
New User Experiences with K3s and MetalLB on
Managed Nodes

Alan Mutschelknaus
Hewlett Packard Enterprise

Bloomington, MN
alanm@hpe.com

Abstract—Traditional managed nodes on HPE Cray EX
systems dedicated to user compilations and job launch, have not
provided support for user interaction beyond the standard SSH
shell environment. This model works for many use cases, but it
does not provide the flexibility of container orchestration. While
User Access Instances (UAIs) are available as containerized
login environments, they currently run in the Cray System
Management (CSM) Kubernetes (K8s) cluster and would be
better suited to run alongside other user activities.

This paper will show how a cluster of managed nodes running
K3s and MetalLB can be used to host a suite of new experiences
for users. K3s is a lightweight, API compatible distribution
of Kubernetes. Using rootless Podman for container execution
and HAProxy to route SSH connections, users can have a fully
customizable UAI experience. The HAProxy load balancer for
SSH can run as a DaemonSet across the managed nodes for
resiliency. A type of Broker UAI on the managed nodes can then
forward users into a customizable, rootless Podman container.
To illustrate how K3s and MetalLB opens the door to other user
interactions, the paper will also show how JupyterHub can be
deployed to the K3s cluster using Helm.

Index Terms—Kubernetes, Podman, HAProxy, MetalLB

I. INTRODUCTION

There has been a strong response from the HPC community
demonstrating an eagerness for new methods of interacting
with HPC systems. In particular, the paper ”UAIs Come of
Age: Hosting Multiple Custom Interactive Login Experiences
Without Dedicated Hardware” won the CUG 2022 Best
Paper award [1]. At the same time, a common refrain was
that while UAIs are desirable as an alternative to traditional
login environments, they may not be used while they coexist
on the same nodes as management services like CSM. This
points to the need to evolve the concept of UAIs to exist
on managed nodes where other user activities take place.
This transformation is an opportunity to rethink the purpose
of containerized, temporary user environments and lay the
foundation for supporting new modes of user interactions in
HPC.

Features are also desired of UAIs that are not yet possible
or would conflict with the architecture of UAIs on CSM
management nodes. The first of which is support for GPUs.
The most immediate issue is that GPUs are typically supported
on managed nodes and not management nodes. Support for

swap is another feature that would impose requirements on
management nodes that may be unacceptable or out of scope.
This includes support for the latest versions of K8s and
performance or scheduling implications of user containers on
management nodes utilizing swap.

Another advantage, is that while managed nodes could
join CSM management nodes, there are significant benefits in
flexibility, velocity, and security in operating an independent
K3s cluster. This decision will benefit both managed and
management nodes. Specifically, UAIs on management nodes
imposed some of the current requirements on management
nodes like Data Virtualization Service (DVS) projection of
the HPE Cray Programming Environment (CPE) and various
networking implementations of Macvlan or IPvlan [2] and
K8s network-attachment-definitions.

Two approaches to solving the requirement of UAIs on
non-management nodes are clear. A managed node could
join the CSM K8s cluster as a new worker node meant to
host UAIs, or managed nodes could instantiate their own
independent K8s compatible cluster and break away from
requiring the CSM K8s cluster. For reasons outlined in this
paper, the latter was chosen.

II. DESIGN

A. Summary

To support new forms of interactive HPC use on HPE Cray
EX, we chose to use K3s from SuSE Rancher, a Cloud native
Compute Foundation (CNCF) sandbox project. K3s introduces
an alternative way to support container orchestration with less
of the management complexity of a full K8s deployment. At
the same time, K3s supports plugins for enhanced capabilities
where required. This foundation can be used on HPE Cray
EX managed nodes, or other bare metal servers, with the aim
of enabling new user interactions to compile and run jobs,
visualize data, share environments, and more.

Existing solutions for containerized user environments
like User Access Instances (UAIs), relied on a K8s cluster
that also ran management services. A K3s cluster across a
separate set of managed nodes will strengthen the security
model around a new concept for UAIs by keeping user

processes isolated from management processes. Additionally,
the K3s cluster can remain operational during upgrades or
maintenance cycles of the management nodes, while still
supporting upgrades itself with standard cordon and uncordon
Kubernetes operations.

As a fully encapsulated binary, K3s is optimized for
lightness and speed. Installation and deployment on one
or more managed nodes can take minutes and requires a
minimal amount of configuration for basic operation. The
K3s cluster of managed nodes on HPE Cray EX systems
can be configured with standard image management and
configurations tools.

