
May 9, 2023

Presenter: John Fragalla, HPE, Distinguished Technologist
Authors: Michael Moore, HPE, Master Technologist

Ashwin Reghunandanan, HPE, Systems/Software Engineer
Dr. Lisa Gerhardt, Lawrence Berkeley National Laboratory

MPI-IO Local Aggregation as Collective Buffering

• Background and Previous Work
• Collective MPI-IO Optimizations and Motivation
• Synthetic Benchmarks
• Local Aggregation as Collective Buffering Performance
• Using Cray MPICH MPI-IO statistics and timers
• General guidance on N:1 write performance optimization

Agenda

2

• File Per Process (N:N)
• No write lock contention, optimal

performance

• Shared File Workload (N:1)
• More challenging for file systems since

write locks can serialize access
• Optimistically achieve performance

equal to file per process
• Segmented N:1 workload is the

targeted workload for the remainder
of the paper

Background: I/O Workloads

3

2 MiB Lustre Stripe
IOR invocation: IOR -a MPIIO -g -b 1m -t 1m -s 2 -o TESTFILE -w

• Default Lustre Lock Behavior
• Optimized for File Per Process
• Serializes writes to a single OST

• Lustre Group Locks
• Defines a new type of lock that removes the file system

doing byte-range locking (LDLM)
• Application is responsible for data consistency

• Lustre Lock Ahead
• Stops the default behavior of extending the lock grant to

EOF on the specific OST
• Nodes must request specific byte ranges of locks, which

can happen asynchronously
• Lustre Overstriping

• Allow multiple Lustre stripes per OST -- previously only
one was allowed

• Artificially increases the number of locking domains for a
given number of OSTs

Background: File System Optimizations

4

Default Lustre Locking behavior with two
clients writing to non-overlapping offsets to

the same OST

API Lustre
Group
Locks

Lustre
Lock
Ahead

Lustre
Overstriping

Coll. MPI-IO with Coll.
Buffering and Lustre
Lockahead

Coll. MPI-IO with Coll.
Buffering and Lustre
Group Locks

Coll. MPI-IO with local
aggregation as Coll.
Buff.

POSIX

Independent MPI-IO

Coll. MPI-IO w/ Coll. Buff.
HDF5 no Coll Metadata
HDF5 with Coll Metadata

Legend Not Possible Due to Technical
Limitations e.g. requires
independent MPI-IO which isn’t
allowed with Lustre Group Locks

Not Applicable Possible but requires
application code changes

Available or Possible
without code changes

Background: Optimizations in the I/O stack

5

• POSIX API - Directly interact with the file system optimizations through ioctls (liblustre API calls)
• MPI-IO – POSIX optimizations aren’t directly accessible to application

• The MPI library uses them internally and applications can enable using them through MPI-IO Hints
• HDF5 – we’re focusing on collective MPI-IO although HDF5 can use other APIs

Background: Collective MPI-IO and Motivation

6

• Many application I/O libraries (e.g. HDF5, NetCDF) use collective MPI-IO; that workload is our focus
• Brief Collective MPI-IO with Collective Buffering review:

• With collective buffering a subset of MPI ranks are used to aggregate I/O requests made through a collective
MPI-IO call

• All MPI ranks in the communicator submit data to be written
• A subset of MPI ranks, ‘the aggregators’, receive data from other MPI ranks and submit the I/O to the file system

on their behalf via POSIX I/O calls coalescing data into larger requests
• Collective MPI-IO calls use collective buffering to:

• Use POSIX accessible optimizations on the aggregators, like Lustre group locks or Lustre Lock ahead
• Assign contiguous, Lustre stripe sized ranges to specific aggregators allowing one aggregator to only write to a

single OST in Lustre stripe-sized chunks
• Avoid read-modify-write operations for single MPI rank data that is less than a RAID stripe size (1 MiB on HPE

Cray ClusterStor E1000)
• Reduce the number of compute nodes writing to a single, shared file

Background: Collective MPI-IO and Motivation

7

• Downsides of Collective Buffering
• All the data passes over the fabric twice – one copy to the aggregators, another to get to the storage
• OSTs have changed over time

– Historically: basic RAID-6 OSTs could achieve 1-2 GB/s allowing a single aggregator MPI rank to achieve peak performance
– Now:

– OSTs have more drives (106 drives or 24 NVMe instead of 8+2)
– OSTs use high performing, non-rotational media
– A single OST can be 5x - 40x the performance of older OSTs and require 8 or more aggregators to achieve peak performance

• Aggregators, for collective buffering, are just application MPI ranks
– No dedicated memory for buffering larger quantities of data (tens or hundreds of GBs)
– For large collective writes many iterations of receiving and writing data are required

• For many collective MPI-IO workloads collective buffering was just a pass-through that allowed using
optimized locks

• How do we keep the locking benefits of collective buffering without the bottleneck of aggregators?

