
MPI-IO Local Aggregation As Collective Buffering
for NVMe Lustre Storage Targets

Michael Moore
HPC, AI & Labs

HPE
Austin, USA

michael.moore@hpe.com

Ashwin Reghunandanan
HPC, AI & Labs

HPE
Bangalore, India

ashwin.reghunandanan@hpe.com

Lisa Gerhardt
NERSC

Lawrence Berkeley National
Laboratory

Berkeley, USA
lgerhardt@lbl.gov

Abstract— HPC I/O workloads using shared file access on
distributed file systems such as Lustre have historically achieved
lower performance relative to an optimal file-per-process
workload. Optimizations at different levels of the application and
file system stacks have alleviated many of the performance
limitations for disk-based Lustre storage targets (OSTs). While
many of the shared file optimizations in Lustre and MPI-IO
provide performance benefits on NVMe based OSTs the existing
optimizations don’t allow full utilization of the high throughput
and random-access performance characteristics of the NVMe
OSTs on existing systems. A new optimization in HPE Cray MPI,
part of the HPE Cray Programming Environment, builds on
existing shared file optimizations and the performance
characteristics of NVMe-backed OSTs to improve shared file
write performance for those targets. This paper discusses the
motivation and implementation of that new shared file write
optimization, MPI-IO Local Aggregation as Collective Buffering,
for NVMe based Lustre OSTs like those in the HPE Cray
ClusterStor E1000 storage system. This paper describes the new
feature and how to evaluate application MPI-IO collective
operation performance through HPE Cray MPI MPI-IO statistics.
Finally, results of benchmarks using the new collective MPI-IO
write optimization are presented.

Keywords—Shared File, Performance, Collective MPI-IO,
Lustre

I. INTRODUCTION AND BACKGROUND

The importance of shared file write workloads, also known
as N:1, in HPC applications is evident in the long and continued
history of enhancements and APIs developed to support efficient
access to a single file across large MPI applications.
Characterization of computational science applications indicate
a shared or partially shared workload is an important workload
in large HPC centers [1]. While shared file performance,
especially writes, has long been a challenging workload the
more recent adoption of NVMe storage has exposed new
performance limitations in N:1 write workloads. We explore the
N:1 shared file write performance limitations in the context of
the HPE Cray ClusterStor E1000 NVMe-based Lustre storage

targets (OSTs) and introduce a new optimization in HPE Cray
MPICH for collective MPI-IO writes. Before describing the
specifics of the optimization, we summarize the existing Lustre
N:1 write optimizations accessible through the standard POSIX
interfaces and Lustre library and then describe the higher level
MPI-IO optimizations available in HPE Cray MPICH for
collective MPI-IO writes.

A. Lustre optimizations

The lowest layer of the I/O software stack most applications
interact with is the POSIX API and this is the layer where file
system specific optimizations are accessible. As with many
distributed, parallel file system supporting POSIX semantics
Lustre uses a distributed locking scheme to ensure concurrent
write accesses to a single file maintain consistency. The main
obstacle to achieving shared file write performance similar to an
optimal write workload is lock contention from distributed
locking. The Lustre-specific shared file write optimizations
focus on addressing this bottleneck.

1) Lustre Group Locks
Lustre group locks provide a mechanism for an application

to instruct the file system to no longer use distributed write
locking through the LDLM (Lustre Distributed Lock Manager)
[2]. Instead of the default locking behavior a special Lustre API
call is made to take a lock known as a group lock. The group
lock communicates to the file system that it does not need to
provide distributed locking for the specified file. Instead, the
responsibility for ensuring consistency is handled by the
application. This serves as an optimization for shared file writes
by removing distributed lock contention allowing for a scalable
solution even when large numbers of clients are writing to the
same file and OST. Higher level I/O libraries, such as MPI-IO,
make used of this optimization internally and expose the feature
through the use of the MPI-IO hints mechanism. This allows an
application to take advantage of the feature without any
application modifications specific to the Lustre file system. For
an application not using collective MPI-IO application code
modifications using the Lustre library are required.

2) Lustre Lockahead
Lustre Lockahead is another optimization which alters the

default locking behavior of Lustre [3]. The default LDLM
behavior is optimized for a file-per-process (N:N) workload and
when acquiring an LDLM lock, the byte range of the lock
defaults to extending to the end of the file. While optimal for
file-per-process write workloads this behavior creates
unnecessary lock conflicts for a shared write workload. For an
application using collective MPI-IO and collective buffering the
MPI library determines which MPI ranks will function as
aggregators and which offsets in the file each of thoe aggregators
will be writing. Knowing the offsets, the MPI library can request
locks for the specific byte ranges each aggregator will need to
write. Then, when it’s time to write the data the aggregator has
already acquired the necessary locks to perform the writes. This
optimization avoids creating lock contention from false sharing
and allows the lock acquisition to occur asynchronously from
the writes. As with Lustre group locks, Lustre Lockahead is
supported in HPE Cray MPICH and does not require any
application modifications. Lustre Lockahead and Lustre group
locks are different solutions to the same problem and are not
used together at the MPI application layer. The need for the
alternate locking approach relates to higher-level I/O library
behavior and is briefly described in the discussion of HDF5 with
collective MPI-IO.

