
Hiding I/O using SMT on the ARCHER2 HPC Cray EX
system

Shrey Bhardwaj
Paul Bartholomew
Mark Parsons

EPCC, University of Edinburgh

May 9, 2023

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 1 / 30



Outline

1 Overview

2 Methods

3 Results

4 Conclusions

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 2 / 30



I/O bottleneck

1033 × 102 4 × 102 6 × 102 2 × 103

MPI ranks

101

102

Ti
m

e 
ta

ke
n 

(s
)

I/O bottleneck

Total
Write
Compute

xCompact-3D1

1https://doi.org/10.5281/zenodo.7898885

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 3 / 30



Introduction

Hypothesis: Can hyperthreads be used as an I/O server to gain
additional “effective” bandwidth?

Developed iocomp library

Compared performance of mapping dedicated I/O server on SMT
cores against other configurations

Benchmarks used: STREAM and HPCG

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 4 / 30



Introduction

Hypothesis: Can hyperthreads be used as an I/O server to gain
additional “effective” bandwidth?

Developed iocomp library1

Compared performance of mapping dedicated I/O server on SMT
cores against other configurations

Benchmarks used: STREAM2 and HPCG3

1https://github.com/iocomp-org/iocomp.git

2https://github.com/jeffhammond/STREAM.git

3https://github.com/hpcg-benchmark/hpcg.git

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 4 / 30

https://github.com/iocomp-org/iocomp.git
https://github.com/jeffhammond/STREAM.git
https://github.com/hpcg-benchmark/hpcg.git


ARCHER2 hardware1

HPE CRAY system

5860 nodes

2× AMD EPYC™ 7742,
2.25 GHz, 64-core

Memory/node = 256GiB

Memory/core = 2GiB

128 cores, 256 threads
(including SMT) per
node

Rank of SMT = 128 +
rank of core within a
node

lstopo output clip for ARCHER2.

1https://docs.archer2.ac.uk

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 5 / 30

https://docs.archer2.ac.uk


ARCHER2 hardware1

HPE CRAY system

5860 nodes

2× AMD EPYC™ 7742,
2.25 GHz, 64-core

Memory/node = 256GiB

Memory/core = 2GiB

128 cores, 256 threads
(including SMT) per
node

Rank of SMT = 128 +
rank of core within a
node

lstopo output clip for ARCHER2.

1https://docs.archer2.ac.uk

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 5 / 30

https://docs.archer2.ac.uk


Outline

1 Overview

2 Methods

3 Results

4 Conclusions

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 6 / 30



iocomp

Framework created to enable splitting of processes into I/O and
compute servers1

After splitting processes, I/O server gathers data using MPI
asynchronous sends from the client process