MetalLB [3] is one type of extension that can be added to
the K3s cluster. By providing a range of IP addresses, MetalLB
in the K3s cluster will allow site routable LoadBalancer IP
addresses to be assigned to services running across the cluster.
On an HPE Cray EX system, this can be IP addresses on
the Customer High-Speed Network (CHN) or the Customer
Access Network (CAN).

Two additional components can be configured to replicate
the experience of UAIs: Podman [4] and HAProxy [5].

B. Use of K3S

K3s will serve as the orchestrator of services necessary to
replicate the capabilities of UAIs on managed node hardware.
This includes HAProxy, MetalLB, and eventually DNS
services like ExternalDNS and PowerDNS [6]. Notably, this
design does not orchestrate instances of SSHD and Podman
containers through K3s (see Figure 1). As a comparison,
K3s and the initial set of services are operating in a similar
way to Broker UAIs in CSM to handle the SSH ingress and
redirection of users into their interactive environment.

C. Use of Podman

Directly porting the current concept of UAIs to managed
nodes in K3s would imply a wholesale migration of many
of the components needed to manage the configuration and
lifecycle of UAIs, namely the User Access Service (UAS) and
its dependencies:

• UAS Manager
• API Gateway for handling requests to UAS
• AuthN and AuthZ service (Keycloak) for the API Gate-

way
• etcd storage for configuration
• Image registry for UAI container images
• RBAC controls for UAS use of K8s API
• Macvlan and IPvlan configuration for net-attachment-

definitions to support WLM job launch
• Broker UAI Image
• Switchboard
• Vault for SSH key management

Rather than begin the process of re-implementing these
dependencies to operate independently of CSM across
managed nodes, Podman, a lightweight alternative, will be
introduced. Podman provides many of the same benefits that
UAIs offered: process isolation, container image flexibility,
and Open Container Initiative (OCI) compatibility [7] while
also introducing an additional benefit: rootless containers.

Traditional UAIs required some level of privilege in
CSM for access to host volume mounts, networking, and
startup activities. Despite any attempts to mitigate these
requirements, UAIs fundamentally increase the attack surface
on management nodes when in use. The same attack surface
would be true of porting the current UAI implementation
on managed nodes (not counting the level of isolation from
management services that could be achieved). Podman offers
an attractive solution for an interactive environment in which
to place users, they can be rootless containers that do not
rely on privilege escalation.

One disadvantage of relying on Podman for an interactive
user environment is the lack of scheduling managed by K3s
implicit with this design. There are options for reintroducing
some level of scheduling and orchestration of Podman con-
tainers that will be discussed later in the paper. The high-level
view of the interaction between the services running in K3s
are as follows:

1) A user uses SSH to initiate a connection the HAProxy
load balancer.

2) HAProxy, using the configured load balancing algo-
rithms, will forward the SSH connection to an instance
of SSHD.

3) SSHD, running on a managed node via systemd, will
initiate a rootless Podman container as the user using
the ForceCommand configuration.

4) The user is placed in a Podman container for an inter-
active session, or their SSH ORIGINAL COMMAND is
run in the container.

5) When the user disconnects, the Podman process exits,
and the container is removed.

There are alternate configurations of Podman that would
allow for different workflows, for example, the main PID
of the container could be long running, to facilitate easier
reentry to the container on subsequent logins. This may even
prove necessary for container reuse, where podman run starts
the long running container if none exist, and podman exec is
used to place the user in the container.

D. Configuration with Ansible

The design should support, as generically as possible,
deployment and configuration of the necessary components.
This implies that dependencies on CSM should be avoided
so the solution could be adaptable to other cluster managers.
Ansible is compatible with the Configuration Framework
Service (CFS) of CSM, and it is also portable enough,

Fig. 1. Managed Node K3s Diagram

without introducing an explicit dependency on CSM, as the
framework to deploy the solution to managed nodes. The
new deployment and configuration Ansible could be readily
adaptable to other cluster management tools.

A benefit of CFS is that configuration changes to actively
running CFS configurations will automatically reconfigure
managed nodes. For example, if an administrator wants to add
another instance of HAProxy, or reconfigure Podman, pushing
updates to CFS will automatically update the managed nodes
without requiring downtime. This satisfies a number of use
cases, and gives administrators a consistent experience with
existing configuration tooling.