Collective MPI-IO Local Aggregation as Collective Buffering

8

• Extend the idea of an aggregator so every node serves as its own aggregator
• Avoid the double copy of data over the fabric by each node writing its own data
• Each node writing data (all nodes in the MPI communicator) take a Lustre group lock to use optimized locking
• Initial implementation has each rank performing its own I/O

• Higher performance at lower node counts today is limited:
• Shared file write performance is limited to 1-2 GB/s for any buffered I/O writes regardless of PPN
• Current Collective Buffering implementation is optimized for a single rank per node as an aggregator
• Using 32 to 64 nodes per NVMe OST to drive a high percentage of peak performance requires at or above full

system scale for many HPC systems

• Downside of this approach
• There is no guarantee of stripe aligned accesses as in the case of collective buffering
• With group locks the impact of this should be minimal

• I/O request size effects how many nodes are needed to achieve peak performance
• Direct I/O is not effective at smaller transfer sizes but is more beneficial with multiple processes per node
• Effectively measuring collective buffering with multiple aggregators per OST

Performance: Current HPE Cray ClusterStor Shared Write

9

0

10,000

20,000

30,000

1MB 64MB 1MB 64MB 1MB 64MB 1MB 64MB

Direct Buffered Direct Buffered

Disk OST NVMe OST

M
B/

s

Shared POSIX Write Performance with Group Locks
1 OST, 8 Lustre Overstripes, 1 PPN

2 Nodes 4 Nodes 8 Nodes 16 Nodes 32 Nodes 64 Nodes

10

Disk OST NVMe OST

Direct Buffered Direct Buffered

1MB 64MB 1MB 64MB 1MB 64MB 1MB 64MB

2 Nodes

4 Nodes

8 Nodes

16 Nodes

32 Nodes

64 Nodes

Under 50% of Peak FPP Between 50% and 80% of Peak FPP Over 80% of Peak FPP

Performance: Shared Write relative to File Per Process Write

Single OST, 1 PPN (i.e. a collective buffering aggregator workload)

• Significant improvement at lower nodes counts (relative to number of OSTs) and smaller transfer sizes
• Not always advantageous although close time issue makes direct comparison difficult
• IOR 3.3 does not seem to correctly align HDF5 accesses even using the ‘-J’ parameter

– This prevented using direct I/O since accesses were not 4k aligned

Performance: HDF5 IOR Benchmarks

11

0
10,000
20,000
30,000
40,000
50,000
60,000

16 nodes 32 nodes 64 nodes 128 nodes 16 nodes 32 nodes 64 nodes 128 nodes

1MB 64M

M
B/

s

IOR Collective HDF5 Write Performance
1 x E1000F

CB Lock Mode 1 Local Aggr. Buffered

• Scaling up the OST count and maintaining the same ratio of nodes to OSTs continues to show meaningful
improvement using Local Aggregation as Collective Buffering

• At higher node counts per OST the improvement seems to lessen but a majority of the performance gains are
lost to higher close time since more nodes open the file in the Local Aggregation as Collective Buffering case

Performance: HDF5 IOR Benchmarks

12

-10.00%

10.00%

30.00%

50.00%

70.00%

48 Nodes 96 Nodes 192 Nodes 384 Nodes

Percent Improvement in Write Throughput with Local Aggregation, 3 x E1000F

1 MB 4 MB 16 MB 64 MB

• LU-16046 increases time for Group Lock Unlock; a fix will be in COS 2.6 Lustre clients – this reduces the measured
throughput but effects all jobs taking group locks in a similar way

• There may be a second issue as longer close times, not group unlock times, were sometimes reported
• This disproportionately reduces Local Aggregation as Collective Buffering results, especially at larger node counts.

