
Hiding I/O using SMT on the ARCHER2 HPE
Cray EX system

Shrey Bhardwaj∗, Paul Bartholomew† and Mark Parsons‡

EPCC, University of Edinburgh
Edinburgh

Email: ∗shrey.bhardwaj@ed.ac.uk, †p.bartholomew@epcc.ed.ac.uk, ‡m.parsons@epcc.ed.ac.uk

Abstract—This paper tests the hypothesis that hyper-
threaded cores on the ARCHER2 Cray HPE machine
can enhance the effective I/O bandwidth for applications
conducting both I/O and computational operations. We
present the I/O framework, iocomp, that supports both
synchronous and asynchronous I/O approaches, while
abstracting away complexities associated with multiple I/O
back-ends such as MPIIO, HDF5, and ADIOS2. In the
asynchronous case MPI is used to split the processes into
dedicated compute and I/O servers, which are mapped to
various core mappings using SLURM options to run the
I/O processes on either oversubscribed, hyperthreaded, or
dedicated cores. Data is then sent from the client processes
to these I/O cores asynchronously, and the performance
of different workloads writing their data using iocomp is
compared when using such dedicated I/O servers against
conducting synchronous I/O operations where the same
process is responsible for compute and I/O operations. The
STREAM and HPCG benchmarks are adapted as exam-
ples of client processes to perform computation, adding
a step to write their data through the iocomp library.
The present results demonstrate that adding a separate
set of nodes to run a dedicated I/O server improves the
performance for the STREAM and the HPCG benchmarks
for all I/O back-ends tested. However, hyperthreads result
in lower or at best comparable performance, depending
on which I/O back-end is used.

I. INTRODUCTION

With the widening gap between compute, mem-
ory, and Input/Output (I/O) rates in High Performance
Computing (HPC) systems, achieving high performance
can be limited by the I/O bottleneck. For example,
ARCHER2 [1], an HPE Cray EX system with a total of
5860 compute nodes, each with 128 cores of dual AMD
EPYC 7742 64-core 2.25GHz processors, has a peak
theoretical DRAM bandwidth of up to 204.8GB/s [1]
but only achieved an I/O bandwidth of 2.82GB/s as per
the IO500 lists at SC22 [2]. Considering the disparity
between the memory and I/O bandwidths it is clear

that I/O may ultimately prove the limiting factor in
performance.

An HPC system will typically employ (multiple)
parallel file system(s), such as Lustre in the case of
ARCHER2. These enable users to interact with the file
system as though it were logically a single disk but are
implemented upon parallel physical hardware for greater
bandwidth. However, whereas a user may increase the
scale of parallelism in their program execution by re-
questing more compute nodes, the degree of parallelism
available in the I/O system is a relatively small, es-
sentially fixed quantity. For example, each parallel file
system on ARCHER2 has 12 Lustre stripes (roughly
analogous to 12 disk servers); when compared to the
nearly 6,000 compute nodes available the disparity in
compute and I/O capabilities becomes apparent. It should
also be noted that the I/O system is a shared resource on
the machine and therefore subject to contention between
users.

If I/O bandwidth creates a bottleneck in program
execution, and users can’t (significantly) increase the
amount of I/O hardware then we should aim to hide
the I/O step, performing it asynchronously and allowing
useful work to proceed. One approach to this is to
split the resources in a job between processes dedi-
cated to compute and I/O tasks. This splitting means
requesting more resources than would be dictated by
compute requirements alone, or reducing the portion
allocated to compute for a given job allocation size. A
potential solution is to increase efficiency by employing
idle resources within a core by using Simultaneous
Multi-Threading (SMT) [3]. This technology allows a
single physical core to simultaneously fetch and execute
instructions from multiple threads. It is hypothesised
that by using SMT, an unused hyper-thread can perform
the I/O operations while the first thread is performing
computation to exploit unused resources and increase
efficiency. Thus, the cost of writing to disk could be



effectively “hidden” by sending the data asynchronously
to the I/O threads while the compute processes finish
their computational workload.

This work tests the idea of exploiting hyper-threads to
perform asynchronous I/O tasks by comparing against
several different approaches. As a reference approach,
compute and I/O tasks are performed in sequence by
a given process, reflecting a “typical” approach to I/O
in applications. A similar setup as used for the hyper-
threading experiments places the I/O processes on dis-
tinct cores, representing the case where additional re-
source are used. Finally, an “oversubscribed” setup is
investigated with separate compute and I/O processes
placed on a single hardware thread, this is not expected
to achieve high performance but is included to explore
the impact of process switching on shared resources
without using hyper-threads. These mappings are further
explained in section III-B. Each of these scenarios is
tested using the STREAM [4] and High Performance
Conjugate Gradient (HPCG) [5] benchmarks to simulate
their use in HPC applications.

II. RELATED WORK

The benefits of using SMT in HPC machines have
been more variable than a normal desktop machine. HPC
clusters often have different softwares and variables such
as math libraries which affect lots of scientific software.
Celebioglu et. al. [6] have found that enabling the Intel
implementation of SMT, Hyper-Threading Technology
(HT) had a variable effect on the test applications simply
by linking with different math libraries. They found that
if they used mathematical libraries that were optimised
for processor usage, enabling the HT had a negative
effect on the performance due to resource sharing in
virtual processors [6].

Curtis-Maury et. al. [7] demonstrate that scalable
applications return sub-optimal performance on systems
having more than 2 SMT cores due to a high volume
of resource contention. They investigate other forms of
multi threading techniques such as adaptive head throt-
tling and speculative execution and their study shows that
combining these techniques with thread parallelisation
lead to significant performance improvements in parallel
codes [7].

The resulting mixed view of highly variable perfor-
mance benefits from SMT has been confirmed by various
other researchers, including [8], [9], [10] and [11]. This
has lead to the widely held belief that SMT is often not
beneficial in HPC applications.

The potential for driving I/O workloads on SMT
threads was studied by Jia et. al. [12] in the context
of optimising machine utilisation. This work aimed to
improve throughput by scheduling compute and I/O
bound workloads on the same machine and making use
of SMT with the goal of using resources not occupied
by the neighbouring workload. Their work shows that
the existing techniques used by CPU schedulers on SMT
processors to improve I/O performance are inefficient on
SMT processors. This is because of inefficient context
switches when jobs are waiting for I/O tasks. They sug-
gest a context retention technique which uses a hardware
thread to store the context of an I/O workload. This can
help reduce the overhead of context switches so that the
workload can efficiently respond to I/O events.

More often a single workload will perform compute
and I/O steps, in the simplest case running each sequen-
tially. Several works have investigated running associated
tasks asynchronously to improve overall performance
of HPC applications. In the Met Office NERC Cloud
model (MONC), the in-situ data analysis step pre-
vented simulation progress until that step was completed.
Brown et. al. [13] developed an I/O server framework
which performs this task asynchronously. Progress of
the compute process is enabled by sending data to an
I/O server which receives the data and performs the
analysis. This approach improved the scalability of the
system, enabling simulations of over 2 billion points
while its predecessor could not go beyond 16 million
grid points. More broadly, a typical HPC application
will preform regular checkpointing of data. To reduce
the performance impact of this Heroult et. al. [14]
have proposed cooperative I/O scheduling applications
to reduce the contention for the I/O bandwidth such
as reducing checkpointing volumes or by increasing
checkpointing intervals. They have demonstrated that
the I/O scheduler using non-blocking communication
which they call the Least-Waste strategy was the most
efficient out of different strategies which used blocking
or non-blocking communication [14]. Furthermore they
demonstrate that the non-blocking strategies are more
resilient to system failures compared to the blocking
strategies.