3) Lustre Overstriping
Lustre Overstriping is the last and most general shared file

write optimization discussed. Lustre Overstriping allows a
single file to allocate multiple stripe objects on the same Lustre
OST. Without the use of Lustre Overstriping a single OST can
only hold a single stripe per file. As discussed in the Lustre
Lockahead feature, a Lustre client takes a lock on a given OST,
more specifically, on the specific object identifier located on that
OST associated with the file the client is accessing. By allowing
multiple, unique stripe objects to exist on a single OST the
number of locks that can be held by different clients at any one
time is increased. More locks allow for more parallelism writing
to the same underlying OST which improves performance.
Using Lustre Overstriping requires no higher level libraries or
code modifications – the striping of the shared file is all that
needs to be specified which can be done using the Lustre lfs
utility. This is the one Lustre shared file write optimization that
can be used for any shared file write workload using POSIX or
MPI-IO (independent or collective operations).

B. Collective MPI-IO Optimizations

Collective MPI-IO is one of the most popular interfaces for
shared file access due to the API and available optimizations
such as collective buffering. While describing the use of
collective MPI-IO is outside the scope of the paper we focus on
collective MPI-IO optimizations and analysis of the
performance of those optimizations for shared file write
workloads. We also discuss how optimizations in additional
layers above MPI-IO, such as HDF5, and below MPI-IO,
specifically Lustre, interact with the discussed collective MPI-
IO optimizations.

Users of MPI-IO are likely familiar with the MPI-IO hint
mechanism. MPI-IO hints allow the application to request MPI-
IO to use specific features, file layouts, aggregator layouts, and

other tunable parameters based on file name matching. The
variable used in HPE Cray MPICH to specify MPI-IO hints is
MPICH_MPIIO_HINTS. Specific examples will be provided
in the paper and additional information is available in the HPE
Cray MPICH mpi man page.

1) Collective Buffering and Aggregators
Collective buffering is an optimization available with

collective MPI-IO that allows a subset of MPI ranks to perform
the I/O to the underlying filesystem on behalf of all ranks in the
collective MPI-IO call – they aggregate the data from many
ranks into one or more write calls they perform. Historically, this
two-phase optimization was largely used to allow smaller
requests to be “aggregated” into larger, contiguous requests
which tend to be higher performing. This two-phase I/O strategy
of collective buffering is advantageous for many reasons, three
relevant ones for this discussion are:

 Generating less write lock contention by having fewer
file system clients accessing the file. By default in HPE
Cray MPICH, one client per OST access the file instead
of N (where N is less than or equal to the number of
nodes in the job).

 The MPI implementation controls how data is allocated
to aggregators. By default, for Lustre file systems, HPE
Cray MPICH aligns an aggregator to write on Lustre
stripe boundaries and to a single OST although more
than one aggregator can be configured to write to a
single Lustre stripe.

 Aggregator MPI ranks make larger, contiguous requests
which minimizes seeking on the underlying OST
devices for disk-based OSTs.

Although the default configuration in HPE Cray MPICH
assigns a single aggregator to each OST, which was sufficient
for previous storage with peak OST rates of 1 – 2 GB/s, most
optimal collective buffering settings now should be assigning
multiple aggregators per OST via the
cray_cb_nodes_multiplier MPI-IO hint. Using
multiple aggregators to write to a single OST is typically only
advantageous in conjunction with non-default lock
optimizations via the cray_cb_write_lock_mode MPI-
IO hint. Although, as discussed, Lustre Overstriping can also
help alleviate lock contention. In the context of collective
buffering, aggregator placement counts each Lustre Overstripe
as an OST and each is allocated aggregators. For a concrete
example, using cray_cb_nodes_multiplier=8 with a
singly striped file uses an equivalent number of aggregators as a
file with 8 Overstripes which uses the default of one aggregator
per Lustre stripe. While the default of one aggregator per OST
eliminates Lustre LDLM lock contention some potential
performance is not realized. Due to increased drives per RAID
device and higher performing NVMe devices the performance
of a single process is only able to achieve a fraction of the peak
performance of an HPE Cray ClusterStor E1000 disk or NVMe
OST. The default of a single aggregator per OST will provide
consistent performance across a range of OST types but it’s
recommended to use a non-default locking mechanism and more
than 1 aggregator per OST for current HPE Cray ClusterStor
E1000 NVMe and disk based OSTs.

Finally, as aggregator counts, Lustre stripe sizes, and
performance are considered, the size of a collective write should
also be kept in mind. The size, in terms of bytes, of a collective
write is the number of ranks in the MPI communicator
multiplied by the amount of data each rank is writing (count of
elements multiplied by size of elements). With a file striped
across O OSTs, assigning N aggregators per OST, and a Lustre
stripe size of M MiBs, N*O*M MiB of data must be written by
the collective write call to utilize all aggregators and perform
full stripe writes. Take the specific example of 1,024 MPI ranks
doing a collective write call with each rank writing 1MiB of data
– 64 elements of 16,384 bytes. The collective write call would
write a total 1 GiB of data. If the shared file was striped across
16 OSTs (O) with a stripe size of 16 MiB (M) and 8 aggregator
ranks were assigned per OST (N) the 1 GiB of data of the
collective write call would only use half of the aggregators. The
collective write call is 1 GiB of data but the specified collective
buffering parameters and Lustre striping cover 2 GiB of data. In
this case only 4 aggregators per OST would be used. Ways to
confirm all aggregators are being used are discussed in Section
IV.

