

Deploying a Parallel File System for the World's First Exascale Supercomputer

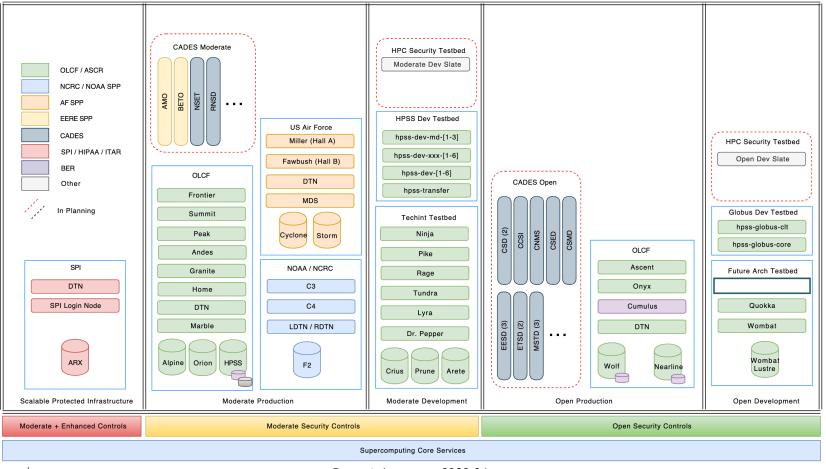
Jesse Hanley Dustin Leverman

CUG'2023

ORNL is managed by UT-Battelle LLC for the US Department of Energy

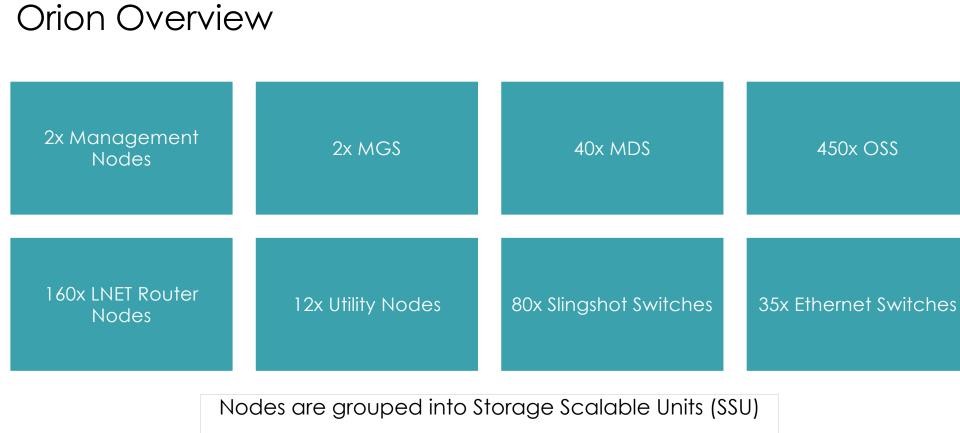
Introduction

Orion Overview

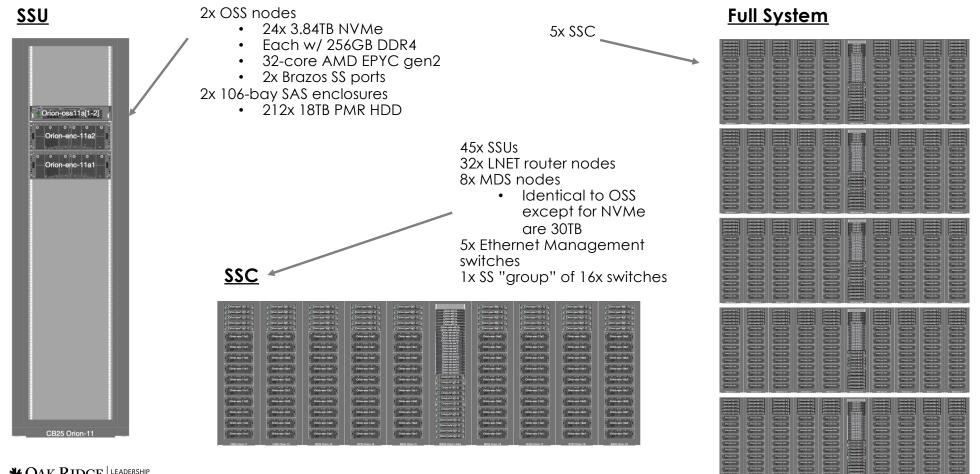


System Configuration

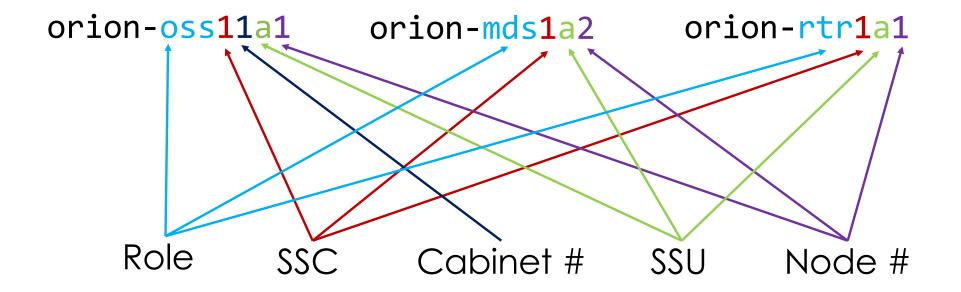
 Overview/Subset of Acceptance Process



COAK RIDGE LEADERSHIP COMPUTING FACILITY Ryan Adamson – 2022-06


CUG'2023

SSUs are grouped (with networking) into Storage Scalable Clusters (SSC)



