—1

Hewlett Packard
Enterprise

MPI-10 Local Aggregation as Collective Buffering

Presenter: John Fragalla, HPE, Distinguished Technologist

Authors: Michael Moore, HPE, Master Technologist
Ashwin Reghunandanan, HPE, Systems/Software Engineer
Dr. Lisa Gerhardt, Lawrence Berkeley National Laboratory

May 9, 2023

Agenda

e Background and Previous Work

e Collective MPI-I0O Optimizations and Motivation

e Synthetic Benchmarks

 Local Aggregation as Collective Buffering Performance

e Using Cray MPICH MPI-I0 statistics and timers

e General guidance on N:1 write performance optimization

Background: 1/0 Workloads

» File Per Process (N:N) OST 3
« No write lock contention, optimal ‘
performance L __] | '
« Shared File Workload (N:1) OMiB: 1MiB _2MiB .3|V||B 4|V|JB 5MiB
« More challenging for file systems since : % T L
"O"”T? locks Tlan S‘:'al'ze acfcess ‘MPI Rank 0 |~ [MPI Rank 1 |-.. [MPI Rank 2
o Optimistically achieve performance i
equal to file per process - - - - - -
) 1 MiB 1 MiB 1 MiB 1 MiB 1 MiB 1 MiB
» Segmented N:1 workload is the

targeted workload for the remainder _
of the paper MPIRank ... » Logical placement within file

Application Data .
N — within File l Application Data

File System Stripe

2 MiB Lustre Stripe
IOR invocation: IOR -a MPIIO -g -b 1m -t 1Im -s 2 -o TESTFILE -w

Background: File System Optimizations

e Default Lustre Lock Behavior
o Optimized for File Per Process
 Serializes writes to a single OST
e Lustre Group Locks

« Defines a new type of lock that removes the file system
doing byte-range locking (LDLM)

« Application is responsible for data consistency
e Lustre Lock Ahead

« Stops the default behavior of extending the lock grant to
EOF on the specific OST

« Nodes must request specific byte ranges of locks, which
can happen asynchronously

e Lustre Overstriping

o Allow multiple Lustre stripes per OST -- previously only
one was allowed

o Artificially increases the number of locking domains for a
given number of OSTs

—

Client: operation (block)

OST: operation
(client/block start:block end)

End of File (EOF)

|C1: Request Lock (0) |

>

-

|O1: Grant Lock (C1/0:EOF) |

|C1: Write Block (0) |

>

|C2: Request Lock (1) |
-

-

>
| O1: Revoke Lock (C1/0:EOF) |

|C2: Write Block (1) |

| O1: Grant Lock (C2/1:EOF) |

B

|C1: Request Lock (2) |
<

-

=
| O1: Revoke Lock (C2/1:EOF) |
| O1: Grant Lock (C1/2:EOF) |

|C1: Write Block (2) |

>

Default Lustre Locking behavior with two
clients writing to non-overlapping offsets to
the same OST

Background: Optimizations in the 1/0 stack

e POSIX API - Directly interact with the file system optimizations through ioctls (liblustre API calls)
* MPI-I0 - POSIX optimizations aren’t directly accessible to application

o The MPI library uses them internally and applications can enable using them through MPI-IO Hints
» HDF5 - we'’re focusing on collective MPI-IO although HDF5 can use other APIs

Lustre Lustre Lustre Coll. MPI-IO with Coll. Coll. MPI-1O with Coll. Coll. MPI-IO with local

Group Lock Overstriping Buffering and Lustre Buffering and Lustre aggregation as Coll.
Locks Ahead Lockahead Group Locks Buff.

POSIX
Independent MPI-IO

Coll. MPI-10 w/ Coll. Buff.
HDF5 no Coll Metadata
HDF5 with Coll Metadata

Legend

Possible but requires
application code changes

Not Applicable

— | B

Background: Collective MPI-10 and Motivation

» Many application I/O libraries (e.g. HDF5, NetCDF) use collective MPI-I0; that workload is our focus

» Brief Collective MPI-IO with Collective Buffering review:

« With collective buffering a subset of MPI ranks are used to aggregate 1/O requests made through a collective
MPI-IO call

e All MPI ranks in the communicator submit data to be written

« A subset of MPI ranks, ‘the aggregators’, receive data from other MPI ranks and submit the 1/O to the file system
on their behalf via POSIX I/O calls coalescing data into larger requests

e Collective MPI-IO calls use collective buffering to:
» Use POSIX accessible optimizations on the aggregators, like Lustre group locks or Lustre Lock ahead

 Assign contiguous, Lustre stripe sized ranges to specific aggregators allowing one aggregator to only write to a
single OST in Lustre stripe-sized chunks

