
VASP Performance on HPE Cray EX Based on
NVIDIA A100 GPUs and AMD Milan CPUs

1st Zhengji Zhao
Lawrence Berkeley National Laboratory

Berkeley, USA
zzhao@lbl.gov

2nd Brian Austin
Lawrence Berkeley National Laboratory

Berkeley, USA
baustin@lbl.gov

3rd Stefan Maintz
NVIDIA

Zurich, Switzerland
smaintz@nvidia.com

4th Martijn Marsman
VASP Software GmbH and University of Vienna

Vienna, Austria
martijn.marsman@vasp.at

Abstract—NERSC’s new supercomputer, Perlmutter, an HPE
Cray EX system, has recently entered production. NERSC users
are transitioning from a Cray XC40 system based on Intel
Haswell and KNL processors to Perlmutter with NVIDIA A100
GPUs and AMD Milan CPUs with more on-node parallelism and
NUMA domains. VASP, a widely-used materials science code that
uses about 20% of NERSC’s computing cycles, has been ported
to GPUs using OpenACC. For applications to achieve optimal
performance, features specific to Cray EX must be explored,
including the build and runtime options. In this paper, we present
a performance analysis of representative VASP workloads on
Perlmutter, addressing practical questions concerning hundreds
of VASP users: What types of VASP workloads are suitable to
run on GPUs? What is the optimal number of GPU nodes to use
for a given problem size? How many MPI processes should share
a GPU? What Slingshot options improve VASP performance? Is
it worthwhile to enable OpenMP threads when running on GPU
nodes? How many threads per task perform best on Milan CPU
nodes? What are the most effective ways to minimize charging
and energy costs when running VASP jobs on Perlmutter? This
paper will serve as a Cray EX performance guide for VASP users
and others.

Index Terms—VASP, OpenACC, NVIDIA A100, OpenMP +
MPI, NCCL, AMD Milan, Slingshot, Performance

I. INTRODUCTION

NERSC’s new supercomputer, Perlmutter [1], an HPE Cray
EX system, features NVIDIA A100 GPUs, AMD Milan CPUs,
Slingshot interconnect, and an all-flash Lustre file system.
Perlmutter has recently entered production. NERSC users are
transitioning from a Cray XC40 system, Cori [2] with Intel
Haswell and KNL processors, to Perlmutter, based on NVIDIA
A100 GPUs and AMD Milan CPUs with more on-node
parallelism and NUMA domains. VASP [3], a widely-used
materials science code that consumes about 20% of computing
cycles at NERSC (See Figure 1), has been ported to GPUs
using OpenACC [4] [5] [6]. The OpenACC port of VASP
has been highly optimized for NVIDIA GPUs and is capable
of solving science problems that have not been possible on

This work was supported by the Office of Advanced Scientific Computing
Research in the Department of Energy Office of Science under contract
number DE-AC02-05CH11231.

Fig. 1. NERSC machine time breakdown by applications in the allocation
year 2018. VASP has been the top #1 code, spending about 20% of computing
cycles each allocation year at NERSC.

Cori (See Figure 2 for such an example), achieving more than
30x speedup over Cori for a single node performance (See
Figure 3). For applications to achieve optimal performance,
however, features specific to Cray EX must be explored,
including the build and runtime options.

In this paper, we present a performance analysis of rep-
resentative VASP workloads on Perlmutter similar to [7],
attempting to address practical questions concerning hundreds
of VASP users on Perlmutter. We explored compiler and
library options for VASP and studied the parallel scaling
of VASP on both A100 GPU and Milan CPU nodes using
a variety of VASP workloads, including its interaction with
the internal VASP run parameters (e.g., use of NCCL). We
also investigated how many MPI processes should share a
GPU and if NVIDIA’s Multi-Process Service (MPS) [8] can
be used to accelerate further VASP workloads on GPUs.
Furthermore, we investigated the the performance effect of
SMT (Simultaneous Multi-Threading) and OpenMP threads
on Milan CPUs, which offer an increased on-node parallelism
and NUMA domains in comparison to Cori KNL. In addition,
we investigated the GPU performance speedup over Milan
CPUs for different problem sizes and computation types, and
analyzed power usage of VASP jobs to understand what are
the best ways to minimize machine time charging and energy

Fig. 2. This figure shows a large MOF structure that was sent to the
Materials Project [9] by a user. It was too large for the Materials Project
team to handle through their normal workflows on Cori. MOFs are composed
of two major components: a metal ion or cluster of metal ions and an
organic molecule called a linker. The system contained 3584 atoms and
13408 electrons. Here are the additional computational details: Functional:
DFT; Algo: CG (BD+RMM); NBANDS= 9600; FFT grids: 378x378x378;
756x756x756; NPLWV: 54,010,152; KPOINTS: 1 1 1. The job completed 99
ionic steps in 32.8 hours using 32 nodes (128 GPUs) on Perlmutter.

Number of GPUs / Number of Nodes

S
pe

ed
up

0.0

50.0

100.0

150.0

1 HSW
Node

1 KNL
Node

1/1 2/1 4/1 8/2 16/4 32/8 64/16

Perlmutter Cori Haswell Cori KNL

Fig. 3. VASP performance on Perlmutter GPUs with benchmark Si256 hse.
This benchmark performs an HSE hybrid functional calculation on a 256-atom
silicon supercell with a vacancy, one of the most commonly used workloads in
VASP. The horizontal axis shows the number of GPUs, the number of nodes
used on Perlmutter, and the number of nodes used for the reference runs on
Cori Haswell and KNL. The vertical axis shows the speedup over a single
Haswell node. The blue bars show the speedup of Perlmutter, and the red and
green bars show the Haswell and KNL results, respectively. (Note that the
horizontal axis shows both GPU and node counts, but only node counts apply
to the Cori and KNL results.)

costs when running VASP jobs on Perlmutter. We selected
seven benchmarks based on the recent VASP user survey at
NERSC to cover the representative VASP workloads and to
exercise different code paths.

This paper will serve as a Cray EX performance guide
for VASP users and others. Additionally, the performance
analysis presented in this paper provides feedback and input
for computer vendors and others about the architecture’s
performance in a real-world scientific application with a large
user base.

The rest of the paper is organized as follows: after the
introduction, we will describe the experimental setup, and
then present the performance results and analysis for both

Perlmutter GPUs and CPUs, and discuss how to achieve
charging and energy efficiency when running VASP jobs, and
then conclude the paper with a summary.

II. SYSTEM CONFIGURATION AND ENVIRONMENT SETUP

A. Perlmutter System Configuration

Perlmutter, based on the HPE Cray Shasta platform, is a
heterogeneous system comprising both GPU-accelerated and
CPU-only nodes. It consists of 1792 GPU accelerated nodes
with one AMD EPYC 7763 processor (codename: Milan) and
four NVIDIA A100 GPUs and 3072 CPU-only nodes with
two AMD EPYC 7763 processors, interconnected with HPE
Slingshot network. Among 1792 GPU accelerated nodes, 256
nodes have 80 GB HBM with a bandwidth of 2,039 GB/s
per GPU, and the rest have 40 GB HBM with a bandwidth
of 1,555 GB/s per GPU. Each Milan CPU processor has 64
cores (128 hardware threads) running at 2.45 GHz of base
clock rate (maximum boost clock: up to 3.5 GHz) and 256 GB
DDR4 memory with a bandwidth of 204.8 GB/s, thus there
are 128 cores (256 hardware threads) and 512 GB memory
per Milan CPU node on Perlmutter. Each Perlmutter CPU
node has eight NUMA domains. In contrast, there are two
NUMA domains for a Cori Haswell node and one for a KNL
node. The Figure 4 illustrates Perlmutter GPU and CPU nodes.
Each GPU-accelerated compute node is connected to four HPE
Cray’s proprietary Cassini NICs, while each CPU-only node is
connected to one NIC. More information about the Perlmutter
architecture is available at [1].

