
Deploying Cloud-Native HPC Clusters on
HPE Cray EX

Felipe A. Cruz
Swiss National Supercomputing Centre

Lugano, Switzerland
felipe.cruz@cscs.ch

Manuel Sopena Ballesteros
Swiss National Supercomputing Centre

Lugano, Switzerland
manuel.sopena@cscs.ch

Alejandro J. Dabin
Swiss National Supercomputing Centre

Lugano, Switzerland
alejandro.dabin@cscs.ch

Abstract—The software stack that manages a High-
Performance Computing (HPC) cluster is a collection of applica-
tions and services put together by multiple engineers. Integrating
all the software components is often complex and challenging.
Therefore, the engineering effort frequently focuses on minimiz-
ing service disruption over the value delivery of new features. In
this work, we introduce a cloud-native architecture for delivering
an HPC cluster on top of HPE Cray EX that streamlines the
development, operation, maintenance, and administration of the
many services that compose an HPC cluster. Under a cloud-
native approach, an HPC cluster is architected as a collection
of small, loosely coupled services that can be independently
delivered. Moreover, we leverage an on-prem cloud platform
deployment that enables a self-service model for engineers to
introduce controlled changes to the cluster while streamlining
service and infrastructure automation. The presented cloud-
native architecture is a starting point for delivering HPC clusters
that are more resilient and scalable to operate.

Index Terms—Cloud-native, HPC, clusters, services, opera-
tions, containers, system, Cray EX, CSCS

I. INTRODUCTION

A High-Performance Computing (HPC) cluster consists of
specialized hardware, facilities for hundreds to thousands of
servers connected by a high-performance network, and soft-
ware enabling the cluster to perform large complex scientific
calculations extremely fast. Often, the nodes that form the
clusters can be designed to have different combinations of
hardware accelerators, huge memory capacities, large storage
capacities, and low-latency networks. These provisioned nodes
fulfill different roles with their software stack statically con-
figured to work as either access nodes, job scheduling servers,
filesystems servers, support services nodes, or work together
as compute nodes within the cluster to solve a particular task.

Building the software stack that runs and manages the
system is challenging:

• The stack is composed of multiple services, libraries,
modules, and tools

• Different components of the software stack are developed
and managed by multiple independent engineering teams
that need coordination

• The delivery of the software stack has to contend with
mutable components and applications with hard-wired
parameters

• The process of integrating, validating, and deploying all
the components can be labor intensive

Moreover, it is not uncommon for the software stack to
be statically composed into a system image, often comprised
of multiple layers built and installed on top of one another.
The base layer contains the operative system (OS) and is the
foundation for the rest. Subsequent layers extend features and
functionality to the software stack, for example, these can
range from administrator tools, workload manager services,
and automated pipelines to compute environment libraries,
compilers, and debuggers.

It is important to note that the software is installed in
layers which creates interdependencies that can affect system
performance. As the system infrastructure becomes larger and
more complex, there is a greater potential for interactions
between the components to display errors or conflicts that can
impact system stability and reliability. Therefore, managing
the interdependencies often requires careful planning and
coordination among all stakeholders building the HPC system
software stack. It is then the role of system administrators
to manage the hardware and software complexity while also
satisfying the many needs of stakeholders of the HPC system.
Consequently, the HPC software stack solution often focuses
on a monolithic process that builds a centrally-managed
global system environment, with heavy system administrator
involvement, to resolve all dependency conflicts and gatekeep
any installations requiring privileged operations. Moreover,
trying to automate the integration work can result in opaque
automation due to the the breath and depth of the tasks, as
such, only a handful of engineers have a full understanding of
the context and impact of local and global changes.