2) Collective Buffering Optimizations using Lustre Locking
in HPE Cray MPICH

Collective Buffering, as previously described, optimizes the
data write path for collective MPI-IO writes by using a subset of
MPI ranks to perform file system writes on behalf of other
nodes. Current ClusterStor E1000 OSTs require more than one
aggregator to achieve peak performance and with multiple
aggregators, a non-default lock optimization is required to
realize potential write performance. HPE Cray MPICH supports
four different locking configurations, three previously supported
and the new mode described in this paper. Those are:

 Default Lustre locking for independent MPI-IO,
collective MPI-IO, and collective MPI-IO with
collective buffering

 Lustre group locks for collective MPI-IO with
collective buffering and no independent MPI-IO

 Lustre Lockahead for collective MPI-IO with
collective buffering and independent MPI-IO calls

 Lustre group locks for collective MPI-IO with local
aggregation as collective buffering and no
independent MPI-IO

3) HDF5
While the capabilities and features of HDF5 are not limited

to collective MPI-IO, we limit the discussion in this paper to
HDF5 using collective MPI-IO. In HDF5 versions prior to
1.10.0 HDF5 file metadata updates were performed through
independent MPI-IO write operations [5]. This prevented using
optimizations that require only collective operations be
performed on the open file – specifically Lustre group locks
could not be used since no independent MPI-IO operations are
allowed on an open file. Since HDF5 version 1.10.0, the ability
to use collective writes for metadata operations has been
available. This allows using Lustre group locks with collective
buffering for HDF5 writes in addition to Lustre Lockahead
which was developed for that type of mixed independent and
collective MPI-IO use case.

With several optimizations that are relevant to shared file
workloads, Table 1 provides a synopsis of which APIs and
workloads can make use of which optimizations. Overstriping
can be used in conjunction with or without other lock
optimizations. Lustre Lockahead and Lustre group locks are not
used at the same time from the MPI application perspective.

Table 1. API and Optimization Mapping

II. MOTIVATION

As the performance of individual OSTs has continued

increasing the optimal collective buffering parameters and the

effectiveness of collective buffering to achieve peak shared file
writes continues to change. Currently, HPE Cray ClusterStor
E1000 performance approaches 30 GB/s write throughput for an
NVMe-based storage target and 8 GB/s write throughput for a
disk-based storage target under optimal I/O workload and
conditions. Specific results are detailed in Figure 1 but the
typical buffered write rate of a single process is around 1.5 GB/s.
For a single NVMe based OST a minimum of 20 aggregator
ranks would be required; in practice more nodes are required.
For typical HPC systems this creates a requirement for nearly
full system size jobs, or more nodes than are available, to
achieve optimal performance for shared file workloads using
this method. Enabling higher performing shared file workloads
at lower node counts was a key factor driving this investigation.

API Optimization

POSIX Overstriping, Lockahead*, group locks*

Independent MPI-IO Overstriping

Collective MPI-IO
Overstriping, coll. buff. with Lockahead,
coll. buff with group locks, Local
Aggregation as coll. buff.

HDF5, no coll. metadata
Overstriping, coll. buffering with
Lockahead

HDF5, coll. meta
Overstriping, coll. buff. with Lockahead,
coll. buff with group locks, Local
Aggregation as coll. buff.

* requires application modification

Figure 1. Single Process Write Performance

0

1000

2000

3000

4000

5000

NVMe,
Buffered

NVMe,
Direct

Disk,
Buffered

Disk,
Direct

M
B

/s

Single Process Write Performance

1MiB 4MiB 8MiB 16MiB 64MiB

The single process limitation for buffered I/O to a single,
shared file is not only a single process limitation but the same
limit is present at the node level as Figure 2. Discussion of this
issue is outside the scope of the paper but this limitation prevents
additional aggregators on a node, when using buffered I/O, from
providing improved performance. While using direct I/O from
aggregators is possible it generally requires more processes
submitting I/O to achieve optimal performance since the direct
I/O requests only return when data is on the OST instead of when
it’s been copied to the node’s page cache. A factor motivating
this solution is to be able to use as many ranks, to submit I/Os,
as possible – which is the total number of ranks participating in
the collective call. Previously this approach wasn’t feasible due
to the seeking caused by such a large number of write requests
with offsets across many gigabytes of data but with NVMe-
based OSTs that is no longer a concern.

Regardless of using a single process per node or many
processes the use of lock optimizations, Lustre group lock or
Lustre Lockahead, is necessary to achieve optimal performance.
Given this set of observations, a new feature was added to HPE
Cray MPICH for collective MPI-IO, Local Aggregation as
Collective Buffering, which allows each node and each rank to
perform its own I/O and make use of Lustre group locks for
optimized locking. In the next section we’ll discuss the
implementation, how to use the feature, and evaluate synthetic
benchmarks covering baseline shared file performance
benchmarks and evaluation of the new Local Aggregation as
Collective Buffering feature

III. IMPLEMENTATION AND SYNTHETIC BENCHMARKS

A. Implementation and Usage

The implementation of Local Aggregation as Collective
Buffering uses a new MPI-IO hint variable to distinguish it from
the existing locking modes provided when collective buffering
is enabled. The tunable, named
cray_nocb_write_lock_mode, currently only supports

the value 1, denoting the use of Lustre group locks. The tunable
is validated for permissible values consistent with the other
tunables that it depends on. In order to enable Local Aggregation
as Collective Buffering, collective buffering needs to be
disabled, the flag set to indicate that no independent MPI-IO
requests will occur, and data sieving on writes disabled.

