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Introduction

Hypothesis: Can hyperthreads be used as an I/O server to gain
additional “effective” bandwidth?

Developed iocomp library

Compared performance of mapping dedicated I/O server on SMT
cores against other configurations
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ARCHER2 hardware1

HPE CRAY system

5860 nodes

2× AMD EPYC™ 7742,
2.25 GHz, 64-core

Memory/node = 256GiB

Memory/core = 2GiB

128 cores, 256 threads
(including SMT) per
node

Rank of SMT = 128 +
rank of core within a
node

lstopo output clip for ARCHER2.

1https://docs.archer2.ac.uk
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iocomp

Framework created to enable splitting of processes into I/O and
compute servers1

After splitting processes, I/O server gathers data using MPI
asynchronous sends from the client process

Compute server is the client process

Benchmarks used as client process include HPCG, HPL and STREAM

1https://github.com/iocomp-org/iocomp.git
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iocomp

Start

Initialise iocomp library

HT flag == True

split communicatoryes

Compute or
I/O process

do computeCompute

Send solution
asynchronously

Check finished no

Send stop message
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Activate receiver

I/O
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Check finishedno

End program
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iocomp initialisation

1 MPI_Comm iocompInit(struct iocomp_params *iocompParams, MPI_Comm comm, bool FLAG,

2 int ioLibNum, int fullNode)

3 // iocompParams is structure for the library

4 // comm is the global communicator

5 // FLAG is used to switch between the direct synchronous and the asynchronous I/O

6 // ioLibNum is used to select the I/O library

7 // fullNode is used to specify number of ranks placed in 1 node
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iocomp initialisation

1 MPI_Comm iocompInit(struct iocomp_params *iocompParams, MPI_Comm comm, bool FLAG,

2 int ioLibNum, int fullNode)

3 // MPI Comm will be the new "global" communicator for the client process
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ioServer implementation

1 for(;;) {

2 MPI_Probe();

3 len = MPI_Get_count();

4 if (len > 0) {

5 MPI_Recv();

6 write_data();

7 }

8 else {

9 // Recieved ghost message, exit.

10 break();

11 }

12 }
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ioServer data decomposition

1 // find closest sq root

2 root = sqrt(dataSize);

3 // if its a perfect square

4 if(root*root == dataSize) {

5 dim[0] = root;

6 dim[1] = root;

7 }

8 // if square root is a factor

9 else if(dataSize%root == 0) {

10 dim[0] = root;

11 dim[1] = dataSize/root;

12 }

13 // else search for closest factors

14 else {

15 for(int i = 1; i < root; i++) {

16 if(dataSize%(root-i) == 0) {

17 dim[0] = (root-i);

18 dim[1] = dataSize/(root-i);

19 break;

20 }

21 }

22 }
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SLURM mappings

HT flag disabled

Sequential

◦ Default case, with sequential compute and I/O processing

HT flag enabled

Consecutive

◦ Uses 2x number of cores as sequential, without SMT
◦ Compute and I/O processes are placed on separate cores

Hyperthread

◦ Uses the same number of physical cores as sequential, with SMT
◦ Corresponding SMT cores as I/O processes

Oversubscribe

◦ Uses the same number of cores as sequential without SMT
◦ Compute and I/O processes are placed on the same cores
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iocomp ranks division

Number
of nodes

MPI size Division of MPI processes

Compute I/O
1 128 0-63 64-127

2 256 0-127 128-255

3 384
0-127,
256-319

128-255,
320-383

4 512
0-127,
256-383

128-255,
384-511

Table: Division of MPI processes under different MPI sizes with a “fullNode”
value of 128.
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STREAM implementation1

Representing an extreme end of memory-bound computational kernel

Contiguous memory access runs at limit of largest level in memory
hierarchy used

Implemented as a test case for the iocomp library under stream
directory

1https://github.com/iocomp-org/iocomp.git
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STREAM code block

1 for(i=0;i<LOOPCOUNT;i++){

2 copy(C) + test_triad(A)

3 if ((i+1)%WRITE_FREQ == 0){

4 wait_triad(A)

5 send_copy(C)

6 }

7 scale(B) + test_copy(C)

8 if (i%WRITE_FREQ == 0){

9 wait_copy(C)

10 send_scale(B)

11 }

12 add(C) + test_scale(B)

13 if (i%WRITE_FREQ == 0){

14 wait_scale(B)

15 send_add(C)

16 }

17 triad(A) + test_add(C)

18 if (i%WRITE_FREQ == 0){

19 wait_add(C)

20 send_triad(A)

21 }

22 }

STREAM overview.

1 add(c, a, b ...)

2 {

3 for(int i = 0; i<size; i++)

4 {

5 c[i] = a[i] + b[i];

6 if(i%WRITE_FREQ == 0)

7 {

8 dataSendTest(...);

9 }

10 }

11 }

STREAM add kernel.
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HPCG integration1

More representative of typical HPC applications

combining multigrid preconditioner and Conjugate Gradient solver
adds indirection and communication

Another example of a memory-bound program

1https://github.com/iocomp-org/iocomp-hpcg.git
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HPCG integration

1 initialise_matrix();

2 for(i=0;i<numberOfCgSets ;i++) // numberOfCgSets=10

3 {

4

5 dataSend(matrix...);

6

7

8 ZeroVector(x)

9 dataSendTest(matrix...);

10 CG(A,x,...);

11 testnorms_data.values;

12

13

14 dataWait(matrix...);

15

16 testnorms();

17 }

Send time

Compute time

Wait time
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STREAM
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to the other mappings with local size 0.125GiB.
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STREAM
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Wall time comparison between STREAM runs using MPIIO I/O backend with
“MPI Test” enabled and disabled for a local size of 0.125GiB.
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HPCG times breakdown
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Consecutive Hyperthread Sequential

Breakdown of compute time vs I/O time for HPCG with 1.69GiB local size.
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ARM MAP breakdown

MAP breakdown of Sequential run
using HPCG with local size
0.125GiB.

MAP breakdown of Hyperthread run
using HPCG with local size
0.125GiB1.

1To note: these timing proportions should be multiplied by 2 to get the total time of writing due to the averaging being used
per node by MAP

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 26 / 30



Outline

1 Overview

2 Methods

3 Results

4 Conclusions

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 27 / 30



Conclusions and Future Work

iocomp was created to compare different mappings for an I/O server

◦ Different cases considered; Hyperthread, Consecutive, Oversubscribe
and Sequential

◦ Different I/O backends were also tested with these mappings
◦ HPCG and STREAM benchmarks were tested
◦ Consecutive was the best performer, and hyperthreads performance

was dependent on the I/O backend used

Future work

◦ Hyperthread implementation would be more optimised with a shared
memory access

◦ FEniCSx, a PDE solver will be integrated and tested using iocomp
◦ Checkpointing simulations will be tested with the library
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ARM MAP Analysis
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