Perlmutter runs HPE Cray OS (SLES15SP4) version 2.4
and Slurm 22.05.8.

B. VASP

The Vienna Ab initio Simulation Package (VASP) [3] is
a widely used materials science code that is highly ranked
at NERSC and other supercomputing centers worldwide. The
fundamental mathematical problem that VASP solves is a non-
linear eigenvalue problem that has to be solved iteratively
via self-consistent iteration cycles until a desired accuracy is
achieved. The main task of VASP is to solve the following N
eigenvalue equations

[− 1
2∇

2 + V (r)]Ψi(r) = ϵiΨi(r), i = 1, 2, ..., N

for the “one-electron” orbitals, Ψ(r), expanded in a plane wave
basis, and energies, ϵi. N is referred to as the number of
orbitals or bands. VASP implements efficient iterative matrix
diagonalization techniques (as referenced in Table I, row Algo)
and rich features that utilize various levels of approximations
(as referenced in Table I, row Functional).

VASP is written mainly in Fortran 90 and heavily utilizes
FFTs and linear algebra libraries. VASP is parallelized with
MPI and OpenMP for multi-/many-core CPUs [10] [11] and
MPI and OpenACC for GPUs [4] [5] [6]. VASP implements
multiple levels of parallelism, and by default, it distributes
orbitals (work and data) over MPI tasks. The GPU communi-
cations are optimized with NVIDIA’s Collective Communica-
tions Library (NCCL) [12] alternatives to MPI.

https://www.amd.com/en/products/cpu/amd-epyc-7763
https://www.nvidia.com/en-us/data-center/a100/

(a) Perlmutter GPU Node

(b) Perlmutter CPU Node

Fig. 4. Perlmutter compute nodes. The upper panel illustrates a Perlmutter
GPU node, and the lower one shows a Perlmutter CPU node.

The OpenACC port ensures that costly data transfers be-
tween the CPU and GPU memories are minimized by moving
all important data structures to the GPUs as early as possible
and keeping them there. Therefore, in addition to offloading
the hot spots with libraries like cuFFT, cuBLAS, and cu-
SOLVER, all surrounding custom kernels had to be accelerated
using OpenACC directives. Also, making all required commu-
nications GPU-centric using NCCL allows enqueueing com-
munications in an OpenACC queue, just like a compute kernel,
which helps avoid synchronization points. To address scaling
issues due to Amdahl’s law, the code sections surrounding the
main challenge of optimizing the orbitals, such as updating
the charge density and evaluating the density functionals, have
also been brought to the GPUs. A few custom kernels benefit
significantly from specialized implementations that are more
GPU-friendly. For example, the CPU-optimized kernel calls
a tiny GEMM in the inner loop, which would cause massive
launch overheads on the GPU. A unified kernel offers heavily
increased performance.

VASP has a single code base containing both the OpenACC

port for GPUs and the OpenMP port for multi-/many-core
CPUs. We used VASP 6.4.1 in our tests. We built the OpenMP
port to run on Perlmutter’s CPU-only nodes; and enabled
both OpenACC and OpenMP for Perlmutter’s GPU nodes. We
selected NVIDIA’s HPC SDK, which has the best OpenACC
support, and used its optimized math libraries. Here is the
software used in this study: NVIDIA HPC SDK 22.7 for
NVIDIA compiler, CUDA 11.7, QD, cuBLAS, cuSOLVER,
cuFFT libraries, and NCCL 2.15.5, Cray MPICH 8.1.25, MKL
from Intel oneAPI 23.0.0 and its FFTW3 wrappers to FFT, and
HDF5 1.12.2.

C. Benchmarks

In this study, we used seven test cases, denoted Si256 hse,
B.hR105 hse, PdO4, PdO2, GaAsBi-64, CuC vdw, and
Si128 acfdtr. They were selected to represent the production
workloads at NERSC and to exercise different code paths,
including a variety of elements and problem sizes. For ex-
ample, two HSE hybrid functional calculations with different
atomic configurations and problem sizes are selected in the
tests: Si256 hse is a 256-atom silicon supercell with a vacancy,
and B.hR105 hse is a hexa-boron structure containing 105
atoms. The PdO4 and PdO2 are PdO slabs containing 348 and
174 atoms, respectively. They were selected to test the most
commonly used code path, the DFT functional calculation
using the RMM-DIIS iteration scheme. In addition, a ternary
alloy structure, GaAsBi-64, was included to cover the metallic
systems with the default iteration scheme, Block Davidson +
RMM-DIIS algorithms. The CuC vdw benchmark performs
the Van Der Waals (VDW) functional calculation. Compared
to the benchmarks used in the previous work [7], we added one
more benchmark Si128 acfdtr, a 128-atom silicon supercell
with a defect, to reflect the workload trend towards higher
order methods based on the recent VASP user survey at
NERSC.

The table I shows computational details about these bench-
marks (See the VASP Wiki page [13] for more information
about these tags).

D. Benchmark approach and runtime specifications

We have run various tests to answer the questions outlined
in the abstract. Since the benchmarks are designed to run for
a short time, in our tests, we disabled heavy I/O (LWAVE =
.FALSE.). We started all runs from a given WAVECAR file
so that different runs for the same benchmark always begin
with the exact initial wavefunctions. We ran each test 5-10
times to avoid outliers and selected the best LOOP+ time,
the dominant portion of the execution time in the production
runs, where applicable. But for the ACFDTR tests, we used the
elapsed time (total run time) reported by VASP. For the energy
and power usage experiments, we modified the benchmarks
slightly to run longer to mimic production runs (e.g., using a
larger NELM than those reported in Table I).

VASP has three binaries; we used the standard vasp std
in the tests. In addition, we did a node-to-node performance

TABLE I
SEVEN VASP BENCHMARKS WERE CHOSEN TO COVER REPRESENTATIVE WORKLOADS AND TO EXERCISE DIFFERENT CODE PATHS.

Si256 hse B.hR105 hse PdO4 PdO2 GaAsBi-64 CuC vdw Si128 acfdtr
Electrons (Ions) 1020 (255) 315 (105) 3288 (348) 1644 (174) 266 (64) 1064 (98) 512 (128)
Functional HSE HSE DFT DFT DFT VDW ACFDT/RPA
Algo CG

(Damped)
CG
(Damped)

RMM
(VeryFast)

RMM
(VeryFast)

BD+RMM
(Fast)

RMM
(VeryFast)

ACFDTR

NELM (NELMDL) 3 (0) 10 (5) 5 (3) 10 (4) 8 (0) 10 (5)
NBANDS 640 256 2048 1024 192 640 23506

(NBANDSEXACT)
FFT grids 80x80x80

160x160x160
48x48x48
96x96x96

80x120x54
160x240x108

80x60x54
160x120x108

70x70x70
140x140x140

70x70x210
120x120x350

60x60x60
120x120x120

NPLWV 512000 110592 518400 259200 343000 1029000 216000
IRMAX 1579 1847 1445 1445 4177 3797 1340
IRDMAX 4998 2358 3515 3515 17249 50841 4249
LMDIM 18 8 18 18 18 18 6
KPOINTS (KPAR) 1 1 1 (1) 1 1 1 (1) 1 1 1 (1) 1 1 1 (1) 4 4 4 (2) 3 3 1 (1) 1 1 1 (1)

comparison when comparing VASP performance on the GPU
and CPU nodes.