Compute server is the client process

Benchmarks used as client process include HPCG, HPL and STREAM

1https://github.com/iocomp-org/iocomp.git

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 7 / 30

https://github.com/iocomp-org/iocomp.git


iocomp

Start

Initialise iocomp library

HT flag == True

split communicatoryes

Compute or
I/O process

do computeCompute

Send solution
asynchronously

Check finished no

Send stop message

yes

Activate receiver

I/O

Receive data complete

Stop signal
received

Write data exit loopno yes

do compute no

Write data

Check finishedno

End program

yes

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 8 / 30



iocomp

Start

Initialise iocomp library

HT flag == True split communicatoryes

Compute or
I/O process

do computeCompute

Send solution
asynchronously

Check finished no

Send stop message

yes

Activate receiver

I/O

Receive data complete

Stop signal
received

Write data exit loopno yes

do compute no

Write data

Check finishedno

End program

yes

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 8 / 30



iocomp

Start

Initialise iocomp library

HT flag == True split communicatoryes

Compute or
I/O process

do computeCompute

Send solution
asynchronously

Check finished no

Send stop message

yes

Activate receiver

I/O

Receive data complete

Stop signal
received

Write data exit loopno yes

do compute no

Write data

Check finishedno

End program

yes

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 8 / 30



iocomp

Start

Initialise iocomp library

HT flag == True split communicatoryes

Compute or
I/O process

do computeCompute

Send solution
asynchronously

Check finished no

Send stop message

yes

Activate receiver

I/O

Receive data complete

Stop signal
received

Write data exit loopno yes

do compute no

Write data

Check finishedno

End program

yes

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 8 / 30



iocomp

Start

Initialise iocomp library

HT flag == True split communicatoryes

Compute or
I/O process

do computeCompute

Send solution
asynchronously

Check finished no

Send stop message

yes

Activate receiver

I/O

Receive data complete

Stop signal
received

Write data exit loopno yes

do compute no

Write data

Check finishedno

End program

yes

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 8 / 30



iocomp

Start

Initialise iocomp library

HT flag == True split communicatoryes

Compute or
I/O process

do computeCompute

Send solution
asynchronously

Check finished no

Send stop message

yes

Activate receiver

I/O

Receive data complete

Stop signal
received

Write data exit loopno yes

do compute no

Write data

Check finishedno

End program

yes

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 8 / 30



iocomp

Start

Initialise iocomp library

HT flag == True split communicatoryes

Compute or
I/O process

do computeCompute

Send solution
asynchronously

Check finished no

Send stop message

yes

Activate receiver

I/O

Receive data complete

Stop signal
received

Write data exit loopno yes

do compute no

Write data

Check finishedno

End program

yes

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 8 / 30



iocomp initialisation

1 MPI_Comm iocompInit(struct iocomp_params *iocompParams, MPI_Comm comm, bool FLAG,

2 int ioLibNum, int fullNode)

3 // iocompParams is structure for the library

4 // comm is the global communicator

5 // FLAG is used to switch between the direct synchronous and the asynchronous I/O

6 // ioLibNum is used to select the I/O library

7 // fullNode is used to specify number of ranks placed in 1 node

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 9 / 30



iocomp initialisation

1 MPI_Comm iocompInit(struct iocomp_params *iocompParams, MPI_Comm comm, bool FLAG,

2 int ioLibNum, int fullNode)

3 // MPI Comm will be the new "global" communicator for the client process

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 10 / 30



ioServer implementation

1 for(;;) {

2 MPI_Probe();

3 len = MPI_Get_count();

4 if (len > 0) {

5 MPI_Recv();

6 write_data();

7 }

8 else {

9 // Recieved ghost message, exit.

10 break();

11 }

12 }

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 11 / 30



ioServer data decomposition

1 // find closest sq root

2 root = sqrt(dataSize);

3 // if its a perfect square

4 if(root*root == dataSize) {

5 dim[0] = root;

6 dim[1] = root;

7 }

8 // if square root is a factor

9 else if(dataSize%root == 0) {

10 dim[0] = root;

11 dim[1] = dataSize/root;

12 }

13 // else search for closest factors

14 else {

15 for(int i = 1; i < root; i++) {

16 if(dataSize%(root-i) == 0) {

17 dim[0] = (root-i);

18 dim[1] = dataSize/(root-i);

19 break;

20 }

21 }

22 }

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 12 / 30



SLURM mappings

HT flag disabled

Sequential

◦ Default case, with sequential compute and I/O processing

HT flag enabled

Consecutive

◦ Uses 2x number of cores as sequential, without SMT
◦ Compute and I/O processes are placed on separate cores

Hyperthread

◦ Uses the same number of physical cores as sequential, with SMT
◦ Corresponding SMT cores as I/O processes

Oversubscribe

◦ Uses the same number of cores as sequential without SMT
◦ Compute and I/O processes are placed on the same cores

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 13 / 30



SLURM mappings

HT flag disabled

Sequential

◦ Default case, with sequential compute and I/O processing

HT flag enabled

Consecutive

◦ Uses 2x number of cores as sequential, without SMT
◦ Compute and I/O processes are placed on separate cores

Hyperthread

◦ Uses the same number of physical cores as sequential, with SMT
◦ Corresponding SMT cores as I/O processes

Oversubscribe

◦ Uses the same number of cores as sequential without SMT
◦ Compute and I/O processes are placed on the same cores

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 13 / 30



SLURM mappings

HT flag disabled

Sequential

◦ Default case, with sequential compute and I/O processing

HT flag enabled

Consecutive

◦ Uses 2x number of cores as sequential, without SMT
◦ Compute and I/O processes are placed on separate cores

Hyperthread

◦ Uses the same number of physical cores as sequential, with SMT
◦ Corresponding SMT cores as I/O processes

Oversubscribe

◦ Uses the same number of cores as sequential without SMT
◦ Compute and I/O processes are placed on the same cores

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 13 / 30



SLURM mappings

HT flag disabled

Sequential

◦ Default case, with sequential compute and I/O processing

HT flag enabled

Consecutive

◦ Uses 2x number of cores as sequential, without SMT
◦ Compute and I/O processes are placed on separate cores

Hyperthread

◦ Uses the same number of physical cores as sequential, with SMT
◦ Corresponding SMT cores as I/O processes

Oversubscribe

◦ Uses the same number of cores as sequential without SMT
◦ Compute and I/O processes are placed on the same cores

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 13 / 30



iocomp ranks division

Number
of nodes

MPI size Division of MPI processes

Compute I/O
1 128 0-63 64-127

2 256 0-127 128-255

3 384
0-127,
256-319

128-255,
320-383

4 512
0-127,
256-383

128-255,
384-511

Table: Division of MPI processes under different MPI sizes with a “fullNode”
value of 128.