In order to integrate with the existing configuration frame-
work of CFS, Ansible plays perform the operational tasks
of installation and configuration. The ansible playbook steps
could be summarized as:

1) Download assets for K3s, HAProxy, and MetalLB to the
managed node image (uan k3s stage, uan helm)

2) K3s initialization (uan k3s install)
3) Helm initialization

a) Configure paths

b) Download charts
4) Podman configuration

a) Initialize subuid and subgid
5) MetalLB Configuration

a) Deploy Helm Chart
b) Deploy Custom Resource Definition (CRD) for

IPAddressPool
6) HAProxy Configuration

a) Process Helm values.yml for configmaps
b) Install Helm chart

7) SSHD
a) Create SSHD config files and systemd unit files
b) Enable SSHD

E. Installation of K3s

The offline installation of K3s is performed through
new Ansible roles uan k3s stage and uan k3s install. K3s
artifacts are installed as part of CFS Image Customization,
while the actual startup takes place after the node boots
during CFS Node Personalization. The uan k3s stage may
optionally be performed during CFS Node Personalization
to facilitate rapid prototyping and experimentation. As the

uan k3s stage is idempotent, there is no functional impact
other than scaling implications of the managed nodes pulling
the necessary artifacts.

F. Configuration of MetalLB

To provide routable IP addresses for the HAProxy load
balancers, two Ansible parameters must be configured. The
IP address range must be site-routable and previously unallo-
cated. The new Ansible role uan metallb will consume these
parameters:
metallb_ipaddresspool_range_start: "x.x.x.x"
metallb_ipaddresspool_range_end: "y.y.y.y"

Listing 1. MetalLB IPAddressPool Configuration

This will populate the MetalLB Custom Resource Definition
IPAddressPool:
uan01:˜ # kubectl get -n metallb-system

IPAddressPool/ipaddresspool -o json | jq .spec.
addresses

[
"x.x.x.x-y.y.y.y"

]

Listing 2. Checking MetalLB IPAddressPool Resource

G. UAI Classes

A more recent evolution of UAIs running under K8s in
CSM added the construct of a ”UAI Class”. A UAI class is a
collection of configurations that specifies how a UAI should
be constructed and accessed. While not all the available
options will apply to the new Podman approach, many of the
concepts could be carried over. In the current iteration of this
design, configuration of SSHD, HAProxy, and Podman will
be handled separately and automated across managed node
hardware via CFS. All of this configuration information could
ultimately be consolidated into a new form of UAI Classes
for Podman. This would make it easier for administrators to
coordinate the configuration of HAProxy, SSHD, and Podman
in one location.

H. Configuration of HAProxy

A list of HAProxy helm charts may be defined to represent
a particular SSH ingress into the K3s cluster:
uan_haproxy:
- name: "haproxy-gpu"

namespace: "haproxy-gpu
chart: "{{ haproxy_chart }}"
chart_path: "{{ helm_install_path }}/charts/{{
haproxy_chart }}.tgz"
args: "--set service.type=LoadBalancer"

- name: "haproxy-uai"
namespace: "haproxy-uai"
chart: "{{ haproxy_chart }}"
chart_path: "{{ helm_install_path }}/charts/{{
haproxy_chart }}.tgz"
args: "--set service.type=LoadBalancer"
config: |

global
log stdout format raw local0

maxconn 1024
defaults

log global
mode tcp
timeout connect 10s
timeout client 36h
timeout server 36h
option dontlognull

listen ssh
bind *:22
balance leastconn
mode tcp
option tcp-check
tcp-check expect rstring SSH-2.0-OpenSSH.*
server host1 uan01:9001 check inter 10s fall

2 rise 1

Listing 3. HAProxy Configuration

The Ansible role uan haproxy deploys the instances of
HAProxy as configured to K3s, including a configurable
jinja2 template for Helm values.yml. In the haproxy-uai
example (See Listing. 3), the HAProxy configmap is shown
with a single, generic ”uan01:9001” as an example. This
example implies there is an instance of SSHD running on the
node uan01 listening on port 9001.

As shown in the next section, it is up the configuration of
SSHD to initiate the Podman container in which to place the
user.

There are numerous ways to configure HAProxy. For more
advanced use cases, HAProxy supports a Lua-based plugin
infrastructure that could be leveraged in the future [8].

