost = 0
enumerator :: hipMemcpyHostToDevice = 1
...

end enum

interface
integer (c_int) function hipMalloc(ptr_d, s) &

bind(c, name=’hipMalloc’)
use, intrinsic :: iso_c_binding
implicit none
type(c_ptr) :: ptr_d
integer(c_size_t), value :: s

end function hipMalloc
end interface

Listing 2: Memory allocation in the device abstraction layer.
!> Allocate memory on the device
subroutine device_alloc(x_d, s)
type(c_ptr), intent(inout) :: x_d
integer(c_size_t) :: s
integer :: ierr

#ifdef HAVE_HIP
if (hipMalloc(x_d, s) .ne. hipSuccess) then

call neko_error(’Memory allocation on device failed’)
end if

#elif HAVE_CUDA
if (cudamalloc(x_d, s) .ne. cudaSuccess) then

call neko_error(’Memory allocation on device failed’)
end if

#elif HAVE_OPENCL
x_d = clCreateBuffer(glb_ctx, CL_MEM_READ_WRITE, &

s, C_NULL_PTR, ierr)
if (ierr .ne. CL_SUCCESS) then

call neko_error(’Memory allocation on device failed’)
end if

#endif
end subroutine device_alloc

functions determine the data type of x, the size in bytes, and
call device_alloc. Furthermore, the association of arrays
uses a hash table, mapping the location (using c_loc) of a
Fortran array to the device pointer. Once associated, the device
pointer of any array can be retrieved anywhere inside the code
base via a simple lookup in the hash table.

B. Derived Types

To adhere to Neko’s abstraction (see Sect. III-A), most
derived types defining a current case to be solved (e.g. fields,
coefficient, mesh) need to either be replicated with accelerator
versions or to be extended to accommodate for the possibility
of keeping track of memory on a device. To avoid replicating
most derived types to accommodate for device memory, Neko
follows a similar approach as taken in FUN3D [10], whereas
the derived type is extended with pointers (type(c_ptr)) to
keep track of device memory. However, unlike FUN3D, Neko
does not create interoperable mirror types (in Fortran and C)
to hold information on the device; instead, the device pointer
is added directly to the derived type, as illustrated for a field
type in Listing 3, with a default value of NULL for the device
pointer unless device memory is needed (e.g. when executing



128 1,0
24

8,1
92

0

1,000

2,000

3,000

Elements

G
Fl

op
/s

1D structure
2D k-slice

(a) 7th order polynomials.

128 1,0
24

8,1
92

0

1,000

2,000

3,000

Elements

G
Fl

op
/s

1D structure
2D k-slice

(b) 9th order polynomials.

128 1,0
24

8,1
92

0

1,000

2,000

3,000

Elements

G
Fl

op
/s

1D structure
2D k-slice

(c) 11th order polynomials.

Fig. 2: Performance in GFlop/s for computing the Poisson operator on a single AMD MI250X GCD, comparing two different
shapes of the thread blocks, a one-dimensional structure with a manual calculation of indices or two-dimensional slices along
the k direction of a hexahedral element for 7th (a), 9th (b) and 11th (c) order polynomials on different number of elements.

Listing 3: A derived type suitable for both host and device.
type field_t

real(kind=rp), allocatable :: x(:,:,:,:) !< Field data
type(space_t), pointer :: Xh !< Function space
type(mesh_t), pointer :: msh !< Mesh
type(dofmap_t), pointer :: dof !< Dofmap
type(c_ptr) :: x_d = C_NULL_PTR !< Device pointer

end type field_t

on CPUs). This way of using the same derived type for both
CPU and GPU executions also reduces the number of almost
identical, replicated types in the code base and allows us to
keep the hardware-specific code paths at lower levels in the
solver abstraction (following the design approach described in
Sect. III-A).

C. Kernel Launches and Optimisations

Device kernels are launched from Fortran via c-interfaces,
calling a small wrapper function in C or C++ (extern ”C”
declared), which in turn launches the device kernel. Each
routine in Neko with the possibility of executing on an
accelerator has a corresponding Fortran procedure for calling
the wrapper function, containing the kernel launch. Since each
accelerator programming model differs slightly, and to allow
for vendor-specific implementations, Neko provides a wrapper
function for each supported accelerator backend (currently
HIP, CUDA and OpenCL), selected by pre-processor macros
in a similar way as illustrated for the device memory allocation
in Listing 2. Furthermore, kernel launches are either templated
(CUDA/HIP) or rely on pre-processor macros (OpenCL) se-
lecting tuned kernels for runtime-dependent parameters, e.g.
the polynomial order of a simulation.