Tang et. al. [15] have developed an asynchronous I/O
framework using back-end threads and implemented this
approach for the HDF5 I/O library [15]. Their results
show that the cost of the I/O was hidden when the
application was performing non-I/O operations [15]. The
asynchronous approach is handled using HDF5’s VOL
connector framework requiring additional code changes



to switch between the synchronous and the asynchronous
I/O operations. Tseng et. al. [16] have performed a study
of the causes and consequences of interference due to
the asynchronous I/O on HPC systems. They implement
dedicated resources such as multiple threads and seperate
cores for I/O operations to reduce the impact of resource
contention so that the application can continue without
blocking for I/O operations [16]. For I/O operations they
utilise POSIX threads.

This work uses asynchronous communication via MPI
to send data to the I/O servers. By doing so the relative
placement of the compute and I/O processes can be
varied from hyperthreads on the same core to entirely
separate nodes on an HPC machine. Additionally, io-
comp provides access to several I/O layers ranging
from low level interfaces such as MPIIO to the highly
abstracted ADIOS2, allowing their relative strengths in
these scenarios to be studied. This will provide a useful
insight into the effects of the abstractions from the I/O
layers when combined with non-blocking communica-
tion across different process placements.

III. METHODOLOGY

To evaluate the effects of using SMT cores for per-
forming asynchronous I/O requests, we developed the
iocomp library [17].

A. iocomp

This library is used to analyse the performance impact
on the I/O bandwidth by using SMT on ARCHER2.
The iocomp library implements a client-server model
which interfaces with various I/O back-ends such as
MPIIO, HDF5 and ADIOS2. While the client processes
(aka compute processes) handle the computations in a
typical HPC application, the server processes (aka I/O
processes) complete the I/O requests from the client
processes. This splitting of tasks enables the comparison
between synchronous and asynchronous I/O with differ-
ent mappings of available CPU cores used to investigate
the impact of performing the asynchronous I/O process
on SMT threads against separate physical cores.

1) Initialisation: At initialisation the iocomp library
accepts a flag to select the synchronous or the asyn-
chronous I/O pipeline as shown in Fig. 1. If the asyn-
chronous I/O method is chosen, the processes are split
into compute and I/O processes. The I/O processes
are initialised and given their own intra-communicator,
and the initialisation function returns a separate intra-
communicator for the compute processes to use. This
design means that minimal changes are needed to any

program that uses this library; beyond using iocomp
for I/O, replacing MPI COMM WORLD with the com-
municator returned by the iocomp initialisation function
should be the only required change.

2) Process splitting: A key step in our experiments
is the process placement to ensure specific cores/threads
run either compute or I/O processes as desired. In the
single node case, the MPI processes are split based on
lower and upper numbering within 1 node. i.e. if there
are n MPI processes within 1 node, 0 to n/2 − 1 form
one sub-group and n/2 to n−1 form another sub-group.

To split the processes across multiple nodes, the
library uses a user defined value “NODESIZE” which is
the number of cores in a node. This is then used to divide
the cores within 1 node into I/O and compute servers.
This enables pairing the resources within 1 node for
the hyperthread and the oversubscribe mappings. These
mappings are illustrated in table I and a more detailed
pairing between processes is shown in table V which
uses a “NODESIZE” value of 16 with 4 nodes.

MPI size Division of MPI processes
Compute I/O

128 0-63 64-127
256 0-127 128-255

384 0-127,
256-319

128-255,
320-383

512 0-127,
256-383

128-255,
384-511

TABLE I: Division of MPI processes under different
MPI sizes with a “NODESIZE” value of
128.

These processes are then mapped to the physical cores
by passing the list of CPUs to the SLURM scheduler.
Once the global MPI processes are split, one half of the
MPI processes are assigned to the “compute server” and
the rest to the “I/O server”.

The splittings are achieved by calling the
MPI Comm split function [18], given in listing 1,
using a “colour” to determine the splitting. Based on
the assigned “colours”, the global MPI communicator is
split to give an intra communicator for the I/O processes
and the compute processes, named “ioServerComm”
and “computeComm” respectively. The communicator
for the compute processes is returned to the client, the
I/O processes, and their communicator, do not return,
remaining hidden from the client.



Start

Initialise iocomp library

HT flag == True split communicatoryes

Compute or
I/O process

do computeCompute

Send solution
asynchronously

Check finished no

Send stop message

yes

Activate receiver

I/O

Receive data complete

Stop signal
received

Write data exit loopno yes

do compute no

Write data

Check finishedno

End program

yes

Fig. 1: Flowchart of iocomp.

Listing 1: Interface to split an MPI communicator.

MPI_Comm_split(MPI_Comm comm,
int color, int key,
MPI_Comm *newcomm)

3) Compute server: The client process performs the
computational tasks, calling the “dataSend” function
to send data to be written to the I/O server. If the
synchronous I/O method is selected, then the function
passes the data pointer directly to the I/O back-end.
In this case, the communicators are not split based on
colour and the global communicator is used throughout
the program. However, if the asynchronous I/O method
is selected, then the function sends the output data to the
“I/O server” using the nonblocking “MPI Isend” func-
tion. In this case, the library provides another function,
“dataWait” which implements a “MPI Wait” command
to wait for the data stream to finish sending. In addition,
the library also provides the dataTest function which
issues MPI Test functions to test the progress of the
asynchronous requests.

4) I/O server: The “I/O server” processes are re-
sponsible for handling the I/O requests from the client
processes. If the asynchronous I/O method is initialised,
then the I/O server processes call the function “ioServer”
which then enters an infinite for loop while it calls

the “MPI Probe” function. This returns the number of
elements in the message from the ”computer server”
and then the message is received using the “MPI Recv”
function. After receiving the data it is written using the
respective I/O functions. To signal the end of program
execution the stopSend function is used to send a “ghost
message” which is a variable of 0 length. When the
ioServer detects a message of 0 length a break command
is issued in the infinite for loop which stops the receiver
from receiving any other messages. This logic is shown
in pseudo-code given in code listing 2.

Listing 2: ioServer code with asynchronous flag.

for(;;) {
MPI_Probe();
len = MPI_Get_count();
if (len > 0) {

MPI_Recv();
writeData();

}
else {
// Received ghost message, exit.

break();
}

}



When the “I/O server” receives the data stream and
the elements to be written it defines the starting point
of the local array within the global array, using the
function “arrayParamsInit”. Initially, dimensions of the
global array were fixed as 1, and the offset point of the
data stream within the global array was the product of
the “I/O server” and the number of elements in the local
data stream. However, with a larger number of ranks,
it was found that global size value was bigger than the
maximum size accommodated by an integer value and
as a result the array parameters were negative numbers.
This issue occurred because MPI only takes in arrays of
int32 size. Thus, for higher process counts, only small
sized arrays could be written out which created a limit
to the maximum size of the array possible. This was
solved by decomposing a given array into a user defined
number of dimensions, which avoided the possibility of
overflowing the integer value. At the time of writing this
paper, the library version v1.1.3 decomposes the data
into 2 dimensions as referenced in the code listing 3.

Listing 3: ioServer data decomposition.

// find closest sq root
root = sqrt(dataSize);
// if its a perfect square
if(root*root == dataSize) {
dim[0] = root;
dim[1] = root;
}
// if its a multiple
else if(dataSize%root == 0) {
dim[0] = root;
dim[1] = dataSize/root;
}
// else search for closest factorial
else if(dataSize%root != 0) {
for(int i = 1; i < root; i++) {
if(dataSize%(root-i) == 0) {
dim[0] = (root-i);
dim[1] = dataSize/(root-i);
break;
}

}
}

5) Testing: The library has a testing functionality en-
abled by including the preprocessor flag “READBACK”.
This enables the function “readBack” which uses rank 0
of the I/O server to read the elements written into the file
by the chosen I/O library. This function is called after

the “ioLibraries” function finishes its writing. The data
stream is then printed out which can help in checking
the outputs for verification purposes.

B. ARCHER2 cpu mappings

To analyse the impact on the I/O performance by using
SMT on ARCHER2, different scenarios are compared
using the same amount of data for computation and I/O:

• The “Sequential” scenario does not split the com-
pute and I/O processes and is completed sequen-
tially in the same process without using SMT
threads. This scenario is probably the most common
one found in HPC applications.