There are also numerous load balancing algorithms beyond
leastconn for fine grain control to route SSH connections [9].

I. Configuration of SSHD

The Ansible role uan sshd will create the SSHD config
file and systemd unit file needed to provide the backend to
instances of HAProxy. An example configuration will look
similar to:

uan_sshd_configs:
- name: "uai"
port: "9001"
state: "started"
config: |

Match User *
AcceptEnv DISPLAY
X11Forwarding yes
AllowTcpForwarding yes
PermitTTY yes
ForceCommand podman run -it --root /scratch/

containers --userns=keep-id --network=host -v /
lus:/lus -v /home/users:/home/users -e DISPLAY=
$DISPLAY registry.local/cray/uai-podman:1.0

Listing 4. SSHD Configuration for Podman

This will create the files /etc/ssh/uan/sshd uai config and
/usr/lib/systemd/system/sshd uai.service and set the systemd
state based on the state value. As shown in the ForceCommand
field, any user that connects to this SSHD instance will be

placed into a Podman container.
The arguments –userns=keep-id and –network=host in this
example are necessary to support Slurm job launch. Slurm
uses the HSN and expects that the UID of the user matches
its awareness of user IDs.

J. Configuration of Podman

Some aspects of Podman will need to be configured in
order to use rootless containers as an interactive environment
for users. This includes configuring the image storage location
and preparing subuid and subgid files. Additionally, some
limitations of rootless Podman containers are outlined below.

1) Container Images: Currently, Podman does not support
container image storage on network filesystems by default.
This means that users are not able to store images on NFS or
Lustre. For managed nodes, disk-based filesystems will need
to be used as a default location for storing Podman images. At
the time the Podman containers are started, the following will
be used to restrict the container root to a disk-based filesystem
(while still being configurable if this behavior needs to be
overwritten):

podman --root {{ path to disk }}/containers/

Listing 5. Podman Configuration for Disk Use

2) Subuid and Subgid: In order to emulate privileges in
a container context using user namespaces [10], Podman
requires that the user have appropriate entries set in /etc/subuid
and /etc/subgid [11]. The format of these files is:

[uid|name]:[subordinate uid|gid ID]:[subordinate
range]

Listing 6. Subuid and Subgid format

If a user is not listed in the subuid and subgid files, they
will not be able to start rootless containers.

The entries for each user should remain static as migrating
ranges is not easily supported for existing container images.
As there is no standard support for subuid or subgid support
in System Security Services Daemon (sssd) to dynamically
populate subuid and subgid, administrators will be required
to generate appropriate subuid and subgid files and maintain
them over time.

A simple python tool was written to generate subuid and
subgid files for all users in a Lightweight Directory Access
Protocol (LDAP) server, as an example of how administrators
might programmatically generate these files [12]. A new S3
bucket will be created for CSM systems to host these files,
and an Ansible role would be able to download these files to
support rootless Podman containers.

3) Podman Lifecycle Management: In the initial
implementation, it will be up to the configuration of
Podman and the SSHD ForceCommand option to handle

Podman timeouts and reentering existing Podman containers
on subsequent SSH connections.

A forward-looking design will use Open Container Initia-
tive (OCI) hooks for registration and termination of rootless
Podman containers started via HAProxy. This will allow for
a new service to report currently running Podman containers
to fill the gap presented by the lack of a ”UAS Manager”
service. While not part of this design, the new service could
potentially operate as a lifecycle manager of Podman pods.
These OCI hooks will be an important mechanism to introduce
the concept of UAI Classes into rootless Podman containers.
Each type of rootless Podman container would be registered
with following information at a minimum:

• UUID representing the ”class”
• Podman friendly name or container ID
• Managed node running the container
• User ID/Name
Registration of rootless Podman containers into a centrally

managed service will also be integral into reusing already
running Podman containers. While it’s easy enough to use
podman ps and podman exec to reenter a locally running
Podman container, traversing to another managed node to
podman exec will require information on running containers
that spans the managed nodes.