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 14 / 30



STREAM implementation1

Representing an extreme end of memory-bound computational kernel

Contiguous memory access runs at limit of largest level in memory
hierarchy used

Implemented as a test case for the iocomp library under stream
directory

1https://github.com/iocomp-org/iocomp.git

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 15 / 30

https://github.com/iocomp-org/iocomp.git


STREAM code block

1 for(i=0;i<LOOPCOUNT;i++){

2 copy(C) + test_triad(A)

3 if ((i+1)%WRITE_FREQ == 0){

4 wait_triad(A)

5 send_copy(C)

6 }

7 scale(B) + test_copy(C)

8 if (i%WRITE_FREQ == 0){

9 wait_copy(C)

10 send_scale(B)

11 }

12 add(C) + test_scale(B)

13 if (i%WRITE_FREQ == 0){

14 wait_scale(B)

15 send_add(C)

16 }

17 triad(A) + test_add(C)

18 if (i%WRITE_FREQ == 0){

19 wait_add(C)

20 send_triad(A)

21 }

22 }

STREAM overview.

1 add(c, a, b ...)

2 {

3 for(int i = 0; i<size; i++)

4 {

5 c[i] = a[i] + b[i];

6 if(i%WRITE_FREQ == 0)

7 {

8 dataSendTest(...);

9 }

10 }

11 }

STREAM add kernel.

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 16 / 30



HPCG integration1

More representative of typical HPC applications

combining multigrid preconditioner and Conjugate Gradient solver
adds indirection and communication

Another example of a memory-bound program

1https://github.com/iocomp-org/iocomp-hpcg.git

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 17 / 30

https://github.com/iocomp-org/iocomp-hpcg.git


HPCG integration

1 initialise_matrix();

2 for(i=0;i<numberOfCgSets ;i++) // numberOfCgSets=10

3 {

4

5 dataSend(matrix...);

6

7

8 ZeroVector(x)

9 dataSendTest(matrix...);

10 CG(A,x,...);

11 testnorms_data.values;

12

13

14 dataWait(matrix...);

15

16 testnorms();

17 }

Send time

Compute time

Wait time

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 18 / 30



Outline

1 Overview

2 Methods

3 Results

4 Conclusions

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 19 / 30



STREAM

64 128 256 512 1024 20480

5000

10000

15000

20000

25000

MPIIO

Number of compute processes

W
al

l t
im

e 
(s

)

Consecutive Hyperthread Oversubscribe Sequential

STREAM wall time comparison using MPIIO comparing oversubscribe mapping
to the other mappings with local size 0.125GiB.

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 20 / 30



STREAM

64 128 256 512 10240

1000

2000

3000

4000

5000

MPI_Test disabled

64 128 256 512 1024

MPI_Test enabled

Number of compute processes

W
al

l t
im

e 
(s

)

Consecutive Hyperthread Sequential

Wall time comparison between STREAM runs using MPIIO I/O backend with
“MPI Test” enabled and disabled for a local size of 0.125GiB.

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 21 / 30



STREAM

64 128 256 512 1024

1000

2000

3000

4000

5000
MPIIO

64 128 256 512 1024

HDF5

64 128 256 512 1024

1000

2000

3000

4000

5000
ADIOS2_BP4

64 128 256 512 1024

ADIOS2_HDF5

Number of compute processes

W
al

l t
im

e 
(s

)

Consecutive Hyperthread Sequential

STREAM wall time comparison using different I/O libraries for local size of
0.125GiB.

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 22 / 30



STREAM

64 128 256 512 10240

125

250

375

500 MPIIO

64 128 256 512 1024

HDF5

64 128 256 512 10240

125

250

375

500 ADIOS2_BP4

64 128 256 512 1024

ADIOS2_HDF5

0.0

17.5

35.0

52.5

70.0

0.0

17.5

35.0

52.5

70.0

0.0

17.5

35.0

52.5

70.0

0.0

17.5

35.0

52.5

70.0

0.0

17.5

35.0

52.5

70.0

0.0

17.5

35.0

52.5

70.0

Number of compute processes - ADIOS2_HDF5

Co
m

pu
te

 ti
m

e(
s)

 li
ne

 p
lo

t

I/O
 ti

m
e(

s)
 b

ar
 p

lo
t

Consecutive Hyperthread Sequential

Breakdown of compute time vs I/O time for local size 0.125GiB.