• The “Consecutive” scenario uses twice the number
of cores without using SMT. The processes are split
as before, but the compute and I/O processes are
assigned to different cores.

• The “Hyperthread” scenario uses two threads per
core on ARCHER2. One thread of the core is
assigned to the compute process while the SMT
thread of the same core is assigned to the I/O
process.

• The “Oversubscribe” scenario places the compute
and I/O processes on different MPI processes, but
on the same core using oversubscribing when run-
ning the jobs. This case does not use SMT, but still
splits the processes into compute and I/O as before.

The scenarios described above are illustrated in table II
showing the total number of compute cores, MPI pro-
cesses and their placement mapping for ARCHER2. As
can be seen, on ARCHER2 [1], the hyperthreads of the
cores start from a process id of 128. For example, the
hyperthread of core ID 1 will be numbered 129 according
to the lstopo output shown in Fig. 2.

Fig. 2: lstopo output of NUMA node 0 on ARCHER2
showing the placement of Hyperthreads.



Case Comp
cores

MPI
procs

cpu-map
array

Sequential 4 4 0,1,2,3

Hyperthread 4 8
0,1,2,3
128,129,
130,131

Consecutive 4 8 0,1,2,3
4,5,6,7

Oversubscribe 4 8 0,1,2,3
0,1,2,3

TABLE II: slurm mappings for 4 compute processes
distributed between the different settings,
each run handles same global size data.

C. STREAM
The first test considered as an example computational

kernel is the STREAM benchmark [4]. The STREAM
benchmark is a simple synthetic benchmark problem,
representing the extreme end of memory-bound prob-
lems, with many HPC applications being memory bound.

Each of the STREAM kernels, namely COPY,
SCALE, ADD and TRIAD, are implemented in this
test. The program takes in the following parameters
from the command line; the size of the array, I/O
library selection, and a flag to select between the direct
or the asynchronous I/O pipelines. The iocomp library
is initialised using the flag value and the I/O library
selection. The initialised array generated using the size
parameter value is passed to the STREAM kernels,
and when the individual compute kernels finish their
processing, the updated arrays are sent to the I/O server
using the “dataSend” function. The individual kernels
from the STREAM benchmark are timed to get the
computation, wait and wall timings. These timings can
then be used to analyse the different cases and compare
their performance. When the computation and the data
transfer are complete, the wall time is measured.

Typical HPC use cases are unlikely to write the
solution at every time step. Thus, to represent a more
realistic scenario, with multiple time steps performed
between I/O operations, the STREAM implementation
was run with a higher number of compute cycles per each
I/O cycle. The timings per cycle were then summed and
averaged by the frequency of compute per write cycle.
For the results shown in this work, all the jobs were
run with a total of 100 compute cycles and a total of 10
write cycles, setting the parameters “WRITE FREQ”
and “LOOPCOUNT” to 10 and 100, respectively.
The program flow is illustrated in code listing 4.

Listing 4: STREAM implementation.

for(i=0;i<LOOPCOUNT;i++){
copy(C) + test_triad(A)
if ((i+1)%WRITE_FREQ == 0){

wait_triad(A)
send_copy(C)

}

scale(B) + test_copy(C)
if (i%WRITE_FREQ == 0){

wait_copy(C)
send_scale(B)

}

add(C) + test_scale(B)
if (i%WRITE_FREQ == 0){

wait_scale(B)
send_add(C)

}

triad(A) + test_add(C)
if (i%WRITE_FREQ == 0){

wait_add(C)
send_triad(A)

}
}

As the data is being sent asynchronously, the code
must check this operation completes before the next
computational kernel modifies the data of that array.
Thus, “MPI Wait” functions were placed so that spu-
rious data was not sent for writing to iocomp. An
illustration of this sequencing is shown in code listing 4

The program also issues multiple “MPI Test” calls
during kernel execution as “MPI Test” can be used to
complete request-based non-blocking operation [18]. The
impact of calling “MPI Test” on the wall time is also
investigated.

D. HPCG

HPCG [5] is intended to better represent how today’s
HPC applications perform. It is of interest in this work,
as the HPCG benchmark represents the memory bound
edge in the spectrum of computational benchmarks with
a Byte/Flop ratio of greater than 4 [19]. To use this
benchmark as a client process, the HPCG benchmark
repository was forked and updated to integrate the
iocomp library [20] while keeping the computational
kernels unchanged. To initialise the iocomp library, the
HPCG Init function was changed to accept the iocomp



parameter structure in its arguments. The command line
parser was also modified to accept additional commands
to provide run time information to the iocomp library
such as the backend I/O library selection and the value
of the flag to enable or disable asynchronous I/O and
split the processes between compute and I/O as appro-
priate. After the initialisation of the iocomp library, a
compute communicator is returned to the client process
running HPCG, ensuring that there is a separation of the
communicators between the compute processes and the
I/O processes. After the Conjugate Gradient function,
the solution vector pointer is passed to the dataSend
function from the iocomp library along with the number
of elements. Additional timers were implemented within
the computational loop to measure the time taken to
finish the computation, send this data, and wait for the
data to be sent as shown in code listing 5 The parameter
“numberOfCgSets” is set to 10 to obtain an average
of the different values. These modifications enable the
iocomp library to write the output data of the HPCG
benchmark using various I/O libraries such as MPIIO,
HDF5, ADIOS2 etc. As shown in [19], the per-rank
memory consumption of HPCG is ≈ 1000× the local
problem size, meaning the size of the largest solution
vector that could be written was limited by the available
memory per core. By under-populating the nodes on
ARCHER2, more memory is available per core so that
a larger local problem size can be used to test the
I/O handling capabilities of the iocomp library which
would enable a large enough file size for a sufficient
I/O benchmarking analysis. To implement this idea,
each node was underpopulated with 16 tasks instead
of the fully populated setting of 128 tasks. To obtain
the correct mappings, iocomp was initialised with the
variable “NODESIZE” set to be 16. The pairings for a
sample job with 4 nodes are provided in table V using
the preprocessor flag “PRINT PAIRS”. However, this
was also insufficient to obtain a large size of data to
be written. For 1 full node, only 2GB of data could be
written out before reaching the memory limit per node.
Using Linaro forge [21] for analysis, it was found that
when testing with a problem size of 256×256×256 using
16 cores and the hyperthread mapping, 26% of total
thread time was spent on the computational element i.e.
the CG function and 0.1% of time was spent on the I/O
element. For this workload a peak memory consump-
tion of 14GB per thread was observed, demonstrating
the high memory requirements of the benchmark. To
increase the volume of data written, it was decided to
write the matrix coefficients as well. This would make

each write step of the benchmark resemble a simulation
checkpoint with the problem state and current solution
being written to disk. However, the application reaches
the memory limit per node when this problem size was
scaled to more than 2 nodes. Hence, it was decided to use
an array of dimensions 256×256×128 with each core
writing a 1.69 GiB block of data. The effective memory
bandwidth of HPCG was analysed by the division of
the memory traffic reported by HPCG and the wall time
taken by the iocomp integration. The total memory traffic
is obtained by taking the product of the ‘Raw total
bandwidth’ and the ‘total time of execution’ from the
output file generated.

Listing 5: HPCG computational loop.

initialise_matrix()
for(i=0;i<numberOfCgSets;i++)
{
-- start loop timer

-- start data send timer
send(matrix)
-- end data send timer

-- start compute timer
ZeroVector(x)
test(matrix)
CG(A,x,...)
-- end compute timer

testnorms_data.values;
-- start wait timer
wait(matrix)
-- end wait timer
testnorms()

-- end loop timer
}

E. Experimental setup

The jobs were submitted at least 3 times to account for
system noise. The same CPU cores are requested within
1 node for consistency. The timers for the different I/O
phases were obtained by each rank and written by rank
0 after performing a reduction to get the maximum value
of that timer across the ranks. The wall time is measured
until the last I/O call by the program. For the lustre
storage system on ARCHER2, the default stripe size
and maximum stripe counts are used. The list of the



libraries and environments used for the results are given
in table III An additional environment flag used was
FI_OFI_RXM_SAR_LIMIT=64k as recommended in
the user guide for ARCHER2 [22].