Several important kernels in Neko follow a similar tensor-
product structure to the kernels by Świrydowicz et al. [11],
and as observed in their work the shape of thread blocks,
and how they map to elements can significantly affect the

performance of a kernel. On Nvidia hardware, an overall good
performance is obtained using the two-dimensional thread
block structure from [11], moving the slice along the k-
direction of each hexahedral element. On AMD hardware
however, performance was less predictable, with the 2D k-
slice approach sometimes showing a slow down compared
to a simple one-dimensional thread structure with manual
calculation of indices in a thread block. Fig. 2 illustrated this
performance variation for computing the Poisson operator for
varying polynomial orders and problem sizes on one AMD
MI250X Graphics Compute Die (GCD).

The results for the Poisson operator show that the optimal
launch configuration depends on the polynomial order and
the problem size on AMD Hardware. However, in this case,
templates nor pre-processor macros will not help in selecting
an optimal launch configuration given a polynomial order
and problem sizes for a given kernel. Instead, Neko uses
auto-tuning in all device kernels. The first time a kernel is
invoked for a given polynomial order, several experiments are
executed for various launch configurations. Once the fastest
configuration is found, it is recorded in the auto-tuner for
consecutive kernel launches. Furthermore, the auto-tuner can
record the fastest strategy for each polynomial order used in
a simulation, supporting different strategies in, e.g. multilevel
methods, with varying order depending on the level.

D. Gather-Scatter and Device-Aware MPI

As described in Section III, for an efficient spectral element
implementation, all operations are performed in a matrix-free
fashion in Neko. Functions are defined on an element level,
with replicated data for shared degrees of freedom (dof) on
element boundaries, and gather-scatter operations are used to
ensure continuity of functions across elements.

Since gather-scatter operations must be performed both for
internal elements, local to a node as well as external elements,
between nodes, Neko uses an overlapped gather-scatter formu-



Algorithm 1 Overlapped gather-scatter algorithm.
1: S ← ∅
2: for i = 1, 2, . . . ,m do
3: Post non-blocking receive on buf(i)
4: S ← S ∪ i
5: end for
6: v ← gather(shareddof , uL)
7: Post non-blocking sends of v
8: v ← gather(localdof , uL)
9: wL ← scatter(localdof , v)

10: while S 6= ∅ do
11: for all j ∈ S do
12: if non-blocking receive j has completed then
13: v ← gather(shareddof , buf(j))
14: S ← S \ j
15: end if
16: end for
17: end while
18: wL ← scatter(shareddof , v)

lation as given in Algorithm 1. First, all non-blocking receives
(MPI_Irecv) for shared dofs are posted. The shared dofs
are gathered into a buffer v, packed into a set of send buffers
and transmitted to neighbours sharing the same dofs using
non-blocking send (MPI_Isend) operations. During the non-
blocking communication, the local dofs are gathered from
uL, the replicated element-wise representation of a function
u, into a buffer v, the same buffer as for the shared dofs.
The buffer now contains all contributions from both shared
and local elements (since both gather operations have been
performed) for non-shared dofs, and can be scattered into the
corresponding places in the output vector wL (for the local
elements). Once the local operation has been completed, a
loop poll each of the posted non-blocking receives until all
have been completed. As data is received in the loop, it is
directly gathered into the buffer v. Finally, with all outstanding
receives completed, the shared dofs are scattered back into the
output vector wL.

Furthermore, gather-scatter operations use a set of local-to-
global (lg) and global-to-local (gl) map functions for mapping
local indices to global dofs (and the reverse). Thus when
performing the gather and scatter operations in Algorithm
1, a naive implementation e.g. v(lg(i)) = v(lg(i)) + u(gl(i)),
would result in several indirect accesses via the map functions,
thus preventing vectorisation and resulting in poor perfor-
mance on both processors and accelerators. Neko, therefore,
classifies dofs as injective or non-injective, depending on
the mesh topology. Non-injective dofs are points located in
corners and edges (in three dimensions) and could have an
arbitrary number of neighbours to consider while performing
the gather-scatter operation. Injective dofs are the points on the
interior of an edge or face (in three dimensions) with only a
single neighbour to operate on, as illustrated in Fig. 3. The
non-injective dofs are stored in variable-length blocks (for

Fig. 3: An illustration of the different types of dofs, edge
and corner, on a two dimensional mesh with four 4th order
elements, each with five dofs in each direction.