As seen above, delivering the HPC cluster software stack is
an exercise of compromise between managing the complexity
of the system and the flexibility of introducing frequent
changes to answer the needs of the many stakeholders. More-
over, this challenge grows non-linear with the number of
stakeholders involved as HPC system administrators have to
contend with the following:

• The system software stack is hard to validate due to far-
reaching dependencies

• The change process can be resource intensive in effort
and time

• To prevent service disruptions, updates are only allowed
a few times per year, slowing down the rate of feature
innovation

• Due to the many compromises made to build a stable sys-
tem, advanced/niche features can not be adopted quickly

• The most challenging use cases follow a one-system
per need, a solution approach that does not scale well
concerning the system and human resources

Consider now the disruptive technological progress brought
forward by the ’cloud’ in their need to resolve the challenges
brought by computing at scale. It is in this ’cloud’ context
that Infrastructure as Code (IaC) was born, modeling infras-
tructure and application lifecycle with code using software
development best practices. Cloud technologies have focused
on enabling developers to deploy scalable applications rapidly.
A cloud-ish set of capabilities to manage HPC infrastructure is
developed as part of the Cray System Management (CSM) [7],
providing an application programming interface (API) to the
HPE Cray EX supercomputer to configure the infrastructure
dynamically. CSM allows CSCS to leverage a single large
common infrastructure that can be customized via software to
fulfill many needs. In turn, and to leverage cloud infrastructure,
modern software development has shifted toward microservice
architecture to increase scalability and reduce the complexity
of services and applications. Cloud Native is a paradigm for
deploying services that leverage cloud infrastructure capabili-
ties to manage services at scale while reducing manual effort.

We will now discuss how a Cloud-Native approach can
leverage HPE Cray EX supercomputer capabilities to manage
the growing complexity of delivering HPC cluster services.

II. CLOUD-NATIVE HPC CLUSTERS

Cloud-Native, as defined by the Cloud Native Computing
Foundation [1], refers to a paradigm and architecture that
leverages technologies like microservices, containerization,
continuous integration and continuous delivery (CICD), and
DevOps practices that have been optimized to maximize the
benefits enabled by the dynamic environment capabilities
provided by cloud platforms and infrastructure, allowing en-
gineering teams to deliver software frequently and predictably
with minimal effort.

Applying a cloud-native approach to HPC means that the
many services that form an HPC cluster follow a microservice
architecture, where services are broken down into a collection
of smaller components that are loosely coupled and can be in-
dependently delivered from one another. Using microservices
instead of a monolithic architecture enables engineering teams
to work more efficiently since services are isolated and can be
developed, maintained, and updated independently.

Whenever possible, the microservice architecture is sup-
ported by a containerization technique. The containerization
of microservices aims to package the services into containers
so that services are independent and isolated. Containerized
microservices have their instance of operating system (OS)
and dependencies independent from the host OS within the
container engine where they are executed. Containerized mi-
croservices are lightweight, portable, and easily managed
through a cloud platform, like Hashicorp’s Nomad [3], used
in this work.

Nomad, developed by Hashicorp, is a flexible cloud plat-
form for managing containerized and non-containerized ser-
vices that are deployed on clusters by its scheduler. The
Application Programming Interface (API) provided by Nomad
allows service developers to manage their services as code
through declarative configurations. In this way, we observe
multiple benefits:

• Automating tasks such as service deployments, service
update rollout, and self-healing

• Simplifies the dynamic configuration of large number of
nodes

• Improve efficiency by automatically managing resource
utilization across the infrastructure resources

• Provides visibility and control over all managed services
running on the infrastructure

• Presents a standard interface that can be leveraged for
detecting issues with services

• Provides a central interface for managing services and
their automation

To ensure service quality, the software development for
the HPC services follows a Continuous Integration and Con-
tinuous Delivery (CICD) process that automates the ser-
vices’ builds, tests, deployments, and releases of its version-
controlled artifacts. The goal is to detect bugs early during
the service development, ideally before changes are introduced
into production. This enables service developers to introduce
changes frequently without being constrained by lengthy re-
lease cycles or slow deployment processes that restrict the
ability to react quickly and efficiently to customers’ needs.
Moreover, leveraging CICD can maintain a consistent code
base across cluster instances while enforcing quality control
through automation.

The availability of modern interfaces to infrastructure and
platforms like HPE’s Shasta and Hashicorp’s Nomad provides
HPC engineering teams with access to modern development
environments and tools for building, testing, deploying, au-
tomating, and managing their services under DevOps practices.
In DevOps, an approach combining software engineering and
service operation roles in a single team, automation provides
the highest potential improvement for fast and efficient man-
agement of cloud-native HPC clusters. DevOps automation
helps service teams to automate non-trivial tasks, reducing
human errors during interventions or repetitive tasks, improv-
ing consistency and reliability during service delivery, and
increasing productivity by automating manual tasks.