I/O library Version
Prg-Env-gnu 8.0.0
craype 2.7.6
GCC 10.2.0
Cray MPICH 8.1.4
Cray HDF5 parallel 1.12.0
ADIOS2 2.8.0
GNU 9.1
iocomp 1.1.3

TABLE III: Environments used.

IV. RESULTS

A. STREAM

1) Baseline comparison: A baseline comparison was
established to compare the average compute time ob-
tained using the different SLURM mappings against the
STREAM benchmark code [4]. This benchmark was run
as an array of 3 jobs on ARCHER2, and the values were
averaged. The STREAM implementation using iocomp
included the “MPI Test” calls in the computational loop
of the different kernels, thus the computation times
include overhead due to the calls to “MPI Test”.

To measure a like-for-like comparison against the
STREAM benchmark, the “MPI Test” calls were dis-
abled in the STREAM implementation by commenting
out the “MPI Test” preprocessor flag. When included in
the compilation, this flag removes the “MPI Test” calls
from the program. The resulting compute times for a
local array size of 0.125GiB are presented in Fig. 3.
Both the consecutive and hyperthread configurations
show similar trends to the sequential, with very minimal
overhead for the consecutive whereas for hyperthread
the overhead is slightly over 10%, reflecting the cost
incurred by the switching between hardware threads
running the compute and I/O processes. However, for
the oversubscribe case, the overhead becomes significant
with timings up to 36% higher in the COPY case, show-
ing the inefficiency of the oversubscribe configuration,
demonstrating the high cost of the context switching in
a single core without the support of SMT threads.

2) Wall time comparison: The wall time is measured
across the different I/O layers for a local size per core
of 0.125GiB for 1,2,4,8,16 and 32 fully populated nodes
with weak scaling across the different mappings. The
plot for the MPIIO backend is shown in Fig. 4. It is
consistently shown that the oversubscribe case has the

Copy(s) Scalar(s) Add(s) Triad(s)

0.18

0.20

0.22

0.24

0.26

Av
g 

co
m

pu
te

 ti
m

e(
s)

Consecutive Hyperthread Oversubscribe Sequential Baseline

Fig. 3: Baseline comparison for STREAM benchmark
local array size 0.125GiB.

Copy(s) Scalar(s) Add(s) Triad(s)
Consecutive 1.04 1.04 0.82 0.89
Hyperthread 1.12 1.13 0.9 0.97
Oversubscribe 1.36 1.26 1.06 1.12
Sequential 1.0 1.0 0.79 0.86

TABLE IV: Ratio of values obtained using io-
comp divided by values obtained using
STREAM benchmark for MPIIO, local
size 0.125GiB.

64 128 256 512 1024 20480

5000

10000

15000

20000

25000

MPIIO

Number of compute processes

W
al

l t
im

e 
(s

)

Consecutive Hyperthread Oversubscribe Sequential

Fig. 4: STREAM wall time comparison using MPIIO
comparing oversubscribe mapping to the other
mappings with local size 0.125GiB.



highest wall time across all the mappings which is most
likely due to the expensive context switching within
the same hardware core. As expected, the cost of this
increases over the number of ranks, which makes it
unsuitable for the purposes of a dedicated I/O server.
Thus, from this point, the oversubscribe mapping will be
removed from the analysis and the rest of the mappings
will be analysed. To observe the effects on wall time of

64 128 256 512 10240

1000

2000

3000

4000

5000

MPI_Test disabled

64 128 256 512 1024

MPI_Test enabled

Number of compute processes

W
al

l t
im

e 
(s

)

Consecutive Hyperthread Sequential

Fig. 5: Wall time comparison between STREAM runs
using MPIIO I/O backend with “MPI Test” en-
abled and disabled for a local size of 0.125GiB.

the STREAM implementation, the program was run with
and without including the “MPI Test” calls by using
the preprocessor flag “MPI TEST” when building the
benchmark. The “MPI Test” function is called through
an abstracting function from iocomp, “dataSendTest”,
which tests the status of the corresponding user-provided
MPI Request handle if the asynchronous I/O is selected.
The results are plotted with a local size of 0.125GiB for
each case and are presented in Fig. 5. It was observed
that by including the “MPI Test”, the effects on the wall
time of the STREAM implementation is seen from 256
compute processes. Further, the upper bound values of
the hyperthread and the consecutive case have a higher
wall time when the MPI tests are disabled, demonstrating
the benefit of progressing the “dataSend” operation.
There is no significant change in the wall time for the
sequential case as the “dataSendTest” function takes no
action when synchronous I/O is selected. Thus for a
higher number of nodes, it demonstrates that enabling the
“MPI Test” calls is useful in improving the application
wall time as they help in progressing the asynchronous

MPI Requests [18]. The following results will have
“MPI Test” calls enabled.

64 128 256 512 1024

1000

2000

3000

4000

5000
MPIIO

64 128 256 512 1024

HDF5

64 128 256 512 1024

1000

2000

3000

4000

5000
ADIOS2_BP4

64 128 256 512 1024

ADIOS2_HDF5

Number of compute processes
W

al
l t

im
e 

(s
)

Consecutive Hyperthread Sequential

Fig. 6: STREAM wall time comparison using different
I/O libraries for local size of 0.125GiB.

Comparing the wall time achieved across all the I/O
layers in Fig. 6, it can be seen that the consecutive
mapping of the “I/O server” achieves less variable and in
most cases improved wall time output. However, for the
MPIIO and the HDF5 I/O back-ends, the hyperthread
mapping performed slower than the other mappings
and gets progressively worse as the number of ranks
increases. In contrast, for the ADIOS2 HDF5 I/O back-
ends, the hyperthread mapping returned comparable and
less variable wall time output than the sequential map-
ping. The ADIOS2 back-ends showed improved scalabil-
ity and more consistent results compared to the other I/O
back-ends. To analyse these results, a breakdown of wall
time into time doing computing and time spent doing
I/O writing across all the kernels was plotted for each
I/O back-end in Fig. 7. Each of the presented timers is
reduced across processes to get the maximum value. The
wall time is measured outside the computational loop and
reduced across processes. As a result, when interpreting
this data the compute I/O times may add up differently
to the wall time.

The STREAM implementation was dominated by the
time taken to complete the I/O operations, whereas the
compute time was a fraction of the total time. The com-
pute time under the sequential mapping stayed consistent



64 128 256 512 10240

125

250

375

500 MPIIO

64 128 256 512 1024

HDF5

64 128 256 512 10240

125

250

375

500 ADIOS2_BP4

64 128 256 512 1024

ADIOS2_HDF5

0.0

17.5

35.0

52.5

70.0

0.0

17.5

35.0

52.5

70.0

0.0

17.5

35.0

52.5

70.0

0.0

17.5

35.0

52.5

70.0

0.0

17.5

35.0

52.5

70.0

0.0

17.5

35.0

52.5

70.0

Number of compute processes - ADIOS2_HDF5
Co

m
pu

te
 ti

m
e(

s)
 li

ne
 p

lo
t

I/O
 ti

m
e(

s)
 b

ar
 p

lo
t

Consecutive Hyperthread Sequential

Fig. 7: Breakdown of compute time vs I/O time for
local size 0.125GiB.