Performance: HDF5 IOR Benchmarks, Close Time Issue

13

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

CB Lock Mode 1 Local Aggr.
Buffered

CB Lock Mode 1 Local Aggr.
Buffered

CB Lock Mode 1 Local Aggr.
Buffered

CB Lock Mode 1 Local Aggr.
Buffered

48 nodes 96 nodes 192 nodes 384 nodes

Write Time and Close Time in HDF5 IOR Tests
3 x E1000F, 64 MB Transfers

Write Time Close Time

• Standard Collective Buffering with Lustre Group Locks
• MPICH_MPIIO_HINTS=“*:romio_cb_write=enable:cray_cb_nodes_multiplier=4:\

cray_cb_write_lock_mode=1:romio_no_indep_rw=true”

• cray_cb_nodes_multiplier is the number of aggregators per Lustre stripe (not Lustre OST)
– This is the number of nodes with 1 PPN in the previous shared file test results

• Local Aggregation as Collective Buffering MPI-IO hints
• MPICH_MPIIO_HINTS=“*:romio_cb_write=disable:cray_nocb_write_lock_mode=1:\

romio_cb_read=disable:romio_ds_write=disable:\
romio_no_indep_rw=true”

Usage: How to enable the Local Aggregation as Collective Buffering

14

• Cray MPICH includes several environment variables to report out information on MPI-IO activity
export MPICH_MPIIO_HINTS_DISPLAY=1
export MPICH_MPIIO_AGGREGATOR_PLACEMENT_DISPLAY=1
export MPICH_MPIIO_TIMERS=1
export MPICH_MPIIO_STATS=1

• MPICH_MPIIO_HINTS_DISPLAY
• Confirm which hints are in effect for a given file in case there are conflicting options, incorrect wildcard, etc.
• A filtered list of relevant hints

Analysis: Cray MPICH MPI-IO Info and Statistics

15

PE 0: MPIIO hints for /lus/flash/testdir.1502/IOR:
romio_cb_read = enable
romio_cb_write = enable
romio_no_indep_rw = true
cray_cb_nodes_multiplier = 4
cray_cb_write_lock_mode = 1
cb_nodes = 8

• MPICH_MPIIO_AGGREGATOR_PLACEMENT_DISPLAY
• Show which MPI ranks and nodes were serving as aggregator ranks

Analysis: Cray MPICH MPI-IO Info and Statistics

16

Aggregator Placement for /lus/flash/testdir.205/IOR
RankReorderMethod=1 AggPlacementStride=-1
AGG Rank nid
---- ------ --------

0 0 nid00000
1 256 nid00008
2 512 nid00016
3 768 nid00024
4 1024 nid00032
5 1280 nid00040
6 1536 nid00048
7 1792 nid00056

• MPICH_MPIIO_STATS=1
• Display counts and sizes of MPI-IO operations

Analysis: Cray MPICH MPI-IO Info and Statistics

17

+--+
| MPIIO write access patterns for /lus/flash/testdir.205/IOR
| ranks in communicator = 2048
| independent writes = 0
| collective writes = 64
| independent writers = 0
| aggregators = 8
| stripe count = 2
| stripe size = 16777216
| system writes = 131072

• MPICH_MPIIO_STATS=1
• Aggregators active is specific to collective buffering enabled

Analysis: Cray MPICH MPI-IO Info and Statistics

18

| stripe sized writes = 131072
| aggregators active = 0,0,0,131072 (1, <= 4, > 4, 8)
| total bytes for writes = 2199023255552 = 2097152 MiB = 2048 GiB
| ave system write size = 16777216
| read-modify-write count = 0
| read-modify-write bytes = 0
| number of write gaps = 0
| ave write gap size = NA
+--+

• MPICH_MPIIO_TIMERS=1
• Shows timing (min, max, avg) for the different phases of collective MPI-IO
• Reports throughput based on reported timings for different phases
• Always reports an ‘all ranks’ section for write or read. When using collective buffering a

Analysis: Cray MPICH MPI-IO Info and Statistics

19

+--+
| MPIIO write by phases, all ranks, for /lus/flash/testdir.205/IOR
| number of ranks writing = 8
| number of ranks not writing = 2040
| min max ave
| ---------- ---------- ----------
| open/trunc time = 0.01 0.01 0.01
| close sys time = 0.00 0.00 0.00
| close fsync time = 0.00 0.00 0.00
| close group-unlock time = 0.00 55.53 0.21
| close other + wait time = 0.00 2.82 0.00

• Several counters are reported in ticks; you can convert them to seconds if you want absolute time
• Calculate the tics_per_second based on a reported time and time scale that’s reported like file write max:
• Ticks_per_sec = (file write max) * (time scale) / file write max seconds e.g. (490903754)*(2^10) / (229.23)

• Bandwidth report in ‘all ranks’ section

• Timing in “Writers only” (aggregators) section

Analysis: MPICH_MPIIO_TIMERS=1

20

| file write time = 215.93 229.23 222.30
|
| time scale: 1 = 2**10 clock ticks min max ave
| ---------- ---------- ---------- ---
| total = 535355066
| wait for coll = 2057775 32745487 10641530 1%
| data send = 38484553 59658902 46869207 8%
| file write = 462411061 490903754 476056748 88%

| data send BW (MiB/s) = 17323.854
| raw write BW (MiB/s) = 9433.878
| net write BW (MiB/s) = 8381.648