III. CLOUD INTERFACES

Using the CSM on HPE Cray EX supercomputer with
Hashicorp’s Nomad platform allows us to implement a cloud-
native architecture. The infrastructure and platform-level capa-
bilities serve needs that are managed by different engineering
teams. As seen in Figure 1, this combination of capabilities
and roles enables service scalability and flexibility on top of
a unified infrastructure, i.e., one system that can fulfill many
needs.

Fig. 1. Cloud-Native paradigm for managing an HPC cluster. Cloud capabilities at the infrastructure level provided by CSM for HPE Cray EX supercomputer
and the platform level provided by Hashicorp’s Nomad enabled us to implement a cloud-native approach to deliver HPC clusters on top of a unified
infrastructure.

An infrastructure team uses the CSM interfaces to perform
various tasks on the HPE Cray EX supercomputer, from
building the base system image of nodes to power cycling and
image booting. The CSM interfaces are also used for configur-
ing nodes for resource access, like network configurations and
filesystem availability. Once configured, nodes are logically
grouped and managed as fleets by the Nomad orchestrator.
The infrastructure team is then responsible for managing fleet
membership for resource allocation and infrastructure health
management, i.e., monitoring infrastructure health, removing
faulty nodes, and adding healthy ones. Members of a fleet
managed by the Nomad platform can then run cluster services
as assigned by the platform orchestrator.

A cluster administration team can focus on building and
deploying the cluster services. Using the Nomad platform
enables engineers to introduce controlled changes to the cluster
via quick redeployment of individual services, improving flex-
ibility, scalability, and fault isolation while making the cluster
more resilient, manageable, and observable. Furthermore, we
leverage cloud platform interfaces in two ways: First, for the
provisioning and delivery of services, this enables automation
that can be used to streamline frequent granular releases
of changes with reduced toil; Second, to partially manage
infrastructure operations, for example, dynamic allocation of
node roles according to business needs like batch compute,
high-throughput computing, or cluster service nodes.

IV. CLOUD-NATIVE CLUSTER ARCHITECTURE

Let us now consider the architecture of a single cluster,
where we have both Nomad servers and clients, see Figure 2.
All cluster nodes are configured as Nomad clients that booted
to the same base state consisting of the base OS, a container
runtime, and the nomad agent.

Nomad servers manage client nodes that form the cluster,
take cluster administrator requests for service deployments,
and orchestrate service deployments in the cluster. A small
set of nodes run nomad server instances for redundancy, these
servers control all services placement and lifecycle in the
cluster.

The nodes that form the HPC cluster run as Nomad clients
by running a Nomad agent communicating with the Nomad
servers. In this way, cluster nodes register themselves with the
Nomad servers, wait for new tasks, and report any updates to
the servers on the status of active tasks. Nomad servers then
use the available resources reported by the Nomad agents to
schedule services and assign work to clients.

Cluster administrators submit services for deployment in
the cluster via a command line interface (CLI) or the Nomad
application programming interfaces (API). These services are
designed to be transient, i.e., impermanent with no long-
term state changes, and are described within a nomad job
that specifies the desired state of the service, artifacts to be
used, and extra information that constraints the appropriate
infrastructure resources to be used. The Nomad server then

Fig. 2. Orchestrating the HPC services of a single HPC cluster with Hashicorp’s Nomad. We have both Nomad servers and clients, with all cluster nodes
configured as Nomad clients booted to the same base state. Cluster nodes register themselves with the Nomad servers, wait for new tasks, and report any
updates to the servers on the status of active tasks. Nomad servers then use the available resources reported by the Nomad agents to schedule services and
assign work to clients.

uses the service description and constraint information to
decide the placement and schedule the service for deployment
on the cluster.