C

Orion Host Naming Convention

CUG'2023

Tiering

- 9.7 PB NVMe-based MDT storage 480 drives
- 11.4 PB NVMe-based OST storage 5,400 drives
- 667.6 PB HDD-based OST storage 47,700 drives
- Uses Lustre Progressive File Layout (PFL), Data on MDT (DoM), and Self-Extending Layouts (SEL);
- Utilizing DNEp1 and "randomly" assigning projects across 40 MDTs

/usr/bin/lfs setstripe -E 256K -L mdt -E 8M -c 1 -S 1M -p performance -z 64M -E 128G -c 1 -S 1M -z 16G -p capacity -E -1 -z 256G -c 8 -S 1M -p capacity /lustre/orion/

COAK RIDGE

Component 1 >0B - 256KB Data on MDT	70% of files
Component 2 256KB - 8MB 1MB Stripe Size Stripe count=1 Performance tier	18% of files
Component 3 8MB - 128GB 1MB Stripe Size Stripe count=1 Capacity tier	11% of files
Component 4	
128GB - EOF 1MB Stripe Size Stripe count=8 Capacity tier	
	CUG'2023

Management Stack

- Cluster Provisioning using <u>Anchor</u>
 - dnsmasq updated dynamically based on switch-port configs
 - matchbox acts as node classifier
 - squashfs image distributed to nodes (compressed; read-only)
 - mounted with Dracut module using read-write overlay
- ClusterStor recipe for Data Path
 - Base RHEL image
 - HPE provided kernel, Lustre, ZFS, firmware, HA, etc...
- Redundant (hot/cold) management servers
 - System boot time ~7min

System Monitoring

Examples (non-exhaustive)

Hardware	Software	HPE Tooling	Namespace health
 IPMI SAS Health HDD Enclosures NVMe Disk 	 LNET Normal Linux daemons NTP crond syslog 	 Disk Monitoring Disk Watch Daemon High Availability Slingshot 	 MDT, Perf, and Cap tier utilization `Is` timer OST states D - degraded
 Firmware Versioning 	 Systog Configuration management run history 		 N – no-precreate R – read-only I – out of space S – out of inodes

Goal of monitoring: monitor and alert appropriately to detect issues before users do

• Involves alerting differently depending on if during business hours or after hours

Acceptance Overview

Phase 1: System install and checkout Phase 2: Single-unit testing Phase 3: Scale up Phase 4: Full system testing

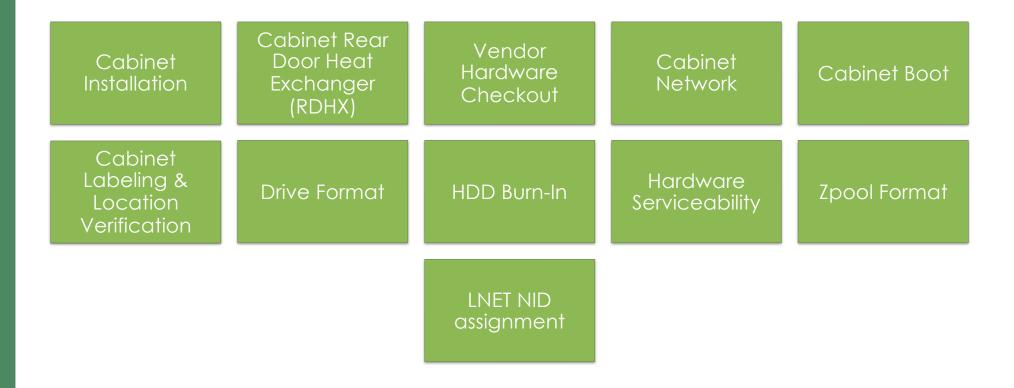
Multiple acceptance phases, each phase can include the following:

Hardware Test Physical testing

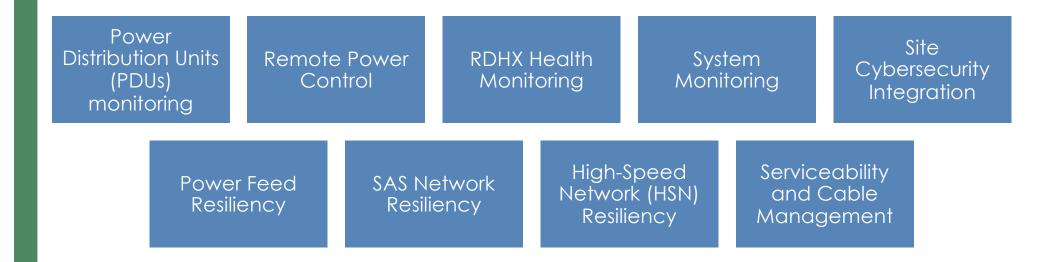
$\sim -$	
žΞ	
~ —	

Functionality Test

Demonstrate basic functionality meets resiliency, reliability and operational needs

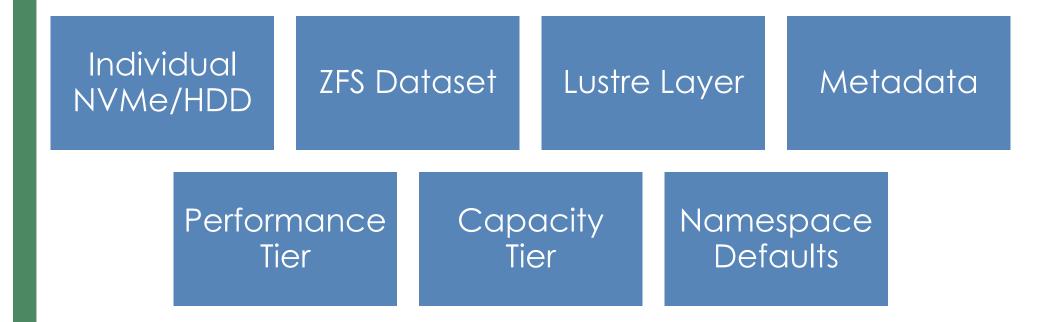


CAK RIDGE National Laboratory Performance Test Measure of hardware/software performance requirements


Stability Test Verification that the storage cluster can withstand a workload similar to operational conditions

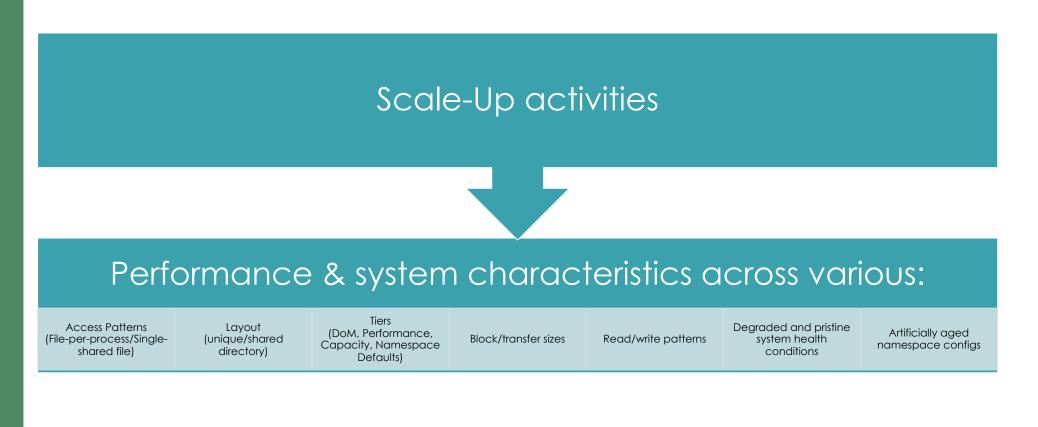
Acceptance – Phase 1 – Hardware System install and checkout

Acceptance – Phase 2 – Hardware Single-unit testing



Acceptance – Phase 2 – Functionality Single-unit testing

Power Cycle Resiliency	Location Beacon Test	Command-line Interface (CLI) Firmware Upgrades	Disk & NVMe Replacement/Fault Injection
Disk & NVMe	Disk Variability	ZFS Parity Check on	High Availability
Rebuild/Rebalance		Read	Stack Testing



Acceptance – Phase 2 – Performance Single-unit testing

Acceptance – Phase 3 Scale up

Acceptance – Phase 4 Full system testing

Functionality

- Namespace LFSCK
- System Health &
 Performance Monitoring
- Simulated hardware/software failures and maintenance activities
- Image management and deployment
- Tests from previous phases

Performance

- LNET Selftest
- "Hero" workloads (MDtest, IOR, ...)
- Performance under simulated health issues
- Tests from previous phases

Stability

- Known I/O pattern
- Additional traffic from nonsynthetic workloads
- Treated as-if the system is in full production with user workloads

Summary

Orion is in production and actively used

• Several users have reported significant I/O speed-up

Using PFL to provide a default layout that works well for many use cases

- No problems so far with DNE, PFL, DoM, etc.
- SEL provides protection against OSTs getting full

Acceptance process ensures the storage system is ready for end users

- Extensive process covers anticipated workloads
- Allows for a firm understanding of system behavior and limits

Acknowledgements

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research Program. This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.

ORNL is managed by UT-Battelle LLC for the US Department of Energy