• The reported bandwidth are helpful but can be optimistic if taken as printed
• In the previous example

–MPICH_MPIIO_TIMERS output reports a write time of 229.23 seconds and net write BW of 8,381 MiB/s
–IOR reports a write time of 224.26 seconds or 9.13 GiB/s
–IOR reports the test throughput as 7.6 GiB/s

• Application I/O time includes all the operations potentially including opening the file, flushing dirty
data, releasing locks, and closing the file

• MPICH_MPIIO_TIMERS output provides timers to understand where the other time is spent

Analysis: MPICH_MPIIO_TIMERS=1

21

• Lustre Stripe Count
• More frequently decided by job size and not file size
• Consider potential OST performance
• Traditional buffered shared file or collective buffering can achieve between 1.3- 1.7 GB/s write
• Disk OST:

• Lustre Stripe Size
• Larger transfer sizes generally do better all things equal

–Diminishing returns for stripe sizes larger than 64M
–Remember the Lustre stripe size * Number of Aggregators is the size of data that needs to be

written in a collective write to use all aggreagors
• Align the stripe size with the amount of data each node writes

–Example: if MPI rank writes 1MB, with 64 PPN, with a block rank allocation, a Lustre stripe size of
64M would allow a 64M contiguous request to be written – assuming offsets are stripe aligned and
buffered I/O is used

Recommendations: Shared File Parameters

22

• POSIX / Independent MPI-IO
• Lustre Overstriping
• Direct IO if multiple ranks writing and need more than 1.5 GB/s per node
• Align Lustre stripe size with (PPN * I/O request size) block allocation

• Mixed Collective and Independent I/O (HDF5 without collective metadata)
MPICH_MPIIO_HINTS=“*:romio_cb_write=enable:cray_cb_nodes_multiplier=N:\

cray_cb_write_lock_mode=2”
– Lustre Overstriping did not show measurable performance improvements in NVMe OST testing

• Collective MPI-IO on NVMe OSTs
• Current

MPICH_MPIIO_HINTS=“*:romio_cb_write=enable:cray_cb_nodes_multiplier=64:\
cray_cb_write_lock_mode=1:romio_no_indep_rw=true”

• Experimental Local Aggregation
MPICH_MPIIO_HINTS=“*:romio_cb_write=disable:cray_nocb_write_lock_mode=1:romio_cb_read=disable:\

romio_ds_write=disable:romio_no_indep_rw=true”

• Collective MPI-IO on Disk OSTs
MPICH_MPIIO_HINTS=“*:romio_cb_write=enable:cray_cb_nodes_multiplier=8:\

cray_cb_write_lock_mode=1:romio_no_indep_rw=true”

Recommendations: Shared File Settings By API

23

• Get LU-16046 fix for group unlock duration into shipping Lustre client code
• Planned inclusion in COS release (2.6), potential for backports to older COS versions but not plan of record

• Investigate data validation and close time issues
• Configurable number of ranks per node acting as aggregators user intra-node transfers

• Currently all ranks submit their own I/O requests

• Optimize collective buffering behavior for many aggregators per node
• Currently single rank per node is the optimal configuration which requires more nodes to get peak performance

• Larger scale and application testing

Future Work

24

• Higher performance NVMe OSTs created challenges for existing collective MPI-IO optimizations
• The extra data copy adds latency and many workloads only make use of locking optimizations through coll. buff.
• Very high node counts per OST are needed to achieve peak performance which isn’t always feasible

• A new, experimental, feature was added to HPE Cray MPICH: Local Aggregation as Collective Buffering
• Optimizes Shared file writes with Collective MPI-IO by:

– Removing the overhead of sending data to aggregator ranks (collective buffering)
– Retains the use of Lustre Group Locks for optimized POSIX file writes

• HPE Cray MPICH provides several collective MPI-IO debugging options to understand Collective MPI-IO
performance, helping to optimize your application’s workload for your storage environment

• Using the new Local Aggregation as Collective Buffering feature shows significant improvements in
moderate scale testing of over 60% for some workloads

Summary

25

© 2023 Hewlett Packard Enterprise Development LP

Michael Moore <michael.moore@hpe.com>
Ashwin Reghunandanan <ashwin.reghunandanan@hpe.com>
Lisa Gerhardt <lgerhardt@lbl.gov>

Thank you