with an increasing number of processes and across all
the I/O back-ends, which was to be expected since the
STREAM benchmark is weak scaling and is an embar-
rassingly parallel program. The compute time under the
consecutive mapping was also similar across the different
I/O back-ends, but it was higher than the sequential
mapping, due to the cost of calling the “MPI Test” calls,
shown in code listing 4. This increase in compute time
was offset by a reduction in the I/O time resulting in
a lower wall time compared to the sequential mapping.
The compute time by using the hyperthread mapping
was higher than that by consecutive mapping, which
is likely due to the added costs of context switching
for the hyperthread cases when the I/O server cores are
waiting for the I/O operations [12]. The performance of
the hyperthread mapping also varied based on which
I/O back-end was used. In the case of MPIIO and
HDF5, the hyperthread mapping was conclusively poorer
compared to the other mappings, with the I/O time
increasing almost linearly with an increase in the number
of processes. In contrast, for ADIOS2 BP4 and HDF5
the I/O times for the hyperthread mapping remained
consistent similar to the other mappings. ADIOS2 HDF5
incurred the highest compute times under hyperthread
mapping, suggesting that the MPI Test commands in-
troduced linearly increasing additional time costs as the
number of processes increased. ADIOS2 BP4 shows a

64 128 256 512 1024
0.4

0.6

0.8

1.0
MPIIO

64 128 256 512 1024

HDF5

64 128 256 512 1024
0.4

0.6

0.8

1.0
ADIOS2_BP4

64 128 256 512 1024

ADIOS2_HDF5

Number of compute processes

Sp
ee

du
p 

of
 c

om
pu

te
Ti

m
e 

wi
th

 M
PI

_T
es

t

Consecutive Hyperthread Sequential

Fig. 8: Speedup of total compute time when MPI Test
is enabled w.r.t when it is disabled, for local size
0.125GiB.

more consistent compute time under hyperthread map-
ping, which suggest that the MPI Test commands are
not increasing additional time costs with an increasing
number of processes. The addition of MPI Test calls is
an important factor that could explain the changes in
the compute times between the different mappings and
the different I/O back-ends. To analyse this effect on
compute time, a speedup plot is presented in Fig. 8 of
runs with MPI Test enabled wrt. the runs without the
MPI Test calls.

The speedup of compute times shows that in HDF5
and MPIIO, the addition of MPI Test calls has almost
similar costs for hyperthread and consecutive mappings.
However, ADIOS2 BP4 clearly shows that addition of
MPI Test calls has a higher cost for the hyperthread
mapping as compared to the consecutive mapping. In
contrast, ADIOS2 HDF5 has a higher cost in the con-
secutive mapping when compared to the hyperthread
mapping.

3) Strong scaling: The STREAM implementation
was designed as a weak scaling application, however,
the performance of iocomp under strong scaling is also
of interest. For the strong scaling case a global size of
8 GiB is used with a writing frequency of 10 compute
cycles per write. The strong scaling results presented in
Fig. 9 show that the consecutive mapping scales better
than the sequential mapping especially for the lower
node counts which have a higher local size of data. It
is observed that the hyperthread mapping still returns
a higher wall time than the other mappings for almost



64 128 256 512 1024

200

400

600

MPIIO

64 128 256 512 1024

HDF5

64 128 256 512 1024

200

400

600

ADIOS2_BP4

64 128 256 512 1024

ADIOS2_HDF5

Number of compute processes

W
al

l t
im

e 
(s

)
Consecutive Hyperthread Sequential

Fig. 9: STREAM wall time comparison using different
I/O libraries in strong scaling with a global size
of 8 GiB.

64 128 256 512 10240

5

10

15

20 Copy

64 128 256 512 1024

Scalar

64 128 256 512 10240

5

10

15

20 Add

64 128 256 512 1024

Triad

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

Number of compute processes - MPIIO

Co
m

pu
te

 ti
m

e(
s)

 li
ne

 p
lo

t

I/O
 ti

m
e(

s)
 b

ar
 p

lo
t

Consecutive Hyperthread Sequential

Fig. 10: STREAM breakdown comparison using
MPIIO in strong scaling with a global size of
8 GiB.

all the I/O back-ends. The ADIOS2 BP4 I/O back-end
appears to scale at a better rate than the other back-ends
for all the mappings, this is particularly clear for the
hyperthreaded setup. This was expected as ADIOS2 uses
one aggregator per compute node as default, increasing
the available communication bandwidth between the

64 128 256 512 10240

5

10

15

20 Copy

64 128 256 512 1024

Scalar

64 128 256 512 10240

5

10

15

20 Add

64 128 256 512 1024

Triad

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

Number of compute processes - ADIOS2_BP4

Co
m

pu
te

 ti
m

e(
s)

 li
ne

 p
lo

t

I/O
 ti

m
e(

s)
 b

ar
 p

lo
t

Consecutive Hyperthread Sequential

Fig. 11: STREAM breakdown comparison using
ADIOS2 BP4 in strong scaling with a global
size of 8GiB.

compute nodes and Lustre system proportionally. Similar
to the weak scaling results from Fig. 6, the ADIOS2
engines have a comparable performance between the
hyperthread mapping and the other mappings.

B. HPCG

As discussed in section III-D, the effective bandwidth
of HPCG was analysed by using the total amount of
memory used by the benchmark and dividing by the wall
time taken by the iocomp integration. The results are
shown in Fig. 12.

It can be seen that the consecutive mapping shows
the highest effective bandwidth out of all the mappings,
which holds true for all the I/O back-ends. This matches
the observations from the previous results. Likewise,
using the ADIOS2 engines the hyperthread and sequen-
tial mappings show comparable effective bandwidths to
consecutive as well as higher effective bandwidths than
the other I/O back-ends. As before, ADIOS2 HDF5 out-
performs the other I/O back-ends, especially when con-
sidering the hyperthread mapping. As per this result, the
ADIOS2 HDF5 abstraction returns better performance,
even when compared against the original HDF5 I/O
back-end, with comparable effective bandwidths from
using the consecutive mapping. However, when using the
hyperthread and the sequential mappings the ADIOS2



1 2 4 8 16 320

1000

2000

MPIIO

1 2 4 8 16 32

HDF5

1 2 4 8 16 320

1000

2000

ADIOS2_BP4

1 2 4 8 16 32

ADIOS2_HDF5

Number of nodes each with 16 compute processes

Ef
fe

ct
iv

e 
HP

CG
 m

em
or

y 
ba

nd
wi

dt
h 

(G
B/

s)
Consecutive Hyperthread Sequential

Fig. 12: HPCG effective bandwidth using 1.69GiB per
core of memory.

HDF5 I/O backend returns better performance. These
results match what was observed in STREAM ad are
analysed further in Fig. 13, showing the compute times
and I/O times which are a sum of the wait times and the
sending times.

1 2 4 8 16 320

150

300

450

600 MPIIO

1 2 4 8 16 32

HDF5

1 2 4 8 16 320

150

300

450

600 ADIOS2_BP4

1 2 4 8 16 32

ADIOS2_HDF5

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

Number of nodes each with 16 compute processes

I/O
 ti

m
e(

s)
 li

ne
 p

lo
t

Co
m

pu
te

 ti
m

e(
s)

 b
ar

 p
lo

t

Consecutive Hyperthread Sequential

Fig. 13: HPCG timers breakdown using local size
of1.69GiB.

Comparing the times across the mappings, it was
found that the I/O times for the consecutive and the
hyperthread mappings are negligible. In comparison, the
sequential mapping shows a much higher I/O time than
the other mappings, while the compute time is compa-
rable to that of the consecutive mapping in most cases.

This implies that the wait times at the end of the loop as
per code block 5 are very small for the hyperthread and
consecutive mappings. Thus, demonstrating that the cost
of sending data to a dedicated I/O server was absorbed
into the compute time for these mappings.

From comparing the times across the I/O back-ends,
it was found that as the number of nodes increase, the
I/O times also increase for the MPIIO and the HDF5
I/O back-ends. In comparison, the I/O times for the
ADIOS2 back-ends stay roughly consistent after 2 nodes,
thus showing the improved scalability performance of
ADIOS2 compared to the other I/O back-ends. Inter-
estingly, the ADIOS2 HDF5 performs better than the
ADIOS2 BP4 I/O back-end with improved compute
times and I/O times thus explaining the higher effective
bandwidth achieved by the ADIOS2 HDF5 I/O back-end
from Fig. 12.