« Avoid read-modify-write operations for single MPI rank data that is less than a RAID stripe size (1 MiB on HPE
Cray ClusterStor E1000)

« Reduce the number of compute nodes writing to a single, shared file

— | 6

Background: Collective MPI-10 and Motivation

» Downsides of Collective Buffering
« All the data passes over the fabric twice — one copy to the aggregators, another to get to the storage
e OSTs have changed over time
— Historically: basic RAID-6 OSTs could achieve 1-2 GB/s allowing a single aggregator MPI rank to achieve peak performance
- Now:
— OSTs have more drives (106 drives or 24 NVMe instead of 8+2)

— OSTs use high performing, non-rotational media
— A single OST can be 5x - 40x the performance of older OSTs and require 8 or more aggregators to achieve peak performance

« Aggregators, for collective buffering, are just application MPI ranks
—No dedicated memory for buffering larger quantities of data (tens or hundreds of GBs)
—For large collective writes many iterations of receiving and writing data are required

e For many collective MPI-IO workloads collective buffering was just a pass-through that allowed using
optimized locks

» How do we keep the locking benefits of collective buffering without the bottleneck of aggregators?

— | 7

Collective MPI-IO Local Aggregation as Collective Buffering

» Extend the idea of an aggregator so every node serves as its own aggregator
« Avoid the double copy of data over the fabric by each node writing its own data
« Each node writing data (all nodes in the MPI communicator) take a Lustre group lock to use optimized locking
o Initial implementation has each rank performing its own 1/O
» Higher performance at lower node counts today is limited:
 Shared file write performance is limited to 1-2 GB/s for any buffered I/O writes regardless of PPN
e Current Collective Buffering implementation is optimized for a single rank per node as an aggregator

« Using 32 to 64 nodes per NVMe OST to drive a high percentage of peak performance requires at or above full
system scale for many HPC systems

e Downside of this approach

« There is no guarantee of stripe aligned accesses as in the case of collective buffering
« With group locks the impact of this should be minimal

Performance: Current HPE Cray ClusterStor Shared Write

Shared POSIX Write Performance with Group Locks
1 OST, 8 Lustre Overstripes, 1 PPN

30,000
» 20,000
a8
= 10,000 II I I
0 e T [| lll [| I.- [| III [.II I [| [|
1MB 64MB 1MB 64MB 1MB 64MB 1MB 64MB
Direct Buffered Direct Buffered
Disk OST NVMe OST

m 2 Nodes 4 Nodes m8 Nodes m16 Nodes m 32 Nodes 64 Nodes

« 1/O request size effects how many nodes are needed to achieve peak performance
 Direct I/O is not effective at smaller transfer sizes but is more beneficial with multiple processes per node
» Effectively measuring collective buffering with multiple aggregators per OST

—

Performance: Shared Write relative to File Per Process Write

Disk OST NVMe OST
Buffered
64MB

Direct

64MB

Buffered
64MB

Direct

64MB

iMB iMB iMB

2 Nodes

4L Nodes

8 Nodes

16 Nodes

32 Nodes

64 Nodes

Between 50% and 80% of Peak FPP
Single OST, 1 PPN (i.e. a collective buffering aggregator workload)

Performance: HDF5 IOR Benchmarks

IOR Collective HDF5 Write Performance

1 x E1000F
60,000
50,000
., 40,000
g 30,000
20,000 . .
10005] [
16 nodes 32 nodes 64 nodes 128 nodes 16 nodes 32 nodes 64 nodes 128 nodes
1MB 64M

m CB Lock Mode 1 Local Aggr. Buffered

« Significant improvement at lower nodes counts (relative to number of OSTs) and smaller transfer sizes
« Not always advantageous although close time issue makes direct comparison difficult

» IOR 3.3 does not seem to correctly align HDF5 accesses even using the -J’ parameter
— This prevented using direct I/O since accesses were not 4k aligned

— |

11

Performance: HDF5 IOR Benchmarks

Percent Improvement in Write Throughput with Local Aggregation, 3 x EL000F

70.00%
50.00%
30.00%
N N ET
-
210.00% 48 Nodes 96 Nodes 192 Nodes 384 Nodes

m1MB "4MB m16 MB m64 MB
e Scaling up the OST count and maintaining the same ratio of nodes to OSTs continues to show meaningful
improvement using Local Aggregation as Collective Buffering

« At higher node counts per OST the improvement seems to lessen but a majority of the performance gains are
lost to higher close time since more nodes open the file in the Local Aggregation as Collective Buffering case

: | 12

Performance: HDF5 IOR Benchmarks, Close Time Issue

Write Time and Close Time in HDF5 IOR Tests
3 x E1000F, 64 MB Transfers

100%
90%

80%
70%
60%
50%
40%
30%
20%
10%

0%

CB Lock Mode 1 Local Aggr. CB Lock Mode 1 Local Aggr. CB Lock Mode 1 Local Aggr. CB Lock Mode 1 Local Aggr.
Buffered Buffered Buffered Buffered

48 nodes 96 nodes 192 nodes 384 nodes

m Write Time Close Time

o LU-16046 increases ftime for Group Lock Unlock; a fix will be in COS 2.6 Lustre clients — this reduces the measured
throughput but effects all jobs taking group locks in a similar way

« There may be a second issue as longer close times, not group unlock times, were sometimes reported
 This disproportionately reduces Local Aggregation as Collective Buffering results, especially at larger node counts.