A. Service containerization challenges

Despite the advantages mentioned earlier, using a cloud-
native architecture for HPC clusters does not come without
challenges. Consider that not all traditional HPC services
are equally amenable to being deployed and delivered as
microservices. Among the difficulties when containerized, we
found:

• Not-easily containerizable applications composed of mul-
tiple components with complex interprocess communica-
tions

• Conflicts of cgroups between platform and application
• Conflicts of Linux namespaces managed by the applica-

tion and container-runtime
• Complex management of direct access to infrastructure

resources from a container
• Challenging to run privileged applications
• Challenging to run long-lived stateful applications built

with no-dynamic redeployment assumptions
• Some services are daemon-less, only providing transient

tools on the host
• Nuances of Linux namespace management for services

that spawn child processes

The difficulties with containerizing applications like
Slurm [8] have driven the choice of Nomad for our cloud-
native architecture. Nomad is a simple and flexible work-
load orchestrator that deploys and manages containers and,
more crucial for our use-case, non-containerized applications.
Through Nomad, cluster administrators can use a cloud-native
paradigm to manage and deploy traditional HPC services that
are not easily containerizable alongside cloud-native services.

B. Containerized User Environments

The user environment is the layer of the software stack with
everything needed to support users’ workflows for develop-
ment, debugging, testing, and job execution. As such, environ-
ments can include compilers, libraries, environment variables,
and command-line tools. User environments meet additional
challenges: the need to provide stability and flexibility in large
systems with thousands of users; as user environments are
coupled and built over the system software layer, they are
subject to overall system cadence and validation with all that
this entails.

To adapt the delivery of user environments to a cloud-native
model, we leverage and extend HPC container technologies
like Pyxis [6], Enroot [5], and Sarus [9] to deliver the user-
environment software stack exclusively, quickly, and transpar-
ently via containers to users while seamlessly integrated with
the capabilities of an HPE Cray EX system. A Container-first

approach for HPC improves flexibility toward specific user
needs, the fast rollout of fixes, minimal system dependen-
cies, and transparent utilization. Moreover, containers provide
system decoupling, enabling consistent and stable workflows
across system updates.

C. HPC services

In its most simplified form, when a cluster administrator
defines HPC services to run in a cloud-native cluster, it does so
using the Nomad job specification. Nomad jobs are specified
in HCL, a specification language designed to be friendly
for humans and machines. A Nomad job is a declarative
specification for a task the Nomad cluster should run. Service
deployments in the cluster follow the architecture described
in Section IV. However, the actual Nomad job execution is
provided by a Task driver, allowing Nomad clients to execute
a task and provide resource isolation. Among the task drivers
available, we find:

• The Podman [11] task driver plugin for Nomad uses the
Pod Manager (podman) daemon-less container runtime
for executing Nomad tasks

• The raw exec driver executes a command for a task
without any isolation and can be started as the same user
as the Nomad process

• The exec driver executes a particular command for a task.
However, unlike raw exec it uses kernel isolation to limit
the task’s access to resources

Let us briefly introduce the service deployment strategy
for a cluster administrator of cloud-native HPC clusters. The
default approach to deploying a service is to containerize it and
use the Podman task driver to execute it. With this strategy,
we have successfully deployed a range of services that go
from gitlab [4] runners to APIs to HPC, like Firecrest [10].
Moreover, we are exploring the development of many other
well-suited services for containerization.

For services that are not easily containerized for reasons
like the ones discussed in Section IV-A, we use raw exec
driver. The usage of this driver is an exception rather than the
rule. It mostly applies to core node services like enabling the
container engine for running containerized user environments
or deploying a workload manager like Slurm, a use-case we
discuss in detail in the next section.

D. Deploying Slurm as microservice

Consider now Slurm, one of the most challenging services
to deploy under a cloud-native HPC cluster. Slurm is not
container-friendly and suffers from many difficulties discussed
in Section IV-A. As such, we opted to deploy Slurm using
Nomad’s raw exec task driver. To describe Slurm in three
microservices:

1) Slurm controller. The orchestrator of Slurm operations,
which include job scheduling, compute node monitoring,
and resource allocation. See Listing 1

2) Munge. The credential authentication service is used by
all compute nodes of the slurm cluster. See Listing 2

3) Slurm Daemon. Daemon service For Slurm runs on all
compute nodes. The Slurm Daemon monitors all running
tasks on the node while also accepting, starting, and
killing tasks on request from the controller. See Listing 3

The HCL service descriptions for the Slurm controller,
Munge, and Slurm Daemon can be seen in Listings 1, 2, 3. To
deploy these services with Nomad, the Cluster administrator
can use the Nomad cli to first plan the changes to the
system using Nomad job plan and then execute them if
the changes are approved with Nomad job apply.