For most of the tests where possible, we used Slurm’s CPU
binding option (-c and --cpu-bind); but we didn’t use
its GPU binding (--gpu-bind) as it either slows down
the code or causes the VASP jobs to hang. Instead, we
used the following script, gpu-bind.sh, to set the CUDA_
VISIBLE_DEVICES environment variable to a specific GPU
for each process:

#!/bin/bash
export

CUDA_VISIBLE_DEVICES=$((3-SLURM_LOCALID))
$*

This helps to address proper GPU affinities given that
the NUMA nodes on the AMD Milan CPUs are numbered
backward and rank 0, which gets bound by SLURM to NUMA
node 0, has to use GPU 3.

The srun command is as follows for a single node run:

srun -n 4 -c32 --cpu-bind=cores gpu-bind.sh
vasp_std

When running the hybrid OpenMP and MPI VASP on
Perlmutter CPU nodes, we bind the threads to the CPUs using
the OpenMP thread binding mechanism in addition to setting
the process affinity:

export OMP_PROC_BIND=true
export OMP_PLACES=threads

However, when running VASP on GPUs, we didn’t bind
the threads to the CPUs as above because it slowed down
the code significantly. This is explained by NCCL needing to
spawn background threads that poll the communication status.
NCCL inherits the core binding from its parent process, which
will keep scheduling GPU kernels, so these two will compete
for cycles on the same core, slowing down overall progress.
An alternative to not binding the threads is to instruct NCCL
to ignore the inherited CPU binding by using the following
environment variable:

export NCCL_IGNORE_CPU_AFFINITY=1

Therefore, when running VASP on GPU nodes with
OpenMP threads enabled (e.g., on a GPU node), the following
affinity setting can be used:

export NCCL_IGNORE_CPU_AFFINITY=1
export OMP_NUM_THREADS=16 # or 8
export OMP_PROC_BIND=true
export OMP_PLACES=threads
srun -n 4 -c32 --cpu-bind=cores -G4

./gpu-bind.sh vasp_std

However, we did not see a visible difference when
running VASP on GPU nodes with or without the
OpenMP thread binding. While one must use the
NCCL IGNORE CPU AFFINITY=1 to avoid performance
slowdown when binding the CPU processes and threads as
above, the use of NCCL IGNORE CPU AFFINITY=1 is
always recommended to enable the best GPU performance
for VASP.

III. VASP PERFORMANCE ON PERLMUTTER GPUS

In this section, we present the VASP performance results
on Perlmutter GPU nodes and derive best practice tips based
on the analysis of the results.

A. How many nodes/GPUs are optimal for VASP jobs running
on Perlmutter GPU nodes?

Understanding the parallel scaling of applications is critical
to run applications efficiently on HPC systems. While the
optimal number of nodes and GPUs for a specific problem
can be achieved only through case-by-case benchmarking, a
parallel scaling study on the representative workloads could
provide some guidance on how to select a good number of
nodes and GPUs for a given problem.

Figure 5 shows the parallel efficiency of VASP on Perl-
mutter GPU nodes. The last benchmark, Si128 acfdtr, will be
discussed separately in Section V. These benchmarks are not
designed for heroic runs but to reflect users’ day-to-day scien-
tific runs. Si256 hse, PdO4, and CuC vdw are relatively large

Number of Nodes/Number of GPUs

S
pe

ed
up

/Id
ea

l S
pe

ed
up

0%

25%

50%

75%

100%

1/4 2/8 4/16 8/32 16/64 32/128

Si256_hse B.hR105_hse PdO4 PdO2
GaAsBi-64 CuC_vdw

Fig. 5. Parallel efficiency of VASP on Perlmutter GPU nodes. The horizontal
axis shows the number of nodes and GPUs, and the vertical axis shows the
parallel efficiency of VASP (speedup/ideal parallel speedup). All tests ran with
four MPI tasks per node (one task per GPU), each with one OpenMP thread.

among the six selected benchmarks. The remaining bench-
marks, B.hR105 hse, PdO2, and GaAsBi-64, are relatively
small, as indicated by the number of electrons and planewaves
(NPLWV) in Table I. The parallel efficiency depends on
the workloads and problem sizes. For smaller benchmarks,
B.hR105 hse, PdO2, and GaAsBi-64, VASP hardly scales
over two nodes, but for the larger benchmarks, Si256 hse,
and CuC vdw, VASP scales further out to more nodes. For
example, Si256 hse (HSE workload) scales to eight GPU
nodes with more than 75% of parallel efficiency. But PdO4
(DFT workloads), which is even more significant in size
than Si256 hse, does not scale as well as Si256 hse, which
performs a more expensive computation than PdO4.

Note that compared to running on CPUs, a significantly
lower number of MPI processes are used for GPU runs.
Therefore, increased MPI communication time is not the
leading cause of the parallel efficiency drop when using more
nodes. Instead, under-utilizing GPU resources is the leading
cause, as there is simply insufficient work to saturate the
increased GPU resources.

In practice, for the best interest of utilizing the compute
resources efficiently, one may not run VASP at a parallel
efficiency lower than 70%. Therefore, using one or two nodes
would be sufficient for systems containing up to several
hundred atoms (e.g., 300 atoms). For the HSE calculations,
one may use more nodes; roughly distributing 100 bands per
node would be a reasonable estimation.

B. Do additional OpenMP threads help VASP performance on
GPUs?

Perlmutter GPU nodes have four NVIDIA A100 GPUs and
64 CPU cores (128 hardware threads) per node. If running
four MPI tasks per node, which is the default for many
applications running on Perlmutter, VASP would leave 60 CPU
cores idle. Can the idling CPU resources be used to improve
performance? The OpenACC port of VASP can run with
OpenMP threads enabled. While most computation-intensive
kernels are off-loaded to GPUs, enabling OpenMP threads may
speed up the CPU portion of the code.

1 2 4 8 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 8

Benchmarks

S
pe

ed
up

 o
ve

r 1
 th

re
ad

 (%
)

-50%

-40%

-30%

-20%

-10%

0%

10%

S
i2

56
..

B
.h

R
1.

.

P
dO

4

P
dO

2

G
aA

s.
.

C
uC

_v
dw

4 Threads/Task 8 Threads/Task 16 Threads/Task

Fig. 6. OpenMP threading effect on VASP performance on Perlmutter GPU
nodes. The horizontal axis shows the benchmarks, and the vertical axis shows
the percentage speedup when using more than one thread per task, defined
as [[Time(1-thread)-Time(multi-threads)]/Time(1-thread)]x100%. Thus, a pos-
itive number indicates a speedup and a negative number indicates a slowdown
over one thread performance. For each benchmark, the results for several node
counts are displayed.

Figure 6 shows the OpenMP threading effect on VASP per-
formance for GPU runs on Perlmutter. Since each benchmark
can be run using a different number of nodes, the results
running at several different node counts are displayed for
each benchmark. One can see that enabling OpenMP threads
significantly slows down the HSE workloads, especially when
using fewer threads per task (see blue bars for Si256 hse
and B.hR105 hse). However, OpenMP threads benefit other
workloads, although not significantly, especially for one-node
runs (up to 6%). In practice, enabling eight or 16 threads per
task to utilize otherwise idling CPU resources for non-HSE
workloads can get a small additional speedup.