: | 13

Usage: How to enable the Local Aggregation as Collective Buffering

 Standard Collective Buffering with Lustre Group Locks
« MPICH MPIIO HINTS=“*:romio cb write=enable:cray cb nodes multiplier=4:\
cray cb write lock mode=l:romio no indep rw=true”
 cray_cb_nodes_multiplier is the number of aggregators per Lustre stripe (not Lustre OST)
- This is the number of nodes with 1 PPN in the previous shared file test results
e Local Aggregation as Collective Buffering MPI-IO hints
« MPICH MPIIO HINTS=“*:romio cb write=disable:cray nocb write lock mode=1:\
romio cb read=disable:romio ds write=disable:\
romio no indep rw=true”

14

Analysis: Cray MPICH MPI-IO Info and Statistics

e Cray MPICH includes several environment variables to report out information on MPI-10O activity
export MPICH MPITO HINTS DISPLAY=1
export MPICH MPITO AGGREGATOR PLACEMENT DISPLAY=1
export MPICH MPIIO TIMERS=1
export MPICH MPIIO STATS=1

e MPICH_MPIIO_HINTS_DISPLAY
« Confirm which hints are in effect for a given file in case there are conflicting options, incorrect wildcard, etc.

o A filtered list of relevant hints PE 0: MPIIO hints for /lus/flash/testdir.1502/IO0R:
romio cb read = enable
romio cb write = enable
romio no indep rw = true
cray cb nodes multiplier = 4
cray cb write lock mode =1
cb nodes = 8

Analysis: Cray MPICH MPI-IO Info and Statistics

e MPICH_MPIIO_AGGREGATOR_PLACEMENT_DISPLAY
« Show which MPI ranks and nodes were serving as aggregator ranks

Aggregator Placement for /lus/flash/testdir.205/I0R
RankReorderMethod=1 AggPlacementStride=-1

AGG Rank nid
0 0 nid0000O0
1 256 nid00008
2 512 nid00016
3 768 nid00024
4 1024 nid00032
5 1280 nid00040
6 1536 ni1d00048
7 1792 nid00056

16

Analysis: Cray MPICH MPI-IO Info and Statistics

e MPICH_MPIIO_STATS=1
 Display counts and sizes of MPI-IO operations

e i et it L +

| MPIIO write access patterns for /lus/flash/testdir.205/I0R
| ranks in communicator = 2048

| independent writes =0

| collective writes = 64

| independent writers =0

| aggregators = 8

| stripe count = 2

| stripe size = 16777216

| system writes = 131072

—

17

Analysis: Cray MPICH MPI-IO Info and Statistics

e MPICH_MPIIO_STATS=1
« Aggregators active is specific to collective buffering enabled

| stripe sized writes = 131072

| aggregators active = 0,0,0,131072 (1, <= 4, > 4,
| total bytes for writes = 2199023255552 = 2097152 MiB
| ave system write size = 16777216

| read-modify-write count = 0

| read-modify-write bytes = 0

| number of write gaps = 0

| ave write gap size = NA

8)

2048 G1iB

18

Analysis: Cray MPICH MPI-IO Info and Statistics

¢ MPICH_MPIIO_TIMERS=1
« Shows timing (min, max, avg) for the different phases of collective MPI-IO
» Reports throughput based on reported timings for different phases
« Always reports an ‘all ranks’ section for write or read. When using collective buffering a

o
MPIIO write by phases, all ranks, for /lus/flash/testdir.205/I0R
number of ranks writing = 8
number of ranks not writing = 2040
min max ave

open/trunc time = 0.01 0.01 0.01
close sys time = 0.00 0.00 0.00
close fsync time = 0.00 0.00 0.00
close group-unlock time = 0.00 55.53 0.21
close other + wait time = 0.00 2.82 0.00