To explain the difference in the performance results
obtained by using the different I/O back-ends, STREAM
was instrumented with the DARSHAN I/O tool [23].
Using a small job run with 10 compute cycles and
1 I/O cycle for the same file size as the production
runs, it was observed that the different I/O back-ends
present different behaviour when writing to disk. These
results are obtained by using 64 compute processes in the
hyperthread mapping. It was found that the ADIOS2 BP4
back-end was writing using mainly 1 process, and much
larger file sizes in one aggregation. This was in contrast
to the other back-ends which were writing with more
processes. These would explain the improved relative
performance of the hyperthread case shown in Fig. 7,
where it is observed that the ADIOS2 back-ends use
less time completing their I/O operations compared to
the HDF5 and MPIIO back-ends.

V. CONCLUSIONS AND FUTURE WORK

The iocomp library [17] was developed to provide a
comparison between asynchronous I/O and direct syn-
chronous I/O to test the hypothesis that SMT cores on
ARCHER2 could perform the I/O requests from the
main core asynchronously, potentially resulting in higher
application performance. The iocomp provided the “I/O
server” implementation and the “client server” tested
against the STREAM [4] and HPCG benchmarks to
replicate the behaviour of typical HPC applications.

The STREAM benchmark was implemented based on
the repository by Jeff Hammond [4]. The data output
by the kernels were sent through iocomp to several I/O
back-ends and the different timings were recorded for
analysis.



The compute times of the relatively simple STREAM
kernels with contiguous memory accesses were dwarfed
by the I/O times and as a result, the wall time was
mainly due to the I/O times. This skewed the results and
the wall time was then dependent on the I/O bandwidth
per kernel. To better represent typical HPC applications,
the number of compute cycles was increased for a
given number of I/O cycles. For these results, a fre-
quency of 10 compute cycles per write was set. From
Fig. 4, it was found that the oversubscribe mapping
was returning sub-optimal performance. As compared to
the other mappings, the oversubscribe mapping suffers
with additional costs of context switching within the
same set of resources. Due to the demonstrated poor
performance of this mapping, it was removed from
the later analyses. The effects of calling MPI Test to
progress asynchronous operations were tested by com-
paring against the case with the calls disabled, shown
in Fig. 5. It was found that enabling the MPI Test calls
reduced the variability in the times, thus returning a more
reproducible result and also results in a reduced time for
the hyperthread mappings at higher process counts. Com-
paring the wall times across the different I/O back-ends
shown in Fig. 6, it was observed that the consecutive
mapping requires a lower wall time compared to the hy-
perthread and the sequential mapping. It was also found
that the ADIOS2 I/O engines returned lower wall times
for the hyperthread mappings, with results comparable
to the sequential mapping. This was unexpected, because
the hyperthread mappings returned a much higher wall
time compared to the sequential mappings when using
the MPIIO and HDF5 I/O back-ends. Analysing the
breakdown in the wall times, it was observed that the
hyperthread mapping showed an increase in the compute
times as compared to the other mappings, implying that
it spent more time in the MPI Test calls. This resulted
in the lowered performance of the hyperthread mapping
as compared to the sequential mapping.

When testing the iocomp library with the HPCG
benchmark [24], the opposite problem was faced to the
STREAM benchmark. In the initial test, the output vector
was sent to the iocomp library for writing, however the
memory consumption per solution element limited the
local size per node of ARCHER2. To test the library
with a more significant I/O load, the matrix coefficients
were also output through the iocomp library, simulating a
checkpoint step. This increased the data size of arrays to
be written by iocomp and the I/O back-ends, providing a
more realistic test of our hypothesis. From analysing the
effective bandwidth of HPCG in Fig. 12, it was observed

that once again the sequential mapping returns better per-
formance than the other mappings. The ADIOS2 engines
show a comparable performance between the sequential
and the hyperthread mapping with the ADIOS2 HDF5
outperforming the ADIOS2 BP4 back-ends. This is then
analysed further in Fig. 13, where it is observed that
the ADIOS2 HDF5 engine has the least compute time
and the least I/O times out of all the back-ends, and
this difference is more stark for the higher node counts.
From a MAP analysis comparing the behaviours of the
2 back-ends, it was found that the ADIOS2 BP4 engine
has a higher I/O time due to the cost of flushing data
from the BP4 buffers in the current setup of iocomp.

From these results, it was found that the consecutive
mapping shows the better performance compared to
the hyperthread and the sequential mappings. However,
the hyperthread mapping shows a reduced performance
compared to the sequential mapping for the MPIIO
and HDF5 back-ends, whereas it shows comparable
performance when using the ADIOS2 BP4 and HDF5
back-ends.

Future investigations using iocomp will investigate the
compute bound case using the HPL benchmark, and its
application to real world problems using the FEniCSx
finite element solver [25], [26], [27]. It would also be
interesting to implement this server on machines with
more than 2 SMT cores to further test the effectiveness
of SMT cores as dedicated I/O servers. Fulhame [28],
an ARM based supercomputer having 4 SMT cores in a
CPU would be an ideal test bed for this experiment. A
range of different ratios between the number of compute
and I/O servers could be investigated to find an ideal ratio
of compute servers to I/O servers. Finally, the iocomp
library could be tested against real-life HPC applications
with checkpointing workloads, which would be a strong
use case for this library.

ACKNOWLEDGMENTS

This work used the ARCHER2 UK National Su-
percomputing Service (https://www.archer2.ac.uk). This
work was supported by an EPCC funded studentship as
part of the ASiMoV project (EP/S005072/1). Funding
and guidance from EPCC is gratefully acknowledged.

REFERENCES

[1] Hardware - ARCHER2 user documentation.
[Online]. Available: https://docs.archer2.ac.uk/
user-guide/hardware/

[2] IO500 - SC22 - IO500 list. [Online]. Available:
https://io500.org/

(https://www.archer2.ac.uk)
https://docs.archer2.ac.uk/user-guide/hardware/
https://docs.archer2.ac.uk/user-guide/hardware/
https://io500.org/


[3] D. M. Tullsen, S. J. Eggers, and H. M. Levy,
“Simultaneous multithreading: Maximizing on-chip
parallelism.”

[4] “GitHub - jeffhammond/STREAM: STREAM
benchmark.” [Online]. Available: https://github.
com/jeffhammond/STREAM

[5] J. Dongarra, M. A. Heroux, and P. Luszczek,
“A new metric for ranking high-performance
computing systems,” National Science Review,
vol. 3, no. 1, pp. 30–35. [Online]. Available: https:
//academic.oup.com/nsr/article/3/1/30/2460324

[6] O. Celebioglu, A. Saify, Tau Leng, Jenwei
Hsieh, V. Mashayekhi, and R. Rooholamini, “The
performance impact of computational efficiency
on HPC clusters with hyper-threading technology,”
in 18th International Parallel and Distributed
Processing Symposium, 2004. Proceedings. IEEE,
pp. 250–255. [Online]. Available: http://ieeexplore.
ieee.org/document/1303311/

[7] M. Curtis-Maury, T. Wang, C. Antonopoulos, and
D. Nikolopoulos, “Integrating multiple forms of
multithreaded execution on multi-SMT systems: a
study with scientific applications,” in Second Inter-
national Conference on the Quantitative Evaluation
of Systems (QEST’05), pp. 199–208.