Listing 4: Part of the HIP kernel for gather.
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
const int str = blockDim.x * gridDim.x;

for (int i = idx; i < nb; i += str) {
const int blk_len = b[i];
const int k = blk_offset[i];
T tmp = u[gl[k]];
for (int j = 1; j < blk_len; j++) {
tmp += u[gl[k + j]];

}
v[lg[k]] = tmp;

}

if (shared) {
for (int i = (offset + idx); i < m ; i += str) {
v[lg[i]] = u[gl[i]];

}
}
else {
if ((idx%2 == 0)) {

for (int i = (offset + idx); i < m ; i += str) {
T tmp = u[gl[i]] + u[gl[i+1]];
v[lg[i]] = tmp;

}
}

}

each independent dof), and the injective part is stored as a
contiguous block of sorted tuples, allowing for efficient use of
wide SIMD units or vector registers [5].

Additionally, since each block of dofs contains an indepen-
dent set of work, this can also be efficiently implemented on
accelerators without the need for atomic operations. In Listing
4, we show parts of the HIP kernel for the gather operation.
The first loop is for the non-injective blocks, while the second
is for the large contiguous injective block. All blocks are stored
in the same contiguous array, with the variable offset to
indicate where the injective data begins.

On systems supporting device-aware MPI, i.e. supporting
MPI operations using device memory directly as communi-
cation buffers, pack and unpack operations in Algorithm 1
are implemented as GPU kernels allowing for data to be



fully GPU-resident throughout a simulation [12]. Furthermore,
Neko’s gather-scatter kernel implements four different commu-
nication strategies on systems supporting device-aware MPI.
Each pack and unpack operation has been designed to support
two modes of operation, working on all data to be sent or
received or only operating on parts of the data related to one
neighbouring rank. This allows Neko to launch the pack and
unpack operations concurrently. For example, as soon as a
message arrives in the loop at line 11 in Algorithm 1, an
unpack kernel could be launched in a device stream to process
the received data. However, depending on the network and
job distribution, kernel launch latencies might be too costly
for launching many smaller unpack kernels as compared to
waiting for all communication to finish before unpacking all
data. Neko, therefore, uses a runtime selection of the commu-
nication strategy. When a gather-scatter object is created, it
tests the performance of using fully synchronised pack/unpack
operations, asynchronous pack and synchronised unpack oper-
ations, synchronised pack and asynchronous unpack operations
and finally, fully asynchronous pack and unpack operations.
Each MPI rank can select its fastest strategy independently of
the other ranks in a simulation in an attempt to address the
adverse effects of unbalanced job distributions in the machine.

V. PERFORMANCE EVALUATION

We assess Neko’s scalability and performance portability by
conducting a strong scalability study on a wide range of com-
puting platforms, ranging from smaller CPU-based systems to
the accelerated EuroHPC pre-exascale system LUMI.

A. Performance Portability

To demonstrate the performance portability of Neko’s ab-
stract design, we solve the Taylor-Green Vortex problem
(TGV) with a Reynolds number equal to 5,000 and measure
the average time per time-step once the flow has transitioned
to fully turbulent, illustrated in Fig. 4. Using the same Fortran
file describing the flow case, we evaluated strong scaling
characteristics on a wide range of systems, Piz Daint a Cray
XC50 equipped with Nvidia P100 GPUs at CSCS, Beskow a
Crax XC40 with Haswell CPUs at PDC, Vulcan a cluster using
the SX-Aurora TSUBASA at HLRS, Dardel a Cray EX system
with AMD EPYC CPUs at PDC, Alvis a system at C3SE
with A100 GPUs, JUWELS a BullSequana XH2000 equipped
with Nvidia A100 GPUs at FZJ and LUMI a Cray EX with
AMD MI250X GPUs at CSC. The results in Fig. 5 show
that Neko demonstrates good strong scaling characteristics and
performance portability across a wide range of architectures
tested, from various scalar processors, vector processors and
accelerators, all driven by the same Fortran code base, but with
the platform-specific implementation of key kernels in the leaf
routines of the object-oriented solver stack.