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 23 / 30



HPCG

1 2 4 8 16 320

1000

2000

MPIIO

1 2 4 8 16 32

HDF5

1 2 4 8 16 320

1000

2000

ADIOS2_BP4

1 2 4 8 16 32

ADIOS2_HDF5

Number of nodes each with 16 compute processes

Ef
fe

ct
iv

e 
HP

CG
 m

em
or

y 
ba

nd
wi

dt
h 

(G
B/

s)

Consecutive Hyperthread Sequential

HPCG effective bandwidth 1.69GiB local size.

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 24 / 30



HPCG times breakdown

1 2 4 8 16 320

150

300

450

600 MPIIO

1 2 4 8 16 32

HDF5

1 2 4 8 16 320

150

300

450

600 ADIOS2_BP4

1 2 4 8 16 32

ADIOS2_HDF5

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

Number of nodes each with 16 compute processes

I/O
 ti

m
e(

s)
 li

ne
 p

lo
t

Co
m

pu
te

 ti
m

e(
s)

 b
ar

 p
lo

t

Consecutive Hyperthread Sequential

Breakdown of compute time vs I/O time for HPCG with 1.69GiB local size.

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 25 / 30



ARM MAP breakdown

MAP breakdown of Sequential run
using HPCG with local size
0.125GiB.

MAP breakdown of Hyperthread run
using HPCG with local size
0.125GiB1.

1To note: these timing proportions should be multiplied by 2 to get the total time of writing due to the averaging being used
per node by MAP

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 26 / 30



Outline

1 Overview

2 Methods

3 Results

4 Conclusions

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 27 / 30



Conclusions and Future Work

iocomp was created to compare different mappings for an I/O server

◦ Different cases considered; Hyperthread, Consecutive, Oversubscribe
and Sequential

◦ Different I/O backends were also tested with these mappings
◦ HPCG and STREAM benchmarks were tested
◦ Consecutive was the best performer, and hyperthreads performance

was dependent on the I/O backend used

Future work

◦ Hyperthread implementation would be more optimised with a shared
memory access

◦ FEniCSx, a PDE solver will be integrated and tested using iocomp
◦ Checkpointing simulations will be tested with the library

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 28 / 30



Conclusions and Future Work

iocomp was created to compare different mappings for an I/O server

◦ Different cases considered; Hyperthread, Consecutive, Oversubscribe
and Sequential

◦ Different I/O backends were also tested with these mappings
◦ HPCG and STREAM benchmarks were tested
◦ Consecutive was the best performer, and hyperthreads performance

was dependent on the I/O backend used

Future work

◦ Hyperthread implementation would be more optimised with a shared
memory access

◦ FEniCSx, a PDE solver will be integrated and tested using iocomp
◦ Checkpointing simulations will be tested with the library

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 28 / 30



Acknowledgements

I would like to thank Dr. Paul Bartholomew, Prof. Mark Parsons and
EPCC for guidance and suggestions.

This work used the ARCHER2 UK National Supercomputing Service 1 and
was supported by an EPCC funded studentship as part of the ASiMoV
project (EP/S005072/1).

1https://www.archer2.ac.uk

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 29 / 30

https://www.archer2.ac.uk


Thank you!

QR code for iocomp-org

→ email: shrey.bhardwaj@ed.ac.uk

→ iocomp: https://github.com/iocomp-org/iocomp.git

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 30 / 30

mailto:shrey.bhardwaj@ed.ac.uk
https://github.com/iocomp-org/iocomp.git


Thank you!

QR code for iocomp-org

→ email: shrey.bhardwaj@ed.ac.uk

→ iocomp: https://github.com/iocomp-org/iocomp.git

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 30 / 30

mailto:shrey.bhardwaj@ed.ac.uk
https://github.com/iocomp-org/iocomp.git


Outline

5 Appendix

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 1 / 2



ARM MAP Analysis

0 250 500 750 1000

107

mpi_call_time

0 250 500 750 1000
101

102

voluntary_context_switches

0 250 500 750 1000

103

mpi_recv

0 250 500 750 1000
101

2 × 101
3 × 1014 × 101

involuntary_context_switches

0 250 500 750 1000

106

mpi_p2p_bytes

0 250 500 750 1000

100

mpi_calls

Time steps, dashed line for sequential and solid line for hyperthread

M
et

ric
 c

ou
nt

er

Shrey Bhardwaj (EPCC) CUG’23 May 9, 2023 2 / 2


	Overview
	Methods
	Results
	Conclusions
	Appendix
	Appendix