Analysis: MPICH_MPIIO_TIMERS=1

» Several counters are reported in ticks; you can convert them to seconds if you want absolute time
 Calculate the tics_per_second based on a reported time and time scale that’s reported like file write max:
o Ticks_per_sec = (file write max) * (fime scale) / file write max seconds e.g. (490903754) * (2~10) / (229.23)

e Bandwidth report in ‘all ranks’ section

| data send BW (MiB/s) = 17323.854

| raw write BW (MiB/s) = 9433.878

| net write BW (MiB/s) = 8381.648

e Timing in “Writers only” (aggregators) section

| file write time = 215.93 229.23 222.30

|

| time scale: 1 = 2**10 clock ticks min max ave

| _________________________________
| total = 535355066

| wait for coll = 2057775 32745487 10641530 %
| data send = 38484553 59658902 46869207 8%
| file write = 462411061 490903754 476056748 88%

—

20

Analysis: MPICH_MPIIO_TIMERS=1

e The reported bandwidth are helpful but can be optimistic if taken as printed

e In the previous example
—~MPICH_MPIIO_TIMERS output reports a write time of 229.23 seconds and net write BW of 8,381 MiB/s
—IOR reports a write time of 224.26 seconds or 9.13 GiB/s
—IOR reports the test throughput as 7.6 GiB/s

« Application I/O time includes all the operations potentially including opening the file, flushing dirty
data, releasing locks, and closing the file

o MPICH_MPIIO_TIMERS output provides timers to understand where the other time is spent

Recommendations: Shared File Parameters

e Lustre Stripe Count
« More frequently decided by job size and not file size
« Consider potential OST performance
 Traditional buffered shared file or collective buffering can achieve between 1.3- 1.7 GB/s write

e Disk OST:
e Lustre Stripe Size
 Larger transfer sizes generally do better all things equal

—Diminishing returns for stripe sizes larger than 64M

—-Remember the Lustre stripe size * Number of Aggregators is the size of data that needs to be
written in a collective write to use all aggreagors

e Align the stripe size with the amount of data each node writes

—Example: if MPI rank writes 1MB, with 64 PPN, with a block rank allocation, a Lustre stripe size of
64M would allow a 64M contiguous request to be written — assuming offsets are stripe aligned and
buffered 1/O is used

: | 22

Recommendations: Shared File Settings By API

POSIX / Independent MPI-IO

» Lustre Overstriping

 Direct 10 if multiple ranks writing and need more than 1.5 GB/s per node
« Align Lustre stripe size with (PPN * I/O request size) block allocation

Mixed Collective and Independent I/O (HDF5 without collective metadata)
MPICH MPIIO HINTS=“*:romio cb write=enable:cray cb nodes multiplier=N:\
cray cb write lock mode=2"
— Lustre Overstriping did not show measurable performance improvements in NVMe OST testing

Collective MPI-IO on NVMe OSTs
« Current
MPICH MPIIO HINTS=“*:romio cb write=enable:cray cb nodes multiplier=64:\
cray cb write lock mode=l:romio no indep rw=true”

« Experimental Local Aggregation
MPICH MPIIO HINTS=“*:romio cb write=disable:cray nocb write lock mode=l:romio cb read=disable:\
romio ds write=disable:romio no indep rw=true”

Collective MPI-IO on Disk OSTs
MPICH MPIIO HINTS=“*:romio cb write=enable:cray cb nodes multiplier=8:\
cray cb write lock mode=l:romio no indep rw=true”

: | 23

Future Work

e Get LU-16046 fix for group unlock duration into shipping Lustre client code
o Planned inclusion in COS release (2.6), potential for backports to older COS versions but not plan of record
e Investigate data validation and close time issues
» Configurable number of ranks per node acting as aggregators user infra-node transfers
o Currently all ranks submit their own I/O requests
» Optimize collective buffering behavior for many aggregators per node
« Currently single rank per node is the optimal configuration which requires more nodes to get peak performance
e Larger scale and application testing

Summary

» Higher performance NVMe OSTs created challenges for existing collective MPI-IO optimizations
» The extra data copy adds latency and many workloads only make use of locking optimizations through coll. buff.
« Very high node counts per OST are needed to achieve peak performance which isn’t always feasible

e A new, experimental, feature was added to HPE Cray MPICH: Local Aggregation as Collective Buffering
o Optimizes Shared file writes with Collective MPI-IO by:

- Removing the overhead of sending data to aggregator ranks (collective buffering)
—Retains the use of Lustre Group Locks for optimized POSIX file writes

» HPE Cray MPICH provides several collective MPI-IO debugging options to understand Collective MPI-1O
performance, helping to optimize your application’s workload for your storage environment

» Using the new Local Aggregation as Collective Buffering feature shows significant improvements in
moderate scale testing of over 60% for some workloads

: | 25

Thank you

Michael Moore <michael.moore@hpe.com>
Ashwin Reghunandanan <ashwin.reghunandanan@hpe.com>
Lisa Gerhardt <Igerhardt@lbl.gov>

: © 2023 Hewlett Packard Enterprise Development LP