The total set of hints needed to use the new feature are:

MPICH_MPIIO_HINTS=”*:romio_cb_write=dis
able:cray_nocb_write_lock_mode=1:romio_cb_
read=disable:romio_ds_write=disable:romio_
no_indep_rw=true”

When the above hint is provided, all ranks will do an open()
as part of the MPI_File_open() collective call and also do the
necessary steps to acquire a Lustre group lock on the shared file
for writing. For each MPI-IO collective write call, a rank will
directly write its own local data to the file. On file close the
group lock is released.

This feature is still considered experimental. There were
instances in synthetic benchmark testing of data validation
issues. While the feature exists in shipped versions it is not
enabled by default and is not documented; once the feature is
documented in the HPE Cray MPICH man page it will have been
tested and vetted for correctness.

B. Synthetic Benchmarks

All tests presented were performed on a Cray EX system
with several hundred compute nodes running COS 2.4 and
Slingshot 2.0. An HPE Cray ClusterStor E1000 comprised of
two E1000 MDUs, 3 E1000Fs, and 3 E1000D-2s with
ClusterStor NEO software version 6.2 was used. The compute
nodes were CPU-only nodes with dual socket Milan 2.45 GHz
CPUs and single injection Cassini NICs. The Lustre file system
is mounted using KFI LND (Lustre Network Driver). HPE Cray
MPICH 8.1.25 was used to compile and run benchmarks along
with HDF5 version 1.12.0, which is packaged in the Cray
Programming Environment.

Although other benchmarks were planned, issues requiring
debugging only allowed for the use of IOR 3.3.0, the canonical
MPI I/O benchmark, for synthetic benchmark measurements.
Unless otherwise noted, these tests set the IOR transfer size
equal to the block size and the segment count was specified to
write adequate data for each test. The Lustre stripe size matched
the IOR transfer and block size. In the case of tests using the
POSIX interface any dirty data was flushed via an fsync call as
part of the measured test time to avoid any client-side cache
effects. For POSIX Lustre group lock tests IOR 3.3.0 was
modified to use Lustre group locks through the Lustre API. The
modified version of IOR was only used for POSIX tests with
Lustre group locks. There was no writeback, writethrough or
readback cache enabled on the OSSes. A sample IOR invocation
used for testing using the MPI-IO collective interface, with a
1MB transfer and block size, and 512 segments per rank which

Identify applicable funding agency here. If none, delete this text box.

Figure 2. Single Node Write Performance

0

5,000

10,000

15,000

20,000

25,000

1 2 4 8 16 32 64

M
B

/s

PPN

Single Node Write Performance
using NVMe OSTs

1 MiB, Buffered 64 MiB, Buffered
1 MiB, Direct 64 MiB, Direct

IOR -a MPIIO -C -c -E -e -g -k -b 1m -t
1m -s 512 -O verbose=3 -o
TESTDIR/IOR_POSIX -w

Listing 1. Example IOR invocation

equates to 512MiB of data written per rank is documented in
Listing 1. The aggregate file size was tuned to ensure adequate
test duration based on MPI rank count although tests were
relatively short to expedite data collection and minimize the
amount of NVMe OST trimming that was required for optimal
write performance. During testing we identified an issue with
the HDF5 API support in IOR that the alignment of I/O requests
did not honor the value of the ‘-J’ argument. Without alignment
set on at least page boundaries the I/O requests prevented using
Direct I/O with HDF5 – since direct I/O requests must be page
aligned in Lustre. We will further investigate this issue. A test
listed as “Direct” refers to opening the file with the O_DIRECT
flag, for POSIX this is done with an IOR argument and for MPI-
IO and HDF5 API, this is enabled via the direct_io=true
MPI-IO hint and not directly as an IOR argument.

All tests using Lustre group locks were impacted, to varying
degrees, by a Lustre issue which causes very long times for
Lustre Group lock unlock calls (llapi_group_unlock).
The issue is tracked in LU-16046 [6]. The fix is not present in
COS 2.4 but is planned for COS 2.6. The additional time spent
in the Lustre group lock unlock dramatically reduced the
reported throughput from the IOR benchmark since close time
is included in the test duration. The minimal difference, and
variability of, the extra file close timing effects both collective
buffering with group locks and Local Aggregation as collective
buffering similarly so comparative results are still meaningful.

The initial tests of a single node were previously detailed
above in Figure 1 and 2. The experiments in Figure 1
demonstrate the best-case single process shared file
performance, or more specifically, the best-case performance of
a single MPI rank operating as a collective buffering aggregator.
These tests use POSIX, instead of MPI-IO, because the MPI
ranks serving as aggregators use the POSIX interface to write to
the file system. The single node tests show the lack of
performance scaling with additional ranks on a node using
buffered I/O. As noted above, using multiple processes on a
single node yields no performance improvement when using
buffered I/O. The impact of the latency in direct I/O calls is
evident by the relatively lower performance at smaller transfer
sizes which matches expectations. However, at higher process
counts and larger transfer sizes using direct I/O appears to
provide a way to increase per-node performance when doing
shared file writes.