Points to take notice of from all the mentioned listings for
Slurm:

1) use of driver="raw_exec" task driver
2) specification of the user to execute the task can be set

to any, e.g., user="munge" or user="root"
3) the command to execute and the argument to pass are

defined by the parameters command and args

By reviewing the HCL for the Slurm services in more detail,
we observe that the type of service for the slurm controller
is different than for munge and slurm daemon. In Listing 1
line 4, we specify type="service" as we request Nomad
only to instantiate the slurm controller service once. Moreover,
we also specify the actual node where the service will start
by using the constraints stanza as seen in Listing 1 line 18.
Please note that this is not the only way to direct Nomad to
instantiate services, and among others, it is possible to allow
Nomad to do the node placement on its own.

1 job "slurm-ctl" {
2 priority = 95
3 datacenters = ["${var.datacenter}"]
4 type = "service"
5 group "slurm-ctl" {
6 task "slurmctld" {
7 driver = "raw_exec"
8 user = "root"
9 config {

10 command = "/usr/sbin/slurmctld"
11 args = ["-D"]
12 }
13 }
14 network {
15 port "slurmctl" {
16 static = 6817 # host linked port

↪→ to TCP 6817
17 }}}
18 constraint {
19 attribute = "${attr.unique.hostname

↪→ }"
20 value = "${var.slurm-ctld-host}"
21 }}

Listing 1. With filename ’slurmctld.hcl’. Contains a Nomad job
description of slurm controller service for Slurm

1 job "munge" {
2 priority = 95
3 datacenters = ["${var.datacenter}"]
4 type = "system"
5 group "munge" {
6 task "munge" {
7 driver = "raw_exec"
8 user = "munge"
9 config {

10 command = "/usr/sbin/munged"
11 args = ["--foreground", "--

↪→ syslog"]
12 }
13 }
14 }
15 }

Listing 2. With filename ’munge.hcl’. Contains a Nomad job
description of Munge service for Slurm

In the case of the services for Munge and the Slurm
daemons, these need to run on every compute node of the
slurm cluster. Moreover, the services must start in order,
with Munge starting first and the slurm daemon starting next.
We can easily achieve the service start order with another
automation tool like Terraform [2]. While in order to achieve
for the jobs to start on all compute nodes, we request Nomad
to deploy the services as type="system", this ensures that
the services are started only once per node.

V. BENEFITS FROM CLOUD-NATIVE

We will now discuss some benefits of delivering an HPC
cluster using the presented cloud-native architecture.

A. Cluster bootstrapping

As the services necessary to deploy an HPC cluster are de-
scribed in the Nomad specification, we can manage the cluster
in consistent and repeatable ways as the service descriptions,
configurations, and artifacts are versioned, enabling reuse and
sharing. In this way, once acquiring compute resources, a
cluster administrator can quickly deploy a new cluster instance
by requesting Nomad to orchestrate the instantiation of the
cluster from the description of the services. Moreover, this is
quick as all nodes are already in a live state and waiting for
work. Thus, the cluster startup time is dominated by the time
services take to start: Munge, Slurm, and others.

B. Service reconfiguration on a live cluster

Consider now a well-designed microservice built so that
its parameters and capabilities can be modified with minimal
impact on the cluster end-users.

For instance, let us take as a thought experiment a mi-
croservice based on the Slurm workload manager. Slurm
uses slurm.conf as a configuration file that can be managed
as versioned artifacts stored in a repository. Configuration
changes, like scheduling parameters, can be made by updating
the artifact and the corresponding service definition to Nomad

1 job "slurm-cn" {
2 priority = 95
3 datacenters = ["${var.datacenter}"]
4 type = "system"
5 group "slurmd-cn" {
6 # Each task is scheduled on a

↪→ different node
7 constraint {
8 operator = "distinct_hosts"
9 value = "true"

10 }
11 task "slurmd" {
12 driver = "raw_exec"
13 user = "root"
14 config {
15 command = "/usr/sbin/slurmd"
16 args = ["-D", "-Z", "--conf-

↪→ server", "${var.slurm-ctld
↪→ -host}", "--conf", "
↪→ Feature=compute"]

17 }
18 }
19 network {
20 port "slurmd" {
21 static = 6818 # host linked port

↪→ to TCP 6818
22 }}}}

Listing 3. With filename ’slurmd.hcl’. Contains a Nomad job
description of Slurm daemon on compute nodes for Slurm

and redeploying the Slurm controller without necessarily dis-
rupting any active Slurm worker.