The significant slowdown from using OpenMP threads for
HSE workloads can be fixed when setting NBLOCK_FOCK=
NBANDS/Total_number_of_MPI_processes in the
INCAR file. NBLOCK_FOCK, the blocking factor in the
Fock-exchange operator (an undocumented INCAR tag), is
set to 2*OMP_NUM_THREADS internally in VASP. Appar-
ently, it benefits from a larger NBLOCK_FOCK than 2*OMP_
NUM_THREADS, especially for smaller OMP_NUM_THREADS
values, to achieve optimal performance. When a proper
NBLOCK_FOCK is used for HSE, the OpenMP threads also
benefit the VASP performance similar to the rest of the
workloads.

C. Does MPS help VASP performance?

NVIDIA’s Multi-Process Service (MPS) allows multiple
processes to run concurrently on the same GPU while avoiding
the otherwise necessary plethora of context switches. MPS
can increase performance when a single application process
underutilizes the GPU resources.

Compared to CPU runs, VASP runs at a significantly re-
duced number of MPI processes per node on GPUs by default
(4 vs. 128), running one MPI task per GPU. Does increasing
the MPI parallelism per node by running multiple processes
per GPU help VASP performance? In addition, VASP jobs

1 2 4 8 1 2 4 1 2 4

Benchmarks

M
P

S
 S

pe
ed

up
 (%

)

-1000
%

-800%

-600%

-400%

-200%

0%

S
i2

56
_h

se

B
.h

R
10

5.
.

P
dO

4

2 Tasks/GPU 4 Tasks/GPU

1 2 4 1 2 4 1 2 4 8

Benchmarks

M
P

S
 S

pe
ed

up
 (%

)

-60%

-40%

-20%

0%

20%

40%

P
dO

2

G
aA

sB
i-6

4

C
uC

_v
dw

2 Tasks/GPU 4 Tasks/GPU

Fig. 7. MPS effect on VASP performance on Perlmutter GPU nodes. The
horizontal axis shows the benchmarks, and the vertical axes, for both the left
and right panels, show the percentage speedup when running multiple tasks
per GPU via MPS over one task per GPU, defined as [[Time(1-task/GPU)-
Time(multi-tasks/GPU via MPS)]/Time(1-task/GPU)]x100%. Thus, a positive
number indicates a speedup and a negative number indicates a slowdown. The
left vertical axis shows the results for benchmarks Si256 hse, B.hR105 hse,
and PdO4; the right vertical axis shows the results for benchmarks PdO2,
GaAsBi-64, and CuC vdw. For each benchmark, the results for several
different node counts are displayed.

must be large enough to get performance benefits on GPUs.
Can MPS enable acceleration for additional VASP workloads
on GPUs that are otherwise too small to run efficiently on
GPUs?

Figure 7 shows the performance effect of MPS on VASP
using the six selected benchmarks. The multi-task per GPU
results via MPS are compared to the default run with NCCL
enabled. As shown in the figure, MPS slows down VASP
considerably (up to 9x!) with the benchmarks, Si256 hse,
B.hR105 hse, PdO4, and PdO2, but has a slight bene-
fit with GaAsBi-64 and CuC vdw at node count one.
Note that to use MPS, the NCCL must be disabled (with
LUSENCCL=.FALSE.), which unfortunately slows down the
code significantly (see Section III-D). VASP can automatically
detect when GPUs are oversubscribed and disable NCCL. The
benchmark GaAsBi-64, the smallest among the six selected
benchmarks, uses k-point parallelism. So it is expected that
MPS may help its performance at lower node counts, but the
benefit was not significant (∼3%) for this benchmark. But for
an even smaller system with many k-points, a considerable
performance benefit is expected by running multiple processes
simultaneously per GPU. Therefore, MPS can enable better
acceleration for small systems with many k-points on GPUs,
which would otherwise not get performance benefits on GPUs.

For the smallest workloads where even one GPU cannot
be saturated with one VASP job, Perlmutter provides the
shared queue, which partitions a GPU into multiple segments
using the NVIDIA A100 MIG feature [14]. The shared queue
allows multiple users and jobs to share a GPU with complete
job isolation securely. However, the shared queue was only
recently made available on Perlmutter in April 2023.

Benchmarks

N
C

C
L

S
pe

ed
up

0.0

1.0

2.0

3.0

Si256_hse B.hR105... PdO4 PdO2 GaAsBi-64 CuC_vdw

1 node 2 nodes 4 nddes 8 nodes

Fig. 8. NCCL effect on VASP performance on Perlmutter GPU nodes.
The horizontal axis shows the benchmarks and the vertical axis shows the
speedup from using NCCL, which is the ratio of the time without and
with NCCL. NCCL is used in VASP by default, but it can be disabled by
adding LUSENCCL=.FALSE. in the VASP INCAR file. The results at several
different node counts are displayed for each benchmark.

D. Performance effect of NCCL

The NVIDIA Collective Communication Library (NCCL)
implements multi-GPU and multi-node communication primi-
tives optimized for NVIDIA GPUs and networking. VASP uses
NCCL for GPU communications by default as an alternative
to MPI where possible. This is an important optimization for
the VASP OpenACC port for NVIDIA GPUs [15]. In this
section, we explore how much performance gain VASP gets
from using NCCL.

Figure 8 shows the NCCL effect on VASP performance,
where the vertical axis shows the speedup from NCCL com-
pared to the performance when NCCL is not used. Without
exception, VASP speeds up when NCCL is active. The extent
of the speedup is most significant with the HSE workloads
(up to 3x). For other workloads, the speedup is about 1.1x -
1.25x in most cases.

One constraint of using NCCL is that processes that commu-
nicate through NCCL may not share a GPU, preventing jobs
utilizing MPS from getting the NCCL performance benefit.

E. Does the number of NICs used per node affect VASP
performance?

Perlmutter compute nodes employ the Slingshot 11 inter-
connect [16] fabric with HPE Cray’s proprietary Cassini NICs
(See Figure 4). While each CPU-only node is connected to
one NIC, each GPU-accelerated node is connected to four
NICs designed to provide sufficient inter-node bandwidth.
How many NICs to include for each compute node is an
important design choice for supercomputers. It would be
interesting to study how the number of NICs per node affects
VASP performance.

By default, when multiple NICs are available on the node,
Cray MPICH will attempt to use them all [17]. However,
it provides options for applications to use a desired num-
ber of NICs per node and a desired mapping for the MPI
ranks to these NICs at runtime. We first investigated the
performance effect of different mappings via the environ-
ment variable, MPICH OFI NIC MAPPING, which speci-
fies the precise rank-to-NIC mapping on the node. But we

1 2 4 8 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 8

Benchmarks

S
pe

ed
up

 o
ve

r 1
 N

IC
 (%

)

-3%

0%

3%

5%

8%

10%

S
i2

56
..

B
.h

R
10

..

P
dO

4

P
dO

2

G
aA

s.
.

C
uC

..

2 NICs/Node 4 NICs/Node

Fig. 9. This figure shows the performance effect of the number of NICs per
node on Perlmutter GPUs. The horizontal axis shows the benchmarks, and
the vertical axis shows the speedup when multiple NICs are used compared
to running with one NIC per node. The speedup is defined as [Time(multi-
NICs)-Time(1-NIC)]/Time(1-NIC). The blue and red bars show the results for
the number of NICs per node two and four, respectively. The results at several
different node counts are displayed for each benchmark.

didn’t observe any visible difference in VASP performance
on GPUs. Next, we tested if the number of NICs used per
node affects VASP performance via the environment variable,
MPICH OFI NUM NICS, which specifies the number of
NICs the job can use on a per-node basis. We set the environ-
ment variable MPICH OFI NIC VERBOSE=2 to confirm the
desired number of NICs and rank-to-NIC mapping are indeed
honored.