Next, we evaluate the shared file write performance, still
using the POSIX interface, to emulate how collective buffering
aggregators would be writing. The single node tests used
multiple OSTs since the single client was under test, we change
to single OST tests when using multiple nodes to evaluate
performance of the scalable unit of storage– an OST. Figure 3
shows measured shared file POSIX write performance using
Lustre group locking and Figure 4 shows the improvement in
throughput between default Lustre Locking and Lustre group
locking. An obvious but still important observation from these
results is that the transfer and Lustre stripe size matter, even
when using default Lustre locking. Further, the observed
benefits of direct IO at larger transfer sizes are still observed
with many writers. However, direct I/O shows small to no
improvements using Lustre group locking while buffered I/O,
especially for NVMe OSTs, shows very large improvements,

greater than 200%. The tests that appear to be not depicted
reported a 0% or few percentage point reduction in performance
and were not plotted for clarity and should be considered as
equal in performance.

For the final single OST tests we report the performance

combining the benefits of Lustre group locks with Overstriping.
Considering the use of a single process per rank and the
additional overhead of Lustre group lock unlock with this Lustre
client, these results demonstrate performance very near optimal
E1000F OST performance.

The end goal of optimizing shared file workloads is to

achieve close to the peak expected performance of an OST –
which was demonstrated for some specific workloads in figure
5. As previously mentioned, this workload is very similar to that
of collective buffering aggregators. Although we provide
additional guidance later these results indicate for E1000 disk

Figure 4. Single OST Write Performance with Group Locks

0

10,000

20,000

30,000

1MB 64MB 1MB 64MB

Direct Buffered

M
B/
s

Shared File POSIX Write
Performance with Group Locks

1 NVMe OST

2 Nodes 4 Nodes 8 Nodes

16 Nodes 32 Nodes 64 Nodes

Figure 3. Single OST Group Locking Percentage Improvement

0%

50%

100%

150%

200%

1MB 64MB 1MB 64MB 1MB 64MB 1MB 64MB

Direct Buffered Direct Buffered

Disk OST NVMe OST

Shared File POSIX Write Relative
Improvement of Group Locks Over

Default

2 Nodes 4 Nodes 8 Nodes

16 Nodes 32 Nodes 64 Nodes

OSTs using 4-8 aggregators for smaller stripe sizes or 8 or more
aggregators for larger stripe sizes will achieve near peak
performance. For NVMe OSTs, larger node counts (32 or 64 per
OST) are needed. For both OST types, direct IO with a single
rank per-node is only able to reach peak performance for large
transfer sizes.

Finally, moving beyond the POSIX API we move to
evaluating performance using HDF5 with collective metadata
through IOR and compare the original collective buffering
solution and the experimental Local Aggregation as collective
buffering feature. The HDF5 tests use many ranks per node (32)
to measure performance more realistically for an application.
The collective buffering (CB) tests use lock mode 1 (Lustre
group locks) and all nodes have one rank used as an aggregator

e.g. the 64 node test uses 64 aggregators. Figure 6 compares the
write performance to a shared HDF5 file using collective MPI-
IO, including HDF5 collective metadata, with traditional
collective buffering using Lustre group locks to Local
Aggregation as collective buffering. The results indicate that,
especially at smaller transfer sizes and smaller node counts,
using Local Aggregation as collective buffering provides a
significant performance improvement. Furthermore, given the
limitation of single-node buffered performance the performance
improvements between collective buffering and Local
Aggregation using buffered I/O are solely from removing the
collective buffering overhead. We expect there to be additional
performance improvement once we’re able to run similar tests
use the MPI-IO hint direct_io=true successfully. Despite
these encouraging results the overall measurements are well

below expected or peak performance. As previously discussed,
these are reported IOR results which include the large overhead
of file close caused by LU-16046. Excluding the close time,
there are significant throughput improvements relative to the
results depicted in Figure 6. However, without the ability to run
comparable Direct I/O tests there isn’t a straightforward way to
report bandwidth due to client-side buffering. To provide some
idea of the time spent in file close relative to writing in these
tests, Figure 7 shows the time split between write and close. File
close accounts for at least 10% of total time and tends to impact
Local Aggregation more severely, since all MPI ranks are taking
a group.

Figure 5. Single OST Group Locking, Overstriping

0

10,000

20,000

30,000

1MB 64MB 1MB 64MB 1MB 64MB 1MB 64MB

Direct Buffered Direct Buffered

Disk OST NVMe OST

Shared POSIX Write Group Locks
1 OST, 8 Overstripes, 1 PPN

2 Nodes 4 Nodes 8 Nodes

16 Nodes 32 Nodes 64 Nodes

Figure 6. HDF5 Write Performance Comparison with Local

Aggregation

0

10,000

20,000

30,000

40,000

16 nodes 32 nodes 64 nodes 128 nodes

M
B

 /s

IOR HDF5 with Collective MPI-IO
1 x E1000F, 1MB transfer size

CB Lock Mode 1 Local Aggr. Buffered

Figure 7. HDF5 Write and Close Time Comparison

0%

20%

40%

60%

80%

100%

CB
Lock
Mode

1

Local
Aggr.

CB
Lock
Mode

1

Local
Aggr.

CB
Lock
Mode

1

Local
Aggr.

CB
Lock
Mode

1

Local
Aggr.