In an analogous way to our Slurm example, HPC services
and automation have to be carefully designed to take advantage
of the platform functionality to provide an experience to end-
users that is as seamless as possible.

C. Service update on a live cluster

System updates are one of the core responsibilities of a
cluster administrator, and this can cover scenarios that range
from minor microservice version updates to the rollout of
major security vulnerability upgrades.

As such, the implementation of a service update can vary
depending on the required service disruption. For minor ser-
vice updates, rolling updates might be possible, allowing for
the update to take place with zero downtime by automatic and
incremental redeployment of service instances with updated
ones.

D. Node management

Rearranging or reassigning nodes between different target
usage can also be done using the Nomad platform features
to specify deployment constraints. In this way, nodes can
be assigned to different work pools: batch computing, high-
throughput computing, interactive computing, cluster services,
or others.

E. Base node update

Upgrades to the Linux kernel or any components in the base
node state, like the container engine or the orchestrator, are
made by rebuilding the base image of the node and rebooting
nodes to the new state. Note that this type of information can
be passed as node attributes to Nomad, which can use them
as scheduling constraints, enabling jobs to target specific node
configurations. The update of the nodes is done over the CSM
layer by the infrastructure team.

VI. CONCLUSION

The presented cloud-native architecture can be seen as a
starting point to build and deliver HPC clusters that are more
resilient and scalable to operate on top of a common infrastruc-
ture enabled by HPE Cray EX supercomputer. The proposed
cloud-native architecture breaks down the HPC cluster into
smaller, independent services that enable different engineers
to work on different components without interfering with each
other. It also gives different engineering teams greater auton-
omy when operating and managing services and infrastructure.
The common infrastructure and platform interfaces provided
by CSM and Nomad enable standard automation of man-
agement tasks improving reproducibility and simplifying the
services integration processes while facilitating collaboration
among teams. Moreover, fast troubleshooting and self-healing
are possible using a cloud platform and tools with improved
monitoring and observability of the state of the cloud-native
cluster and its services. Consequently, a cloud-native HPC
cluster is a novel approach for managing the complexity of
an HPC system’s operation, maintenance, and administration.

REFERENCES

[1] Cloud Native Computing Foundation. ”Who we are. Cloud Native
Definition.” https://www.cncf.io/about/who-we-are/ (accessed April 17,
2023)

[2] Hashicorp. ”Introduction to Terraform”.
https://developer.hashicorp.com/terraform/intro (accessed April 17,
2023)

[3] Hashicorp. ”Nomad documentation”.
https://developer.hashicorp.com/nomad/docs (accessed April 17,
2023)

[4] Gitlab. Gitlab Runners. https://docs.gitlab.com/runner/ (accessed April
17, 2023)

[5] NVIDIA. Enroot github repository. https://github.com/NVIDIA/enroot
(accessed April 17, 2023)

[6] NVIDIA. Pyxis github repository. https://github.com/NVIDIA/pyxis (ac-
cessed April 17, 2023)

[7] HPE Cray. Cray System Management Documentation. https://cray-
hpe.github.io/docs-csm/en-10/ (accessed April 17, 2023)

[8] Yoo, A.B., Jette, M.A., and Grondona, M. SLURM: Simple Linux Utility
for Resource Management. JSSPP 2003. Lecture Notes in Computer
Science, vol 2862.

[9] Benedicic, L., Cruz, F.A., Madonna, A. and Mariotti, K., 2019, June.
Sarus: Highly Scalable Docker Containers for HPC Systems. In In-
ternational Conference on High Performance Computing (pp. 46-60).
Springer, Cham.

[10] F. A. Cruz et al., ’FirecREST: a RESTful API to HPC systems,’ 2020
IEEE/ACM International Workshop on Interoperability of Supercom-
puting and Cloud Technologies (SuperCompCloud), Atlanta, GA, USA,
2020, pp. 21-26, doi: 10.1109/SuperCompCloud51944.2020.00009

[11] Podman. ”What is Podman?”. https://docs.podman.io/en/latest/ (accessed
April 17, 2023)