Figure 9 shows the performance effect of the number
of NICs on VASP performance on Perlmutter GPUs. The
figure shows the performance speedup when using more NICs
over the one NIC per node performance. VASP performance
improves when using more NICs per node but by an insignif-
icant amount. The speedup is within 10% at best. And for
Si256 hse, the number of NICs has a negligible effect on
VASP performance. Since the choice of NICs would affect
the inter-node performance, as one can see for the single-node
runs, there is no difference between the choice of different
numbers of NICs for all benchmarks. Note that the selected
benchmarks are run on a small number of nodes, 1-8, and that
could be the reason why the number of NICs choice didn’t
affect VASP performance by a significant amount. In addition,
NCCL was disabled in these tests; otherwise, the jobs hung.

In practice, VASP can run with the default setting, i.e., four
NICs per node, and users don’t have to worry about how to
map them on the specific NICs on the node.

IV. VASP PERFORMANCE ON MILAN CPUS

Perlmutter has GPU-accelerated and CPU-only nodes con-
sisting of two AMD Milan CPUs. While this paper focuses
on VASP performance on Perlmutter GPUs, some new fea-
tures specific to AMD Milan CPUs are worth exploring.
For example, compared to Intel Haswell and KNL nodes on
Cori, Perlmutter Milan CPU nodes have more CPU cores and
NUMA domains and deploy a different high-speed network

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

Benchmarks

S
pe

ed
up

 o
ve

r 8
 th

re
ad

s
(%

)

-200%

-150%

-100%

-50%

0%

50%

S
i2

56
..

B
.h

R
10

..

P
dO

4

P
dO

2

G
aA

sB
i..

C
uC

..

OMP_NUM_THREADS=4 OMP_NUM_THREADS=16

Fig. 10. This figure shows the hybrid OpenMP+MPI VASP thread per-
formance on Perlmutter Milan CPU nodes. The horizontal axis shows the
benchmarks, and the vertical axis shows the percentage speedup over the eight
threads per task performance when four (blue bars) and 16 (red bars) threads
per task are used, defined as [[Time(8 Threads)-Time (4 or 16 threads)]/time(8
Threads)]x100%. Thus positive numbers show a speedup; negative numbers
show a slowdown. For each benchmark the results for several different node
counts, 1, 2, 4, and 8, are displayed as these benchmarks can be run at a
range of node counts in practice.

- HPE Slingshot interconnect. This section will address how
these features affect VASP performance on Perlmutter Milan
CPU nodes.

A. Optimal threads per task

On Perlmutter CPU nodes, the hybrid OpenMP+MPI VASP
port is used. To run the hybrid OpenMP+MPI VASP, the first
question to address is how many threads per task are optimal.
Since Perlmutter CPU nodes have eight NUMA domains,
starting with eight threads per task is natural. Figure 10
shows the VASP thread performance on Perlmutter CPU nodes
for the six selected benchmarks. The figure shows the best
performance achieved with eight OpenMP threads most of the
time, consistent with what we have seen with VASP thread
performance on Cori Haswell and KNL nodes [7]. But a
few benchmarks outperform eight threads when using four
threads per task at node count one or two (see the blue bars
above the horizontal axis). This is not surprising, showing
the performance trade-off between the MPI and OpenMP
parallelisms in the code. Increasing MPI tasks by reducing
threads per task results in better performance at a smaller node
count where more MPI tasks are appreciated. In contrast, when
a benchmark is run with more nodes than its optimal node
count, more OpenMP threads per task could help VASP to
scale further to more nodes.

In practice, using eight threads per task is a safe choice
most of the time; however, for small node counts, increasing
the total number of MPI tasks by using four threads per task
or less may help performance.

B. AMD Simultaneous Multithreading (SMT)

AMD Simultaneous Multithreading (SMT) is equivalent to
the Hyper-Threading on Intel processors. Perlmutter Milan
CPU nodes have two hardware threads per core, so each node
can run up to 256 MPI processes or threads at total capacity.

1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4

Benchmarks

S
M

T
S

pe
ed

up
 (%

)

-60%

-40%

-20%

0%

20%

S
i2

56
_h

se

B
.h

R
10

..

P
dO

4

P
dO

2

G
aA

sB
i-6

4

C
uC

_v
dw

Fig. 11. This figure shows the percentage speedup of VASP when
using SMT. The percentage speedup is defined as [[Time(noSMT)-
Time(SMT)]/Time(noSMT)]x100% The horizontal axis shows the six selected
benchmarks. The results of running with 1, 2, and 4 nodes are displayed for
each benchmark. All runs used eight threads per task. SMT runs use twice as
many MPI tasks as those without SMT at each node count.

A previous study on Hyper-Threading [18], [7] concluded that
Hyper-Threading does not help VASP performance on Intel
Ivy Bridge, Haswell, and KNL processors. However, we still
investigated if VASP gains any performance from using AMD
SMT, as they are additional compute resources on the Milan
CPU nodes not to leave any performance on the table.

Figure 11 shows the performance effect of SMT on the
hybrid OpenMP+MPI VASP on Perlmutter CPUs. As seen
with Hypter-Threading on Intel processors, SMT does not
help VASP performance on AMD Milan CPUs. For the large
HSE benchmark, Si256 hse, there is a slight (<2%) perfor-
mance benefit from using SMT at node count one. However,
the benchmark scales to multiple nodes (see next section);
therefore, it would run with a node count that is larger than
one to shorten the time to solution. Thus, the extra hardware
threads on each core can be safely ignored.

C. Parallel efficiency of VASP on Perlmutter CPU nodes

As described in Section III-A, understanding the parallel
scaling of applications is critical to run the applications
efficiently on HPC systems. Figure 12 shows the parallel
efficiency of the VASP for the six selected benchmarks. Due
to the increased parallelism on the single node, the parallel
efficiency drops quickly when the number of nodes increases.
Again, the parallel efficiency depends on the workloads and
problem sizes. For the larger HSE benchmark, Si256 hse (blue
bars), VASP scales to four nodes with 68% parallel efficiency,
while for the smaller benchmark, B.hR105 hse (red bars),
VASP does not scale over two nodes. Roughly distributing
200 bands per node is a reasonable estimate for large HSE
workloads. Similarly, VASP scales to four nodes for CuC vdw,
suggesting about 200 bands per node. VASP does not scale
over two nodes with the DFT workloads (PdO4, PdO2, and
GaAsBi-64), regardless of their sizes.

In practice, for the best interest of utilizing the compute
resources efficiently, one may not run VASP at a parallel
efficiency lower than 70%. Therefore, using one or two nodes

Number of Nodes

S
pe

ed
up

 /I
de

al
 S

pe
ed

up

0%

25%

50%

75%

100%

1 2 4 8 16 32

Si256_hse B.hR105_hse PdO4 PdO2 GaAsBi-64 CuC_vdw

Fig. 12. Parallel efficiency of VASP on Perlmutter CPUs. The horizontal axis
shows the number of nodes, and the vertical axis shows the parallel efficiency
of VASP (speedup/ideal parallel speedup). All tests ran with 16 MPI tasks
per node, each with eight OpenMP threads.

would be sufficient for systems containing up to several hun-
dred atoms. This evaluation applies to the system containing
one k-point group. For the systems comprising many k-points
running multiple k-point groups simultaneously (with KPAR),
the number of nodes to use can be multiplied by the number
of k-point groups.