48 nodes 96 nodes 192 nodes 384 nodes

Write Time and Close Time in HDF5
IOR Tests

Write Time Close Time

Scaling up the testing from a single E1000F scalable unit to
three E1000Fs Figure 8 shows the percent improvement of Local
Aggregation relative to an optimal collective buffering with
Lustre group locks test. Like the smaller scale tests, Local
Aggregation shows significant performance improvements at
lower node counts and smaller transfer sizes. As previously
mentioned, we expect that tests using direct IO will provide an
even more compelling case for the feature at larger transfer sizes
and higher node counts. Having demonstrated existing
collective MPI-IO performance using collective buffering and
local aggregation we discuss analyzing your collective MPI-IO
workload using statistics from HPE Cray MPICH in the next
section.

IV. ANALYSIZING COLLECTIVE MPI-IO WORKLOADS

HPE Cray MPICH provides several collective MPI-IO

statistics and informational debugging options. Enabling these
low overhead debugging options can provide insight into the
characteristics of your collective MPI-IO, where time is spent
during the collective calls, and help identify sources of
imbalance. There are a set of 4 environment variables that will
enable relevant debugging output (to stderr) provided in Listing
2.

A. MPI-IO Hints Display

This environment variable
(MPICH_MPIIO_HINTS_DISPLAY=1) will report the MPI-
IO hints applied when each file is opened. This is helpful to

confirm which hints are being used. In the case of erroneous or
conflicting hints, this identifies which hints are used. The
example in Listing 3 reports the hints of a file opened with
enabled collective buffering using Lustre Group Locks and 64

aggregators per OST on a file striped across 6 OSTs using a 16
MiB stripe size.

B. MPI-IO Aggregator Placement

This environment variable
(MPICH_MPIIO_AGGREGATOR_PLACEMENT_DISPLAY=
1) reports the placement of aggregator ranks by MPI rank
number and node name. This output is helpful to confirm
aggregator count but also makes identifying which node a slow
aggregator resides on easier. Details of the rank reordering and
aggregator placement stride are available in the HPE Cray

MPICH mpi man page. Abbreviated output showing only 6
aggregators out of the 384 below is provided in Listing 4.

Figure 8. HDF Write Performance Improvement With Local

Aggregation on 3 E1000F Configuration

-5.00%

15.00%

35.00%

55.00%

75.00%

48 Nodes 96 Nodes 192 Nodes 384 Nodes

Percent Improvement in Write
Throughput with Local Aggregation,

3 x E1000F

1 MB 4 MB 16 MB 64 MB

Aggregator Placement for
/lus/flash/testdir.200/IOR_HDF5
 RankReorderMethod=1 AggPlacementStride=-1
 AGG Rank nid
 ---- ------ --------
 0 0 nid00000
 1 32 nid00001
 2 64 nid00002
 3 96 nid00003
 4 128 nid00004
 5 160 nid00005
 6 192 nid00006
...

export MPICH_MPIIO_HINTS_DISPLAY=1
export MPICH_MPIIO_AGGREGATOR_PLACEMENT_DISPLAY=1
export MPICH_MPIIO_STATS=1
export MPICH_MPIIO_TIMERS=1

Listing 2. MPI-IO Aggragator Placement Example

PE 0: MPIIO hints for
/lus/flash/mmoore/testdir.200/IOR_HDF5:
 romio_cb_pfr = disable
 romio_cb_fr_types = aar
 cb_align = 2
 cb_buffer_size = 16777216
 romio_cb_fr_alignment = 1
 romio_cb_ds_threshold = 0
 romio_cb_alltoall = automatic
 romio_cb_read = enable
 romio_cb_write = enable
 romio_no_indep_rw = true
 romio_ds_write = automatic
 ind_wr_buffer_size = 524288
 romio_ds_read = disable
 ind_rd_buffer_size = 4194304
 direct_io = false
 striping_factor = 6
 striping_unit = 16777216
 romio_lustre_start_iodevice = -1
 aggregator_placement_stride = -1
 abort_on_rw_error = disable
 cb_config_list = *:*
 cray_cb_nodes_multiplier = 64
 cray_cb_write_lock_mode = 1
 cray_fileoff_based_aggr = false
 romio_filesystem_type = CRAY ADIO:
 cb_nodes = 384

Listing 3. MPI-IO Hints Display Example

Listing 2. Recommended Collective MPI-IO Information Environment
Variables

C. MPI-IO STATS

This environment variable (MPICH_MPIIO_STATS=1)
variable provides a synopsis of several important characteristics
of what MPI-IO operations were performed to a file.
Specifically, the rank count, independent and collective writes,
number of aggregators, striping information, if stripe-size
(optimal) writes happened and how many aggregators were
active. For performance considerations the number of stripe-
sized writes relative to the total number of writes is important.
In the case of HDF5, there will always be some number of
smaller writes due to HDF5 metadata or the write size not being
an exact multiple of the Lustre stripe size. The important items
are that most writes are equal to the Lustre striped size and that
a majority of system writes report all aggregators being active
(e.g. the 384 aggregator “bucket” in the example below). See
the “Collective Buffering and Aggregators” section for more
discussion about collective write sizes, aggregator counts and
Lustre stripe sizes. When comparing results between collective
buffering enabled and local aggregation (collective buffering
disabled) the "system writes" count will have a higher value in
the case of local aggregation and will typically have lower "ave
system write size" as well as "stripe sized writes". The
exception to these observations is the case when the I/O block
size matches or exceeds the Lustre stripe size. Finally, for the
local aggregation case "number of write gaps" and "ave write
gap size" counts will typically be higher than when collective
buffering is enabled. If more in-depth analysis of the workload
is of interest using a tool like Darshan is recommended [7].