4) Podman Limitations: There are some aspects of rootless
Podman containers that will pose challenges. However, initial
testing with the Reframe [13] HPC test suite has shown
generally positive results.

a) nobody files: For example, when a Lustre
filesystem is mounted into a Podman container (-v
/lus/snx110102:/lus/snx110102), the user namespace for
the container shifts UIDs and GIDs outside the standard
range that Lustre understands. The result is that files will show
as being owned by ”nobody”. The POSIX file permissions
are still correct, and users can read and write to appropriate
files, but it could be an impediment to user collaboration.

b) scp: As the ingress for Podman is presented as
SSH, users will expect that SCP works. During testing,
there has been some limitations getting this to work
appropriately. SSH ORIGINAL COMMAND is being passed
into Podman which allows for commands such as ”ssh
uai.hermod.can.dev.cray.com srun hostname” to work.
It has only partially worked for SCP which uses the
same mechanism. What has been observed, is that the file
is created in the Podman container, but no data is written to it.

Another strategy that could be considered is checking
if the program passed via SSH ORIGINAL COMMAND is
”scp” and running scp as if it were targeting the host node.
This would only work for target paths that are mounted
into the Podman container and it could be unintuitive
if files are sent, but not present in the container. If that

were the case, an error would need to be returned rather
than silently sending files to a path not present in the container.

Yet another solution may involve sending files to a
temporary path on the host as an intermediate step,
and then using podman cp to transfer files to the
destination. Ideally scp should work seamlessly through
SSH ORIGINAL COMMAND, but there are options to pursue
if the standard method does not work.

K. DNS Support

Domain Name System (DNS) support for the services
running in K3s will be rolled out in a phased approach.
Initially, DNS records for the services would need to be added
through the System Layout Service (SLS) in CSM. The CSM
deployment cray-dns-unbound-manager will see these new
entries and create the necessary DNS records. This has two
drawbacks:

1) A dependency on CSM is introduced.
2) The next time the services is redeployed, a new IP may

be handed out by MetalLB and the DNS record will be
wrong.

Each of these issues can be addressed by introducing two
DNS services to the K3s cluster to mirror a subset of the
capabilities of CSM. The first of which, is ExternalDNS.
Through service annotations, a DNS record can be associated
to a particular service running in K3s, and ExternalDNS
running in K3s may forward to PowerDNS running in CSM.
This will solve the second issue of proper service discovery,
but it will still be relying on services running in CSM. To
connect the K3s ExternalDNS to the CSM PowerDNS, a K8s
secret representing the PowerDNS API token from CSM will
need to be imported to K3s. This will be handled during CFS
Node Personalization.

After ExternalDNS is working for service discovery in
K3s, PowerDNS will be added to the K3s cluster and would
then need to be configured to the site DNS resolver. This
would provide standalone DNS support in the K3s cluster for
the instances of HAProxy and other services that may follow
(JupyterHub, logging, etc).

III. USAGE EXAMPLES

This example shows a simple configuration where users are
directed through HAProxy, into a rootless Podman container
that can interact with Slurm and run jobs:
$ ssh uai.can.hermod.dev.cray.com

alanm@uai:/> module list -t
Currently Loaded Modulefiles:
craype-x86-rome
libfabric/1.12.1.2.2.0.0
craype-network-ofi
perftools-base/23.03.0
xpmem/2.6.2-2.5_2.14__gd067c3f.shasta
cce/15.0.1

craype/2.7.20
cray-dsmml/0.2.2
cray-mpich/8.1.25
cray-libsci/23.02.1.1
PrgEnv-cray/8.3.3

alanm@uai:˜> cd /lus/snx11010/alanm/
alanm@uai:/lus/snx11010/alanm> ls
bin mpi_hello mpi_hello.c

alanm@uai:/> sinfo
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
workq* up infinite 18 idle nid

[000001-000018]

alanm@uai:/> srun -N4 mpi_hello
Hello world! I am rank 2 of 4
Hello world! I am rank 1 of 4
Hello world! I am rank 3 of 4
Hello world! I am rank 0 of 4

alanm@uai:/> exit
Connection to uai.can.hermod.dev.cray.com closed

Listing 7. Example Connecting to a Podman Container

Other options include access to Podman containers that
support GPUs using of Podman’s –device parameter:

$ ssh uai-gpu.can.hermod.dev.cray.com

alanm@uai-gpu:/> nvidia-smi -L
GPU 0: NVIDIA A40 (UUID: GPU-2deb83b0-a7a0-d113-475f

-2f29b1bfd300)
alanm@uai-gpu:/> exit
Connection to uai-gpu.can.hermod.dev.cray.com closed

Listing 8. Example Connecting to a GPU Podman Container

In each of these examples, the SSH connections was
received by HAProxy initially and forwarded to an SSHD
instance that used Podman to start a container. Using Podman
command line arguments, the hostname of the container was
changed to match the type of environment being emulated by
Podman (uai and uai-gpu).