V. ACFDTR WORKLOADS

The ACFDTR algorithm for Random Phase Approximation
(RPA) (Algo=ACFDTR) has been ported to GPUs recently
and is available in VASP 6.4.0 and up. Running ACFDTR
workloads on GPUs significantly shortens the time to solution.
In addition, it can be done in an all-in-one mode conveniently
instead of the previous multi-step approach. However, com-
pared to the workloads discussed, it is more compute-intensive
and uses a significantly larger memory per task. Furthermore,
increasing the number of nodes does not help reduce the mem-
ory footprint per task in the current implementation (v6.4.1).
The exact diagonalization step required in this algorithm
implementation is yet to be distributed over multiple GPUs,
while the hybrid OpenMP+MPI code has already implemented
the distributed diagonalization over CPUs. An effort to remove
this bottleneck is underway. In this section, we will compare
the VASP performance on Perlmutter GPUs and CPUs, and
derive best practice tips from the performance observed.

Figure 13 shows the strong scaling of VASP with the
Si128 acfdrt benchmark on Perlmutter GPU nodes. VASP
does not scale over multiple GPU nodes with this workload.
At node count two, the parallel efficiency is already dropped
to 65%. When using more nodes, the run time does not
reduce but increases. Figure 14 shows the strong scaling
of VASP (hybrid OpenMP+MPI) when running benchmark
Si128 acfdtr on Perlmutter CPU nodes. VASP scales better
on CPUs than GPUs, where we do not distribute the exact
diagonalization step. The parallel efficiency at node count four
is 70%, which can be used to reduce the runtime effectively.
Figure 15 shows the VASP GPU speedup over CPUs with
Si128 acfdtr. Regardless of the poor parallel scaling, running

Number of Nodes

E
la

ps
ed

 (s
ec

s)

P
ar

al
le

l E
ffi

ci
en

cy

0

100

200

300

0.0%

25.0%

50.0%

75.0%

100.0%

1 2 4 8 16

Total Runtime Parallel Efficiency

Fig. 13. VASP strong scaling performance on Perlmutter GPU nodes with
Si128 acfdtr. The horizontal axis shows the number of nodes, the left vertical
axis shows the total runtime of VASP (Elapsed Time), and the right vertical
axis shows the parallel efficiency of VASP (speedup/ideal parallel speedup).
All tests ran with four MPI tasks per node (one task per GPU), each with
one OpenMP thread. Note the multi-node jobs were run on the 80 GB GPU
nodes because the two-node job ran out of memory.

Number of Nodes

E
la

ps
ed

 (s
ec

s)

P
ar

al
le

l E
ffi

ci
en

cy

0

1000

2000

3000

0%

25%

50%

75%

100%

125%

1 2 4 8 16

Elapsed Parallel Efficiency

Fig. 14. VASP strong scaling performance on Perlmutter CPU nodes with
Si128 acfdtr. The horizontal axis shows the number of nodes, the left vertical
axis shows the total runtime of VASP (Elapsed Time), and the right vertical
axis shows parallel efficiency (speedup/ideal parallel speedup). All tests ran
with 16 MPI tasks per node, each with eight OpenMP threads.

this benchmark on GPUs can get up to 10x speedup on a
single node performance; furthermore, a single GPU node
outperforms four CPU nodes by a factor of 3.6.

In summary, the compute-intensive ACFDTR algorithm
has been ported to GPUs, significantly reducing the time to
solution. While the hybrid OpenMP+MPI code scales with
multiple CPU nodes, the GPU port of ACFDTR hardly scales
to multiple nodes yet. However, the GPU port is significantly
faster than the CPU port; therefore, running ACFDTR work-
loads on GPUs is recommended. The ACFDTR GPU imple-
mentation is memory intensive. Consider using the 80 GB
GPU nodes for systems requiring significantly more memory.
The memory bottleneck will be removed to enable larger
system computation in the future. Our previous attempt at
running Algo=ACFDTR for a system containing 250 silicon
atoms with one defect failed due to insufficient memory, even
on Perlmutter’s 80GB memory GPU nodes.

Number of Nodes

G
P

U
 S

pe
ed

up

0

2

4

6

8

10

12

1 2 4 8 16

Fig. 15. VASP GPU speedup for benchmark Si128 acfdtr. The horizontal axis
shows the number of nodes, and the vertical axis shows the GPU speedup of
VASP (Time(CPU)/Time(GPU)).

VI. ENERGY AND CHARGING EFFICIENCY

A. Charging efficiency

At NERSC, machine usage is charged by node hours [19].
Due to limited allocations, users are concerned about charging
in addition to shortening the time to solution. In general, no
MPI code can reach 100% parallel efficiency due to the serial
portion of the code (Amdahl’s law) and various overheads,
e.g., data communication and movements, I/O, etc. Therefore,
using more nodes usually incurs more charging when running
parallel applications.

Figure 16 shows the charging (node hours) for the bench-
marks Si256 hse and PdO4 when running on Perlmutter GPU
nodes. As shown in Section III-A, VASP scales well to eight
nodes at 75% parallel efficiency with Si256 hse performing an
HSE calculation but does not scale well beyond two nodes with
PdO4 performing a DFT calculation. Therefore, the charging
quickly increases when running with an increased number of
nodes for PdO4, while it increases slowly with Si256 hse. So,
to reduce charging, one must avoid running VASP outside the
parallel scaling region and use fewer nodes where possible.
However, in practice, more nodes are appreciated for various
reasons, e.g., to get the results sooner, to accommodate mem-
ory requirements, etc.

Users have options to run jobs either on Perlmutter CPU or
GPU nodes. Figure 17 shows the charging comparison when
running the benchmarks on Perlmutter CPUs and GPUs. The
number of nodes, MPI processes, and OpenMP threads for
each benchmark was selected to allow CPU and GPU jobs
to run at their optimal setting. Since the charge factor is the
same for the Perlmutter CPU and GPU nodes, Figure 17 also
shows the GPU speedup over CPU runs. Running on GPUs
can significantly reduce the charging. Therefore, VASP should
be run on GPUs to reduce the charging whenever possible.

B. Energy efficiency

In the past, the application performance was measured
solely by its time to solution. However, power is becoming an
increasingly limiting factor in supercomputing now. Therefore,

Number of Nodes

C
ha

rg
in

g/
C

ha
rg

in
g(

1
no

de
)

0.0

5.0

10.0

15.0

20.0

25.0

5 10 15 20 25 30

Si256_hse PdO4

Fig. 16. VASP charging when running on Perlmutter GPU nodes. The
horizontal axis shows the number of GPU nodes, and the vertical axis shows
charging, i.e., the node hours, for Si256 hse (blue) and PdO4(red) in ratio to
the single node charging when running on Perlmutter GPU nodes.

Benchmarks

S
pe
ed
up

0

2

4

6

8

10

12

Si2
56
_h
ss
_v
2

B.
hR
10
5_
...

Pd
O4
_v
2

Pd
O2
_v
2

Ga
As
Bi-
64
_v
2

Cu
C_
vd
w_
v2

Si1
28
_a
cfd
tr_

Fig. 17. Charging comparison between running on Perlmutter CPU nodes
and GPUs. The horizontal axis shows the benchmarks, and the vertical axis
shows the charging ratio when running on CPUs to GPUs. The number of
nodes, MPI processes, and OpenMP threads used to run these benchmarks
are shown in Table II.

the performance and scale of future high-performance comput-
ing systems will be determined by how efficiently they manage
their power budgets [20]. As the top #1 code at NERSC VASP
consumes more than 20% of computing cycles at NERSC, it
is essential to investigate the most power-efficient way to run
VASP jobs on Perlmutter.