D. MPI-IO TIMERS

The last set of debugging information contains the most
detail. A section of timer information for “all ranks” is reported
for each file accessed with a series of timers shown below. In
the case of collective buffering a second section is printed with
statistics relevant only to aggregator ranks. When using Local

Aggregation as collective buffering only the “all ranks” section
is reported since collective buffering isn’t used.

The example output is from a test using Local Aggregation
and buffered I/O. All ranks are writing data and using buffered
I/O. This output shows that a significant amount of time is being
spent in file open and close. Unexpectedly, there is no time in
the group unlock but instead was spent in close. This is likely
related to LU-16046 since it appears to be a single rank taking a
disproportionate amount of time but this will require further
investigation. This testing also identified a bug where the ‘close

fsync time’ is incorrectly reporting the ‘close sys time’. This
issue will be fixed in an upcoming HPE Cray MPICH release.
The raw and net write BW reporting is also helpful, include the
data send rate for collective buffering, although understanding
what is being reported is important as it can lead to misleading
results. In this case both raw and net write rates are achieving
well above the possible performance of the OSTs the file is
striped across. This is a buffered I/O test which means data may
held in page cache and not necessarily on disk. The raw write
rate is the amount of data written divided by the average write
time (6TiB / 7.09 sec in this example). This gives a general idea
of the performance ranks or nodes are achieving but is optimistic

+---+
| MPIIO write access patterns for
/lus/flash/testdir.200/IOR_HDF5
| ranks in communicator = 12288
| independent writes = 0
| collective writes = 34
| independent writers = 0
| aggregators = 384
| stripe count = 6
| stripe size = 16777216
| system writes = 393268
| stripe sized writes = 393184
| aggregators active = \
| 24576,0,0,393216 (1, <= 192, > 192, 384)
| total bytes for writes = 6597069779872 \
| = 6291456 MiB \
| = 6144 GiB
| ave system write size = 16774997
| read-modify-write count = 0
| read-modify-write bytes = 0
| number of write gaps = 16
| ave write gap size = 1156428335687
+---+

+--+
| MPIIO write by phases, all ranks,\
| for /lus/flash/testdir.201/IOR_HDF5
| number of ranks writing = 12288
| number of ranks not writing = 0
| min max ave
| --- --- ---
| open/trunc time = 4.89 4.89 4.89
| close sys time = 0.00 5.76 0.12
| close fsync time = 0.00 5.76 0.12
| close group-unlock time = 0.00 0.00 0.00
| close other + wait time = 0.00 0.00 0.00
| file write time = 6.09 11.02 7.09
|
| time scale: 1 = 2**7 clock ticks
 min max ave
| ----------
---------- ---------- ---
| total = 679365650
|
| imbalance = \
 3661455 6419569 4608620 0%
| open/trunc = \
 124220702 124275751 124237723 18%
| close sys = \
 348 146546323 2958218 0%
| close fsync = 0 0 0 0%
| close group-unlock = 0 0 0 0%
| close other + wait = 1 24 5 0%
| local compute = \
 3664 11145 4856 0%
| wait for coll = \
| 270489159 394372058 367283785 54%
| file write = \
 154887311 280306349 180272438 26%
| other = 0 0 0 0%
|
| raw write BW (MiB/s) = 887322.425
| net write BW (MiB/s) = 235454.615
+--+

Listing 5. MPI-IO Stats Example Output

Listing 6. MPI-IO Timers Example Output

when the average and maximum are not equal. The net write
uses the sum of the average times of all the components which
should be closer to the real, application observed write rate
however, again, a significantly larger maximum compared to the
average makes the rate optimistic. The application visible write
rate would be closer to total data written divided by the sum of
all the maximum times.

When comparing timer output between collective buffering
and local aggregation note that the "number of ranks writing"
will include all ranks actually performing collective writes.
Additionally, the time spent in "open/trunc" will account for a
higher share of the average time spent; typically it will be second
to "file write", depending on IO size, since all ranks and not just
aggregators now need to "open" the file. Finally, with local
aggregation the timer categories "close group-unlock" and
"close other + wait" are likely to account for a notable share of
average time spent. Significant time spent in "close other +
wait", especially when their min and max vary by several orders
of magnitude, is usually an indication that some ranks are
waiting for one or more other ranks to complete the group-
unlock operation as part of close(). The example provided in
Listing 6 is heavily formatted to fit printing constraints.

V. GENERAL GUIDANCE FOR SHARED FILE OPTIMIZATIONS

Using the above diagnostic tools within HPE Cray
MPICH, the goal is for an application user to be able to
understand how to optimize their collective MPI-IO shared file
workload. The following guidance is meant as a starting point
when optimizing a shared file workload on a system.

For POSIX or MPI-IO independent shared file writes,
we recommend Lustre Overstriping. The number of Overstripes
will depend on the specific workload. Generally, if Lustre
Overstriping will provide performance improvements you will
see an increase in performance with even one additional
Overstripe per OST (2 stripes per OST). In general, there are
diminishing returns at Overstripe counts above 8 except for
very specifically aligned workloads. For these workloads there
are no locking optimizations available so selecting a Lustre
stripe size and stripe count that aligns with the access sizes and
patterns is important. As an example, for some workloads rank
re-ordering or rank placement that allows for adjacent I/O
requests from different ranks can allow those requests to be
coalesced to a write on the same Lustre stripe. Considering the
total amount of contiguous data written by all ranks on a node
and selecting an equivalent Lustre stripe size and significantly
reduce lock contention. Without direct I/O the performance
from a single node doing shared file writes is currently limited
to around 1.5 GB/s per node regardless of the number of ranks
on a single node that are writing data.