Furthermore, the studied Taylor-Green Vortex case used a
mesh of 262k spectral elements, thus the CPU results in Fig. 5
demonstrates sustained scalability of Neko with less than 10
elements per CPU core or 10,000 elements per GPU/GCD.

Fig. 4: Volume rendering of the velocity magnitude of the
turbulent flow in the Taylor-Green vortex at Re = 5000.

32 128 512 2,0
48

8,1
92

32,
768

10−1

100

101

PEs

A
vg

.t
im

e
pe

r
tim

es
te

p
(s

ec
.)

TGV, Re 5k, 262k el., 9th order poly.,

Piz Daint
Beskow
Vulcan
Dardel
Alvis
JUWELS
LUMI

Fig. 5: Strong scaling of Neko for solving the Taylor-Green
Vortex problem on a wide range of systems. On the x-axis we
show the number of processing elements (PEs) corresponding
to one core or one GPU/GCD depending on the platform.

B. Extreme-scale scalability

Extreme-scale strong scalability has been demonstrated on
the accelerator partition of the 309 PFlop/s European pre-
exascale machine LUMI at CSC. The results in Fig. 6 show
that Neko achieves close to 80% parallel efficiency for a
large Direct Numerical Simulation (DNS), going from 4096
up to 16,384 AMD MI250X Graphics Compute Dies (GCDs),
representing 20%, 40% and 80% of the entire LUMI super-
computer. The simulation studied the flow past a stationary
circular cylinder at a Reynolds number of 50,000, one of
the highest Reynolds number studied for the particular case
with DNS. Furthermore, the simulation were performed using



4,096 8,192 16,384

1

2

4

GCDs

Sp
ee

du
p

w
rt

.5
12

no
de

s

Cylinder Re 50k, 113M el., 7th order poly.

LUMI-G
Ideal

Fig. 6: Strong scaling of Neko for a large DNS simulation of
the flow past a circular cylinder using a large fraction of the
available AMD MI250X GPUs in the accelerated partition of
LUMI (LUMI-G).

a mesh with 113 million spectral elements, using 7th order
polynomials, which turns into more than 38 billion unique
degrees of freedom, making this one of the largest spectral
element simulations performed compared to recently published
related work from the NekRS community [13].

VI. CONCLUSIONS

In this paper, we have introduced the device abstraction
layer in Neko, a modern, high-performance and flexible frame-
work for spectral element based fluid dynamics. The imple-
mentation and optimisation strategies necessary for enabling
scalable high-fidelity turbulence simulations on accelerators
have been discussed, and a performance evaluation on a wide
range of computing platforms has been presented, includ-
ing the EuroHPC pre-exascale system LUMI, where Neko
achieves excellent parallel efficiency for a large DNS of
turbulent fluid flow using up to 80% of the entire LUMI
supercomputer.

Overall, we see that high-order methods and matrix-free
approaches are well suited to leverage current powerful
accelerator-based systems. However, there are many paths
forward for accelerated spectral element methods, and we
intend to carefully evaluate several of these with Neko, which
offers us the performance, scalability and flexibility to easily
develop and evaluated high-fidelity spectral element methods
on new accelerated architectures.

ACKNOWLEDGMENT

This work was supported by the European High Per-
formance Computing Joint Undertaking (JU) and Sweden,
Denmark, Greece, Germany, Spain under grant reference
101093393 “CEEC – Center of Excellence in Exascale
CFD” and the Swedish Research Council under grant ref-
erence 2019-04723 “Efficient Algorithms for Exascale Com-
putational Fluid Dynamics”. Financial support from the

Swedish e-Science Research Centre Exascale Simulation Soft-
ware Initiative (SESSI) is also gratefully acknowledged.
The experiments were performed on resources provided by
Höchstleistungsrechenzentrum Stuttgart (HLRS) and PRACE
Research Infrastructure resources Piz Daint hosted by CSCS
(Switzerland) and JUWELS hosted by FZJ (Germany) and
National Academic Infrastructure for Supercomputing in Swe-
den (NAISS) and the Swedish National Infrastructure for
Computing (SNIC) at PDC Center for High Performance
Computing and Chalmers Centre for Computational Science
and Engineering (C3SE), partially funded by the Swedish
Research Council through grant agreement no. 2022-06725.
We also acknowledge NAISS and SNIC for awarding this
project access to the LUMI supercomputer, owned by the
EuroHPC-JU, hosted by CSC (Finland) and the LUMI con-
sortium through a LUMI Sweden XLarge call.