Figure 18 shows the total energy comparison for VASP
jobs run on Perlmutter GPU and CPU nodes. One can see
that running VASP jobs on GPU nodes consumes significantly
less energy than running them CPU-only. The energy saving
from running them on GPUs is most significant for large jobs,
e.g., Si hse, PdO4, and CuC vdw, as well as Si128 acftdr,
the compute-intensive ACFDTR workload. The GPU speedup
line (red) shows that the energy saving is consistent with the
runtime saving. Figure 18 indicates that running VASP on
Perlmutter GPU nodes gets the results faster and, at the very
same time, saves energy.

C. Energy usage on Perlmutter and Cori

With the HPC community moving to more power-efficient
supercomputing, it would be interesting to compare the power

E
ne

rg
y(

C
P

U
)/E

ne
rg

y(
G

P
U

)-
1

(%
)

G
P

U
 S

pe
ed

up

0%

100%

200%

300%

400%

0.0

2.0

4.0

6.0

8.0

10.0

12.0

Si25
6_

hs
s_

v2

B.hR
10

5_
...

PdO
4_

v2

PdO
2_

v2

GaA
sB

i-6
4_

v2

CuC
_v

dw
_v

2

Si12
8_

ac
fdt

r_v

CPU Energy GPU Sppedup

Fig. 18. Energy saving when running VASP jobs on Perlmutter GPUs over
CPUs. The horizontal axis shows the benchmarks, and the vertical axis
shows the energy saving when running on GPU nodes in ratio to the energy
when running on GPU nodes. The number of nodes, MPI processes, and
OpenMP threads used to run these benchmarks are shown in Table II. The
energy usage data were collected from Slurm’s accounting logs (sacct -X -o
consumedenergyraw) and confirmed their consistency with the OMNI [21]
power usage data at NERSC [21] for job samples using the power analysis
scripts in [22].

usage of VASP jobs on Perlmutter and Cori, our previous
flagship computer, to be retired by the end of May this year.

Figure 19 shows the energy usage of VASP jobs on Perlmut-
ter and Cori. VASP consumes the least energy on Perlmutter
GPU nodes (blue bars) and the most on Cori Haswell nodes
(green bars). The energy saving for the larger benchmarks,
Si256 hse, PdO4, CuC vdw, and Si128 acfdtr, is greater than
the rest smaller benchmarks. The energy usage on Cori KNL
is larger than on Perlmutter CPU nodes with a couple of
exceptions, but the differences are within 10-20%. This figure
demonstrates the apparent move towards more energy-efficient
systems at NERSC.

Figure 20 shows the average per-node power of the VASP
jobs on Perlmutter and Cori. VASP uses significantly more
power on GPUs than on CPUs. Among the CPUs, VASP uses
the least power on KNL and the most on Perlmutter CPUs,
consistent with their base clock rates: Milan CPU runs at 2.45
GHz (Max Boost Clock: 3.5 GHz), Intel KNL runs at 1.4
GHz (Max Turbo Frequency: 1.6 GHz), and Haswell runs at
2.3 GHz (Max Turbo Frequency: 3.6 GHz). Yet as shown in
Figure 19, VASP uses the least energy on GPUs, indicating
the energy saving on GPUs is from the substantial reduction
in time to solution.

TABLE II
THIS TABLE SHOWS THE NUMBER OF NODES, MPI TASKS, AND OPENMP

THREADS USED FOR THE BENCHMARK RUNS IN FIGURE 19, AND 20.

#nodes A100 GPUs Milan CPUs Haswell (KNL)
MPI OMP MPI OMP MPI OMP

Si256 hse 4 16 1 64 8 16 (32) 8
B.hR105 hse 1 4 1 16 8 4 (8) 8
PdO4 2 8 1 32 8 8 (16) 8
PdO2 2 8 1 32 8 8 (16) 8
GaAsBi-64 2 8 1 32 8 8 (16) 8
CuC vdw 4 16 1 64 8 16 (32) 8
Si128 acfdtr 2 8 1 32 8 8 (16) 8

Benchmarks

E
ne

rg
y/

E
ne

rg
y(

H
as

w
el

l)
(%

)

0%

25%

50%

75%

100%

Si25
6_

hs
s_

v

B.hR
10

5_
...

PdO
4_

v2

PdO
2_

v2

GaA
sB

i-

CuC
_v

dw
_v

2

Si12
8_

ac
fdt

r

Perlmutter GPU Perlmutter CPU Cori KNL Cori Haswell

Fig. 19. Total energy usage comparison when running VASP on Perlmutter
and Cori. The horizontal axis shows the benchmarks slightly modified to run
longer to mimic production runs. The vertical axis shows the energy used by
VASP benchmark jobs on Perlmutter GPUs (blue bars), CPUs (red bars), Cori
KNL (yellow bars), and Cori Haswell(green bars) in ratio to the Cori Haswell
usage. The number of nodes, MPI tasks, and OpenMP threads used for each
benchmark are listed in Table II.

Benchmarks

A
ve

ra
ge

 P
ow

er
 (W

)

0

500

1000

1500

Si25
6_

hs
s_

v

B.hR
10

5_
...

PdO
4_

v2

PdO
2_

v2

GaA
sB

i-

CuC
_v

dw
_v

2

Si12
8_

ac
fdt

r

GPU Power CPU Power KNL Power Haswell Power

Fig. 20. VASP’s average power usage per node on Perlmutter and Cori. The
horizontal axis shows the benchmarks slightly modified to run longer to mimic
production runs. The vertical axis shows the average power used per node by
VASP benchmark jobs on Perlmutter A100 GPUs (blue bars), Milan CPUs
(red bars), Cori KNL (yellow bars), and Haswell (green bars). The number of
nodes, MPI tasks, and OpenMP threads used for each benchmark are listed
in Table II.

VII. SUMMARY

In this paper, we have studied VASP performance on
Perlmutter GPU and CPU nodes using seven benchmarks
representing the VASP production workloads at NERSC. We
measured strong scaling, investigated the performance impact
of OpenMP threads, MPS, NCCL, and the number of NICs per
node on the VASP performance, and derived the best practice
tips for users from these results. Here is the summary of the
best practice tips for users:

• One or two GPU or CPU nodes would be sufficient for
systems containing up to several hundred atoms (e.g.,
300 atoms) on Perlmutter. The benchmarks studied in
this paper, which contain representative workloads, prob-
lem sizes, and elements, can provide a good reference
when selecting the number of nodes for VASP jobs. For
example, for large HSE calculations, roughly distributing

100 and 200 bands per GPU and CPU node, respectively,
would be a reasonable estimate.

• Enabling eight or 16 threads per task to utilize otherwise
idling CPU resources for non-HSE workloads can get a
small additional speedup.

• Running one task per GPU gives optimal performance,
but MPS may accelerate small systems with many k-
points on GPUs.

• NCCL greatly improves VASP performance. It should be
used whenever possible, especially for HSE workloads.
When using NCCL, one must run one task per GPU.

• For hybrid OpenMP+MPI VASP, using eight threads per
task is a safe choice most of the time; however, for small
node counts, increasing the total number of MPI tasks
by using four threads per task or less may help VASP
performance.

• SMT does not help VASP performance on AMD Milan
CPUs.

• Algo=ACFDTR is now ported to GPUs, bringing a
substantial speedup over running on CPUs. ACFDTR
workloads are memory intensive; consider using the 80
GB memory GPU nodes.