In the case of collective MPI-IO it is recommended to
enable either collective buffering or to use the experimental
new feature of Local Aggregation as collective buffering. The
optimized locking that these two options provide is important
in achieving peak shared file write performance. If your
application does a mix of independent and collective MPI-IO
calls to the same file use Lustre Lockahead
(cray_cb_write_lock_mode=2). Otherwise, using
Lustre Group Locks (cray_cb_write_lock_mode=1) is

recommended. Regardless of OST type it is recommended to
use multiple aggregators per OST with current HPE Cray
ClusterStor E1000 OSTs. One way to control this with MPI-IO
hints is using the cray_cb_nodes_multiplier hint
which represents the number of aggregators to be assigned per
Lustre stripe. A value of 4 to 8 for disk OSTs and a value of 32
to 64 for NVMe OSTs are good starting points. If your
application doesn’t use enough compute nodes for such a high
number of aggregator ranks considering using the
direct_io=true MPI-IO hint to see if that provides
improved performance. Direct I/O typically performs best at 16
MiB and larger I/O request and Lustre stripe sizes.

VI. FUTURE WORK

After the initial implementation and testing of the new

feature there are several items identified throughout the paper
that will be addressed in the future. We intend to continue
testing once the fix for LU-16046 is available. First, we will
investigate the data validation errors seen in early testing.
Investigating and resolving the alignment issue with HDF5 in
IOR will allow for direct I/O testing. Longer range work
supporting collective MPI-IO write workloads includes
allowing a configurable number of ranks per node to act as local
aggregators in a similar approach to [8]. Highly packed nodes
may benefit from fewer ranks performing I/O and yield
improved write performance. Finally, applying the finding to
at-scale applications to identify and quantify which workloads
benefit from this optimization.

VII. CONCLUSION

The current generation of NVMe-based OSTs
highlighted the need to re-visit shared file write performance,
specifically collective MPI-IO workloads. Although the same
file system optimizations are available on Lustre the way they
are currently leveraged for collective MPI-IO is showing
diminishing returns and requiring a high compute node to
storage target ratio which isn’t always feasible. The underlying
file system optimizations are still still relevant and necessary to
optimize collective MPI-IO write workloads, but they need to
be applied in a new way. With NVMe-based OSTs there are
lower latency request times and no penalty for seeking – both
factors that made this approach non-performant in the past. A
new optimization, Local Aggregation, uses the Lustre file
system optimization of Group Locks to provide an optimized
path to high throughput OSTs using collective MPI-IO. With
each MPI rank taking a group lock and submitting its own I/O,
the overhead of collective buffering, how group locks were
previously used, is avoided. This experimental feature can be
enabled using MPI-IO hints requiring no application code
changes. Initial testing shows a significant performance
improvement for smaller node counts and smaller I/O request
sizes. Since this testing uses buffered I/O, which currently has
a Lustre imposed low per-node performance limit, the results

suggest that collective buffering overhead is limiting
performance since both tests have the same per-node shared file
performance limit. With future testing using direct I/O we
expect to see larger performance improvements at lower node
counts as demonstrated in single node direct I/O tests.

ACKNOWLEDGMENT

Thanks to Doug C. for his assistance with system
configuration tasks that enabled this testing.

REFERENCES

[1] P. Carns et al., “"Understanding and improving computational science

storage access through continuous characterization," 2011 IEEE 27th
Symposium on Mass Storage Systems and Technologies (MSST),
Denver, CO, USA, 2011, pp. 1-14, doi: 10.1109/MSST.2011.5937212.

[2] (2006) “[lustre-devel] group locks design document. [Online]. Available:
https://thr3ads.net/lustre-devel/2006/05/2056557-Group-locks-design-
document

[3] M. Moore, P. Farrell, and B. Cernohous, “Lustre Lockahead: Early
Experience and Performance using Optimized Locking,” presented at
CUG 2017, 2017.

[4] M. Moore, P. Farrell, “Exploring Lustre Overstriping For Shared File
Performance on Disk and Flash, “ presented at CUG 2019, 2019.

[5] (2017) “HDF5 Collective Metadata I/O Documentation” [Online].
Available:
https://docs.hdfgroup.org/archive/support/HDF5/docNewFeatures/NewF
eaturesCollectiveMetadataIoDocs.html.

[6] (2022) “[LU-16046] Shared-file I/O performance is poor under group
lock - Whamcloud Community JIRA “ [Online]. Available: https://
https://jira.whamcloud.com/browse/LU-16046 .

[7] “Darshan – HPC I/O Characterization Tool” [Online]. Available:
https://www.mcs.anl.gov/research/projects/darshan/

[8] Q. Kang et al., "Improving MPI Collective I/O for High Volume Non-
Contiguous Requests With Intra-Node Aggregation," in IEEE
Transactions on Parallel and Distributed Systems, vol. 31, no. 11, pp.
2682-2695, 1 Nov. 2020, doi: 10.1109/TPDS.2020.3000458.