REFERENCES

[1] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling
manycore performance portability through polymorphic memory access
patterns,” Journal of Parallel and Distributed Computing, vol. 74, no. 12,
pp. 3202 – 3216, 2014, domain-Specific Languages and High-Level
Frameworks for High-Performance Computing.

[2] D. S. Medina, A. St-Cyr, and T. Warburton, “OCCA: A unified approach
to multi-threading languages,” arXiv preprint arXiv:1403.0968, 2014.

[3] P. Fischer, S. Kerkemeier, M. Min, Y.-H. Lan, M. Phillips, T. Rath-
nayake, E. Merzari, A. Tomboulides, A. Karakus, N. Chalmers,
and T. Warburton, “NekRS, a GPU-accelerated spectral element
Navier–Stokes solver,” Parallel Computing, vol. 114, p. 102982, 2022.

[4] N. Jansson, M. Karp, A. Podobas, S. Markidis, and P. Schlatter,
“Neko: A modern, portable, and scalable framework for high-fidelity
computational fluid dynamics,” arXiv preprint arXiv:2107.01243, 2021.

[5] N. Jansson, “Spectral Element Simulations on the NEC SX-Aurora
TSUBASA,” in The International Conference on High Performance
Computing in Asia-Pacific Region, ser. HPC Asia 2021. Virtual Event,
Republic of Korea: ACM, 2021, pp. 32–39.

[6] M. Karp, A. Podobas, T. Kenter, N. Jansson, C. Plessl, P. Schlatter,
and S. Markidis, “A high-fidelity flow solver for unstructured meshes
on field-programmable gate arrays: Design, evaluation, and future chal-
lenges,” in International Conference on High Performance Computing in
Asia-Pacific Region, ser. HPC Asia 2022. Virtual Event, Japan: ACM,
2022, p. 125–136.

[7] M. Karp, D. Massaro, N. Jansson, A. Hart, J. Wahlgren, P. Schlatter,
and S. Markidis, “Large-scale direct numerical simulations of turbulence
using GPUs and modern Fortran,” The International Journal of High
Performance Computing Applications, 2023 (Online first).

[8] J. W. L. Paul F. Fischer and S. G. Kerkemeier, “nek5000 Web page,”
2008, http://nek5000.mcs.anl.gov.

[9] J. Vincent, J. Gong, M. Karp, A. Peplinski, N. Jansson, A. Podobas,
A. Jocksch, J. Yao, F. Hussain, S. Markidis, M. Karlsson, D. Pleiter,
E. Laure, and P. Schlatter, “Strong scaling of openacc enabled nek5000
on several gpu based hpc systems,” in International Conference on High
Performance Computing in Asia-Pacific Region, ser. HPC Asia2022.
Virtual Event, Japan: ACM, 2022, p. 94–102.

[10] G. Nastac, A. Walden, E. J. Nielsen, and K. Frendi, “Implicit Thermo-
chemical Nonequilibrium Flow Simulations on Unstructured Grids using
GPUs,” in AIAA Scitech 2021 Forum, 2021.

[11] K. Świrydowicz, N. Chalmers, A. Karakus, and T. Warburton, “Accelera-
tion of tensor-product operations for high-order finite element methods,”
The International Journal of High Performance Computing Applications,
vol. 33, no. 4, pp. 735–757, 2019.

[12] J. Wahlgren, “Using GPU-aware message passing to accelerate high-
fidelity fluid simulations,” Master’s thesis, KTH Royal Institute of
Technology, 2022.

[13] M. Min, Y.-H. Lan, P. Fischer, E. Merzari, S. Kerkemeier, M. Phillips,
T. Rathnayake, A. Novak, D. Gaston, N. Chalmers, and T. Warburton,
“Optimization of Full-Core Reactor Simulations on Summit,” ser. SC
’22. IEEE Press, 2022.