• Running VASP on GPUs gets the results faster, reduces
charging, and saves energy.

ACKNOWLEDGMENT

The authors would like to thank the VASP users at NERSC
who participated in the VASP usage survey in 2023, from
which the representative workloads were derived. In addition,
they thank Sridutt Bhalachandra at NERSC for sharing his
power analysis script; Nicholas Wright and the members of
the Advanced Technologies Group at NERSC for providing
valuable input. This work used the resources of the National
Energy Scientific Computing Center (NERSC) at the Lawrence
Berkeley National Laboratory.

REFERENCES

[1] Perlmutter, a HPE Cray EX system, https://docs.nersc.gov/systems/
perlmutter/architecture/

[2] Cori, a Cray XC40 system, https://www.nersc.gov/systems/cori/
[3] G. Kresse and J. furthmüller, ”Efficiency of ab initio total energy

calculations for metals and semiconductors using a plane-wave basis
set”, Comput. Mater. Sci. 6, 15 (1996); G. Kresse and J. Furthmüller,
”Efficient iterative schemes for total-energy calculations using a plane-
wave basis set”, Phys. Rev. B 54, 11169 (1996).

[4] Martijn Marsman, Stefan Maintz, Alexey Romanenko, Markus
Wetzstein, and Georg Kresse, Porting VASP to GPU using OpenACC:
exploiting the asynchronous execution model, OpenACC Annual
Meeting, Aug. 31st 2020, https://www.openacc.org/sites/default/files/
inline-images/events/F2F20%20presentations/BoF VASP OpenACC
2020%20(1).pdf

[5] Stefan Maintz, and Markus Wetzstein, Strategies to Accelerate
VASP with GPUs Using OpenACC, Available Online: https://cug.org/
proceedings/cug2018 proceedings/includes/files/pap153s2-file1.pdf

[6] VASP Wiki for OpenACC port, https://www.vasp.at/wiki/index.php/
OpenACC GPU port of VASP

[7] Z. Zhao, M. Marsman, F. Wende, and J. Kim, Performance of Hybrid
MPI/OpenMP VASP on Cray XC40 Based on Intel Knights Landing
Many Integrated Core Architecture, Available Online: https://cug.org/
proceedings/cug2017 proceedings/includes/files/pap134s2-file1.pdf

[8] NVIDIA Multi-Process Service (MPS), https://docs.nvidia.com/deploy/
mps/index.html

https://docs.nersc.gov/systems/perlmutter/architecture/
https://docs.nersc.gov/systems/perlmutter/architecture/
https://www.nersc.gov/systems/cori/
https://www.openacc.org/sites/default/files/inline-images/events/F2F20%20presentations/BoF_VASP_OpenACC_2020%20(1).pdf
https://www.openacc.org/sites/default/files/inline-images/events/F2F20%20presentations/BoF_VASP_OpenACC_2020%20(1).pdf
https://www.openacc.org/sites/default/files/inline-images/events/F2F20%20presentations/BoF_VASP_OpenACC_2020%20(1).pdf
https://cug.org/proceedings/cug2018_proceedings/includes/files/pap153s2-file1.pdf
https://cug.org/proceedings/cug2018_proceedings/includes/files/pap153s2-file1.pdf
https://www.vasp.at/wiki/index.php/OpenACC_GPU_port_of_VASP
https://www.vasp.at/wiki/index.php/OpenACC_GPU_port_of_VASP
https://cug.org/proceedings/cug2017_proceedings/includes/files/pap134s2-file1.pdf
https://cug.org/proceedings/cug2017_proceedings/includes/files/pap134s2-file1.pdf
https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/deploy/mps/index.html

[9] Materials Project, https://materialsproject.org/
[10] F Wende, M Marsman, Z Zhao, J Kim, Porting VASP from MPI to

MPI+ OpenMP [SIMD], Scaling OpenMP for Exascale Performance and
Portability - 13th International Workshop on OpenMP, IWOMP 2017,
Stony Brook, NY, USA, September 20-22, 2017, Proceedings.

[11] F Wende, M Marsman, J Kim, F Vasilev, Z Zhao, T Steinke, OpenMP
in VASP: Threading and SIMD, International Journal of Quantum
Chemistry 119 (12), e25851

[12] NVIDIA Collective Communication Library (NCCL), https://developer.
nvidia.com/nccl

[13] VASP INCAR tags, https://www.vasp.at/wiki/index.php/Category:
INCAR tag

[14] Multi-Instance GPU (MIG), https://docs.nvidia.com/datacenter/tesla/
mig-user-guide/

[15] Stefan Maintz, Alexey Romanenko, Harry Petty, Jonathan Lefman and
Chris Porter, Scaling VASP with NVIDIA Magnum IO, https://developer.
nvidia.com/blog/scaling-vasp-with-nvidia-magnum-io/

[16] HPE Slighshot 11, https://www.hpe.com/us/en/compute/hpc/
slingshot-interconnect.html

[17] Cray MPICH man page for Slinghot options, ”man intro mpi” on HPE
Cray EX.

[18] Zhengji Zhao, Nicholas J. Wright and Katie Antypas, “Effects of Hyper-
Threading on the NERSC workload on Edison”, Cray User Group
meeting, May 6-9, 2013, Napa Valley, CA.

[19] NERSC QOS Limits and Charges, https://docs.nersc.gov/jobs/policy/
#qos-limits-and-charges

[20] Sridutt Bhalachandra, Brian Austin, Nicholas J. Wright, ”Understanding
power variation and its implications on performance optimization on the
Cori supercomputer”, SC21 PMBS workshop, Saint Luis, MO, USA

[21] OMNI, NERSC data collection infrastructure for the performance mon-
itoring data

[22] Sridutt Bjalachandra, Perlmutter OMNI Analysis, https://gitlab.com/
NERSC/perlmutter-omni-analysis

https://materialsproject.org/
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://www.vasp.at/wiki/index.php/Category:INCAR_tag
https://www.vasp.at/wiki/index.php/Category:INCAR_tag
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://developer.nvidia.com/blog/scaling-vasp-with-nvidia-magnum-io/
https://developer.nvidia.com/blog/scaling-vasp-with-nvidia-magnum-io/
https://www.hpe.com/us/en/compute/hpc/slingshot-interconnect.html
https://www.hpe.com/us/en/compute/hpc/slingshot-interconnect.html
https://docs.nersc.gov/jobs/policy/#qos-limits-and-charges
https://docs.nersc.gov/jobs/policy/#qos-limits-and-charges
https://gitlab.com/NERSC/perlmutter-omni-analysis
https://gitlab.com/NERSC/perlmutter-omni-analysis

	Introduction
	System Configuration and Environment Setup
	Perlmutter System Configuration
	VASP
	Benchmarks
	Benchmark approach and runtime specifications

	VASP Performance on Perlmutter GPUs
	How many nodes/GPUs are optimal for VASP jobs running on Perlmutter GPU nodes?
	Do additional OpenMP threads help VASP performance on GPUs?
	Does MPS help VASP performance?
	Performance effect of NCCL
	Does the number of NICs used per node affect VASP performance?

	VASP Performance on Milan CPUs
	Optimal threads per task
	AMD Simultaneous Multithreading (SMT)
	Parallel efficiency of VASP on Perlmutter CPU nodes

	ACFDTR Workloads
	Energy and Charging Efficiency
	Charging efficiency
	Energy efficiency
	Energy usage on Perlmutter and Cori

	Summary
	References