[8] R. Grant and A. Afsahi, “Power-performance
efficiency of asymmetric multiprocessors for multi-
threaded scientific applications,” in Proceedings
20th IEEE International Parallel & Distributed
Processing Symposium. IEEE, p. 8 pp.
[Online]. Available: http://ieeexplore.ieee.org/
document/1639601/

[9] S. Saini, H. Jin, R. Hood, D. Barker,
P. Mehrotra, and R. Biswas, “The impact of
hyper-threading on processor resource utilization
in production applications,” in 2011 18th
International Conference on High Performance
Computing. IEEE, pp. 1–10. [Online]. Available:
http://ieeexplore.ieee.org/document/6152743/

[10] A. Vega, A. Buyuktosunoglu, and P. Bose, “SMT-
centric power-aware thread placement in chip mul-
tiprocessors.”

[11] L. Porter, M. A. Laurenzano, A. Tiwari, A. Jundt,
W. A. Ward, Jr., R. Campbell, and L. Carrington,
“Making the most of SMT in HPC: System- and
application-level perspectives,” ACM Transactions
on Architecture and Code Optimization, vol. 11,
no. 4, pp. 1–26. [Online]. Available: https:
//dl.acm.org/doi/10.1145/2687651

[12] W. Jia, J. Shan, T. O. Li, X. Shang, H. Cui, and

X. Ding, “VSMT-IO: Improving i/o performance
and efficiency on SMT processors in virtualized
clouds.”

[13] N. Brown, M. Weiland, A. Hill, and B. Shipway,
“In-situ data analytics for highly scalable cloud
modelling on cray machines,” Concurrency and
Computation: Practice and Experience, vol. 30,
no. 1, p. e4331. [Online]. Available: http://arxiv.
org/abs/2010.14127

[14] T. Herault, Y. Robert, A. Bouteiller, D. Arnold,
K. Ferreira, G. Bosilca, and J. Dongarra,
“Optimal cooperative checkpointing for shared
high-performance computing platforms,” in 2018
IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW).
IEEE, pp. 803–812. [Online]. Available:
https://ieeexplore.ieee.org/document/8425494/

[15] H. Tang, Q. Koziol, J. Ravi, and S. Byna,
“Transparent asynchronous parallel i/o using
background threads,” IEEE Transactions on
Parallel and Distributed Systems, vol. 33,
no. 4, pp. 891–902. [Online]. Available:
https://ieeexplore.ieee.org/document/9459479/

[16] S.-M. Tseng, B. Nicolae, F. Cappello,
and A. Chandramowlishwaran, “Demystifying
asynchronous i/o interference in HPC applications,”
The International Journal of High Performance
Computing Applications, vol. 35, no. 4, pp. 391–
412. [Online]. Available: http://journals.sagepub.
com/doi/10.1177/10943420211016511

[17] S. Bhardwaj, “iocomp.” [Online]. Available: https:
//github.com/iocomp-org/iocomp.git

[18] MPI forum. [Online]. Available: https://www.
mpi-forum.org/

[19] V. Marjanović, J. Gracia, and C. W. Glass,
“Performance modeling of the HPCG benchmark,”
in High Performance Computing Systems.
Performance Modeling, Benchmarking, and
Simulation, S. A. Jarvis, S. A. Wright, and S. D.
Hammond, Eds. Springer International Publishing,
vol. 8966, pp. 172–192, series Title: Lecture Notes
in Computer Science. [Online]. Available: https:
//link.springer.com/10.1007/978-3-319-17248-4 9

[20] Shrey Bhardwaj, “iocomp-hpcg.” [Online]. Avail-
able: https://github.com/iocomp-org/iocomp-hpcg.
git

[21] linaroforge. [Online]. Available: https://www.
linaroforge.com/

[22] I/o and file systems - ARCHER2 user
documentation. [Online]. Available: https://docs.

https://github.com/jeffhammond/STREAM
https://github.com/jeffhammond/STREAM
https://academic.oup.com/nsr/article/3/1/30/2460324
https://academic.oup.com/nsr/article/3/1/30/2460324
http://ieeexplore.ieee.org/document/1303311/
http://ieeexplore.ieee.org/document/1303311/
http://ieeexplore.ieee.org/document/1639601/
http://ieeexplore.ieee.org/document/1639601/
http://ieeexplore.ieee.org/document/6152743/
https://dl.acm.org/doi/10.1145/2687651
https://dl.acm.org/doi/10.1145/2687651
http://arxiv.org/abs/2010.14127
http://arxiv.org/abs/2010.14127
https://ieeexplore.ieee.org/document/8425494/
https://ieeexplore.ieee.org/document/9459479/
http://journals.sagepub.com/doi/10.1177/10943420211016511
http://journals.sagepub.com/doi/10.1177/10943420211016511
https://github.com/iocomp-org/iocomp.git
https://github.com/iocomp-org/iocomp.git
https://www.mpi-forum.org/
https://www.mpi-forum.org/
https://link.springer.com/10.1007/978-3-319-17248-4_9
https://link.springer.com/10.1007/978-3-319-17248-4_9
https://github.com/iocomp-org/iocomp-hpcg.git
https://github.com/iocomp-org/iocomp-hpcg.git
https://www.linaroforge.com/
https://www.linaroforge.com/
https://docs.archer2.ac.uk/user-guide/io/


archer2.ac.uk/user-guide/io/
[23] Darshan – HPC i/o characterization tool.

[Online]. Available: https://www.mcs.anl.gov/
research/projects/darshan/

[24] HPCG benchmark. [Online]. Available: https:
//hpcg-benchmark.org/

[25] M. W. Scroggs, I. A. Baratta, C. N. Richardson,
and G. N. Wells, “Basix: a runtime finite
element basis evaluation library,” Journal of
Open Source Software, vol. 7, no. 73, p. 3982.
[Online]. Available: https://joss.theoj.org/papers/
10.21105/joss.03982

[26] M. W. Scroggs, J. S. Dokken, C. N. Richardson,
and G. N. Wells, “Construction of arbitrary
order finite element degree-of-freedom maps on
polygonal and polyhedral cell meshes,” ACM
Transactions on Mathematical Software, vol. 48,
no. 2, pp. 18:1–18:23. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3524456

[27] M. S. Alnæs, A. Logg, K. B. Ølgaard, M. E.
Rognes, and G. N. Wells, “Unified form language:
A domain-specific language for weak formulations
of partial differential equations,” ACM Transactions
on Mathematical Software, vol. 40, no. 2, pp.
9:1–9:37. [Online]. Available: https://dl.acm.org/
doi/10.1145/2566630

[28] Fulhame | EPCC. [Online]. Available: https:
//www.epcc.ed.ac.uk/hpc-services/fulhame

https://docs.archer2.ac.uk/user-guide/io/
https://www.mcs.anl.gov/research/projects/darshan/
https://www.mcs.anl.gov/research/projects/darshan/
https://hpcg-benchmark.org/
https://hpcg-benchmark.org/
https://joss.theoj.org/papers/10.21105/joss.03982
https://joss.theoj.org/papers/10.21105/joss.03982
https://dl.acm.org/doi/10.1145/3524456
https://dl.acm.org/doi/10.1145/3524456
https://dl.acm.org/doi/10.1145/2566630
https://dl.acm.org/doi/10.1145/2566630
https://www.epcc.ed.ac.uk/hpc-services/fulhame
https://www.epcc.ed.ac.uk/hpc-services/fulhame