IV. FUTURE CONSIDERATIONS

A non-exhaustive list of other uses for this design, are
explored below. While there are no firm plans to pursue any
one of these, it is included to show how K3s on managed
node hardware may be leveraged in the future, and that there
are significant advantages to this approach.

A. JupyterHub

Ultimately, rootless Podman containers are one type of
interactive environment for user activities. Adding support for
K3s and MetalLB to managed nodes enables other runtimes
like JupyterHub to be added easily. JupyterHub is included in
this discussion to show that K3s and MetalLB introduces the
flexibility to add new services to managed nodes quickly.

JupyterHub can be installed with the default configuration,
using Helm [14]:

helm repo add jupyterhub https://jupyterhub.github.
io/helm-chart/

helm upgrade --install jupyterhub jupyterhub/
jupyterhub \
--namespace jupyter \
--create-namespace \
--values config.yaml

Listing 9. Installing JupyterHub with Helm

Unlike Podman containers running outside the control
of K3s, JupyterHub deployed in this manner would allow
users to interact with the system using a browser UI,
with corresponding K3s pods being run in the namespace
jupyter. More configuration and testing would be required to
make this a useful environment, but the ease in which K3s
allows it to be installed makes this a interesting area to pursue.

B. Cross System Scheduling

HAProxy allows for many different load balancing con-
figurations. While it would require coordination of matching
configurations between various systems, it could be possible
to have other managed nodes on different systems allow for
connectivity from a single ingress. A theoretical use case might
involve a failover managed node on another system in the
event that all of the other managed nodes are not available.
This example HAProxy configuration could illustrate how that
might look:
listen ssh

bind *:22
balance leastconn
mode tcp

server hermod_uan01 uan01.chn.hermod.dev.cray.
com:9001 check inter 10s fall 2 rise 1
server hermod_uan02 uan02.chn.hermod.dev.cray.
com:9001 check inter 10s fall 2 rise 1
server loki_uan03 uan03.chn.loki.dev.cray.com
:9001 check inter 10s fall 2 rise 1

Listing 10. HAProxy using Multiple Systems

If the nodes uan01 and uan02 on hermod are down, uan03 on
loki might still be available. This approach might also work
well to pool specific hardware requirements like processors
or GPUs into a single SSH ingress across more than one
system.

C. Alternatives to Podman

Instead of Podman containers, virtual machines (VMs) or
K3s pods could be used as the interactive environment in
which users could operate.

V. SUMMARY

This paper has shown that new software components like
K3s, MetalLB, HAProxy, and Podman can be used to evolve
the current design of temporary, interactive container environ-
ments such as UAIs into one that does not rely on a cluster of
management nodes. Instead, an independent cluster using K3s
can be formed to isolate user processes onto managed nodes
where user activity already occurs. This cluster can also host
a variety of forward-looking designs like JupyterHub, VMs,
or represent a single SSH ingress across multiple systems.

REFERENCES

[1] CUG 2022 Best Paper, https://cug.org/cug-2022-technical-program/.
[2] Macvlan vs IPvlan, https://ipwithease.com/macvlan-vs-ipvlan-

understand-the-difference/.
[3] MetalLB Universe, https://metallb.universe.tf/.
[4] Podman, https://podman.io/.
[5] HAProxy, https://www.haproxy.org/.
[6] PowerDNS, https://www.powerdns.com/.
[7] Open Container Initiative, https://opencontainers.org/.
[8] HAProxy Lua Support, https://www.haproxy.com/documentation/hapee/latest/api/lua/scripts/.
[9] HAProxy Load Balancing Algorithms,

https://docs.haproxy.org/2.7/configuration.html#4.2-balance.
[10] user namespaces(7), https://man7.org/linux/man-

pages/man7/user namespaces.7.html.
[11] subuid subgid, https://wiki.gentoo.org/wiki/Subuid subgid.
[12] Subordinates repository, https://github.com/alanm-hpe/subordinates.
[13] HPC Testing Framework Reframe, https://reframe-

hpc.readthedocs.io/en/stable/.
[14] Zero to JupyterHub, https://z2jh.jupyter.org/en/latest/jupyterhub/installation.html.