APPENDIX

Consecutive Hyperthread Oversubscribe

TYPE MPI
RANK

MPI
SIZE CPU-ID NODE-ID PAIR TYPE MPI

RANK
MPI
SIZE CPU-ID NODE-ID PAIR TYPE MPI

RANK
MPI
SIZE CPU-ID NODE-ID PAIR

COMP 0 64 0 nid004204 16 COMP 0 64 0 nid004204 16 COMP 0 64 0 nid004204 16
COMP 1 64 1 nid004204 17 COMP 1 64 1 nid004204 17 COMP 1 64 1 nid004204 17
COMP 2 64 2 nid004204 18 COMP 2 64 2 nid004204 18 COMP 2 64 2 nid004204 18
COMP 3 64 3 nid004204 19 COMP 3 64 3 nid004204 19 COMP 3 64 3 nid004204 19
COMP 4 64 4 nid004204 20 COMP 4 64 4 nid004204 20 COMP 4 64 4 nid004204 20
COMP 5 64 5 nid004204 21 COMP 5 64 5 nid004204 21 COMP 5 64 5 nid004204 21
COMP 6 64 6 nid004204 22 COMP 6 64 6 nid004204 22 COMP 6 64 6 nid004204 22
COMP 7 64 7 nid004204 23 COMP 7 64 7 nid004204 23 COMP 7 64 7 nid004204 23
COMP 8 64 8 nid004204 24 COMP 8 64 8 nid004204 24 COMP 8 64 8 nid004204 24
COMP 9 64 9 nid004204 25 COMP 9 64 9 nid004204 25 COMP 9 64 9 nid004204 25
COMP 10 64 10 nid004204 26 COMP 10 64 10 nid004204 26 COMP 10 64 10 nid004204 26
COMP 11 64 11 nid004204 27 COMP 11 64 11 nid004204 27 COMP 11 64 11 nid004204 27
COMP 12 64 12 nid004204 28 COMP 12 64 12 nid004204 28 COMP 12 64 12 nid004204 28
COMP 13 64 13 nid004204 29 COMP 13 64 13 nid004204 29 COMP 13 64 13 nid004204 29
COMP 14 64 14 nid004204 30 COMP 14 64 14 nid004204 30 COMP 14 64 14 nid004204 30
COMP 15 64 15 nid004204 31 COMP 15 64 15 nid004204 31 COMP 15 64 15 nid004204 31

IO 16 64 0 nid004206 0 IO 16 64 128 nid004204 0 IO 16 64 0 nid004204 0
IO 17 64 1 nid004206 1 IO 17 64 129 nid004204 1 IO 17 64 1 nid004204 1
IO 18 64 2 nid004206 2 IO 18 64 130 nid004204 2 IO 18 64 2 nid004204 2
IO 19 64 3 nid004206 3 IO 19 64 131 nid004204 3 IO 19 64 3 nid004204 3
IO 20 64 4 nid004206 4 IO 20 64 132 nid004204 4 IO 20 64 4 nid004204 4
IO 21 64 5 nid004206 5 IO 21 64 133 nid004204 5 IO 21 64 5 nid004204 5
IO 22 64 6 nid004206 6 IO 22 64 134 nid004204 6 IO 22 64 6 nid004204 6
IO 23 64 7 nid004206 7 IO 23 64 135 nid004204 7 IO 23 64 7 nid004204 7
IO 24 64 8 nid004206 8 IO 24 64 136 nid004204 8 IO 24 64 8 nid004204 8
IO 25 64 9 nid004206 9 IO 25 64 137 nid004204 9 IO 25 64 9 nid004204 9
IO 26 64 10 nid004206 10 IO 26 64 138 nid004204 10 IO 26 64 10 nid004204 10
IO 27 64 11 nid004206 11 IO 27 64 139 nid004204 11 IO 27 64 11 nid004204 11
IO 28 64 12 nid004206 12 IO 28 64 140 nid004204 12 IO 28 64 12 nid004204 12
IO 29 64 13 nid004206 13 IO 29 64 141 nid004204 13 IO 29 64 13 nid004204 13
IO 30 64 14 nid004206 14 IO 30 64 142 nid004204 14 IO 30 64 14 nid004204 14
IO 31 64 15 nid004206 15 IO 31 64 143 nid004204 15 IO 31 64 15 nid004204 15

COMP 32 64 0 nid004207 48 COMP 32 64 0 nid004206 48 COMP 32 64 0 nid004206 48
COMP 33 64 1 nid004207 49 COMP 33 64 1 nid004206 49 COMP 33 64 1 nid004206 49
COMP 34 64 2 nid004207 50 COMP 34 64 2 nid004206 50 COMP 34 64 2 nid004206 50
COMP 35 64 3 nid004207 51 COMP 35 64 3 nid004206 51 COMP 35 64 3 nid004206 51
COMP 36 64 4 nid004207 52 COMP 36 64 4 nid004206 52 COMP 36 64 4 nid004206 52
COMP 37 64 5 nid004207 53 COMP 37 64 5 nid004206 53 COMP 37 64 5 nid004206 53
COMP 38 64 6 nid004207 54 COMP 38 64 6 nid004206 54 COMP 38 64 6 nid004206 54
COMP 39 64 7 nid004207 55 COMP 39 64 7 nid004206 55 COMP 39 64 7 nid004206 55
COMP 40 64 8 nid004207 56 COMP 40 64 8 nid004206 56 COMP 40 64 8 nid004206 56
COMP 41 64 9 nid004207 57 COMP 41 64 9 nid004206 57 COMP 41 64 9 nid004206 57
COMP 42 64 10 nid004207 58 COMP 42 64 10 nid004206 58 COMP 42 64 10 nid004206 58
COMP 43 64 11 nid004207 59 COMP 43 64 11 nid004206 59 COMP 43 64 11 nid004206 59
COMP 44 64 12 nid004207 60 COMP 44 64 12 nid004206 60 COMP 44 64 12 nid004206 60
COMP 45 64 13 nid004207 61 COMP 45 64 13 nid004206 61 COMP 45 64 13 nid004206 61
COMP 46 64 14 nid004207 62 COMP 46 64 14 nid004206 62 COMP 46 64 14 nid004206 62
COMP 47 64 15 nid004207 63 COMP 47 64 15 nid004206 63 COMP 47 64 15 nid004206 63

IO 48 64 0 nid004248 32 IO 48 64 128 nid004206 32 IO 48 64 0 nid004206 32
IO 49 64 1 nid004248 33 IO 49 64 129 nid004206 33 IO 49 64 1 nid004206 33
IO 50 64 2 nid004248 34 IO 50 64 130 nid004206 34 IO 50 64 2 nid004206 34
IO 51 64 3 nid004248 35 IO 51 64 131 nid004206 35 IO 51 64 3 nid004206 35
IO 52 64 4 nid004248 36 IO 52 64 132 nid004206 36 IO 52 64 4 nid004206 36
IO 53 64 5 nid004248 37 IO 53 64 133 nid004206 37 IO 53 64 5 nid004206 37
IO 54 64 6 nid004248 38 IO 54 64 134 nid004206 38 IO 54 64 6 nid004206 38
IO 55 64 7 nid004248 39 IO 55 64 135 nid004206 39 IO 55 64 7 nid004206 39
IO 56 64 8 nid004248 40 IO 56 64 136 nid004206 40 IO 56 64 8 nid004206 40
IO 57 64 9 nid004248 41 IO 57 64 137 nid004206 41 IO 57 64 9 nid004206 41
IO 58 64 10 nid004248 42 IO 58 64 138 nid004206 42 IO 58 64 10 nid004206 42
IO 59 64 11 nid004248 43 IO 59 64 139 nid004206 43 IO 59 64 11 nid004206 43
IO 60 64 12 nid004248 44 IO 60 64 140 nid004206 44 IO 60 64 12 nid004206 44
IO 61 64 13 nid004248 45 IO 61 64 141 nid004206 45 IO 61 64 13 nid004206 45
IO 62 64 14 nid004248 46 IO 62 64 142 nid004206 46 IO 62 64 14 nid004206 46
IO 63 64 15 nid004248 47 IO 63 64 143 nid004206 47 IO 63 64 15 nid004206 47

TABLE V: Example of division of processes using
iocomp with NODESIZE 16 and 4 Nodes.


	Introduction
	Related work
	Methodology
	iocomp
	Initialisation
	Process splitting
	Compute server
	I/O server
	Testing

	ARCHER2 cpu mappings
	STREAM
	HPCG
	Experimental setup

	Results
	STREAM
	Baseline comparison
	Wall time comparison
	Strong scaling

	HPCG

	Conclusions and Future work
	Appendix

