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Abstract— Sandia National Laboratory’s Red Storm System 
was designed to support “switching” hardware to isolate 
computation and data between data classification levels. This 
enabled Sandia and derivative system architectures to adapt 
investments in capability computing to evolving needs. Today, 
industry demand for multi-tenancy in modern converged HPC 
and AI platforms has not waned, but expectations around how the 
solution should be delivered have changed – as have the types of 
workloads being run. The industry is now strongly advocating for 
and investing in cloud-like platforms that treat multi-tenancy as a 
first-principles capability, align with modern DevOps 
management techniques, support resource elasticity, and enable 
customers to deliver their own IaaS, PaaS, and SaaS solutions. 
Enter HPE Cray Systems Management (CSM). CSM is a 
Kubernetes-based, turnkey, open source, API-driven HPC 
systems software solution. Using CSM as a foundation, we have 
developed a software-defined, multi-tenancy architecture, 
anchored by a tenancy “controller hub,” called the Tenant and 
Partition Management System (TAPMS). TAPMS, through extant 
features in CSM, inherits availability, scale, resiliency, disaster 
recovery, and security properties of the platform. This paper 
presents TAPMS, the supporting architecture, and the resulting 
composable, declarative tenant configuration interfaces that 
TAPMS and the underlying Kubernetes Operator Pattern enable. 

Keywords—Multi-tenancy, multitenancy, high performance 
computing, HPC 

I. INTRODUCTION 
 Supercomputers are increasingly employed to host 
unconventional workloads alongside HPC simulations, 
incorporating computational methods like AI and ML into more 
sophisticated workflows, some spanning multiple distributed 
but discrete systems. Success with these workflows ultimately 
necessitates accommodation of their runtime requirements and 
configuration management practices, catalyzing some in the 
industry to push the boundary of HPC system solutions to adopt 
modern platform engineering techniques [3, 4]. By integrating 
key cloud native technologies and management techniques with 
those of traditional supercomputing, purposefully 
reconfigurable HPC system solutions are beginning to emerge 
[5, 6, 20] outside of public cloud. These systems have an 
opportunity to exploit the data performance and data locality 
efficiencies inherent in supercomputing with configuration 

flexibility only found in the cloud, today [3]. While the origins 
of multi-tenancy in HPC date at least back to Sandia National 
Laboratory’s Red Storm System [1, 2], and hardware 
“switching”, cloud technologies have revolutionized the space. 
Cloud native multi-tenancy architectures rely heavily on rapid, 
elastic, logical reconfiguration of resources through well-
defined software interfaces – representing a significant 
advancement in programmable infrastructure.  

 In this paper, we start by defining multi-tenancy, its 
differentiating characteristics, and related terms (section II). We 
then explore and summarize strengths and weaknesses 
associated with multi-tenancy (section II). Next, we briefly 
discuss the “as a service” (aaS) business model, practically 
inseparable from a discourse on multi-tenancy (section II). After 
providing background, we describe our work (section III) on 
development of a software-defined multi-tenancy feature set in 
Cray Systems Management (CSM) using Cray EX Hardware. In 
closing, we provide a conclusion (section IV) and cover future 
work (section V).  

II. BACKGROUND 

A. Multi-tenancy Definition AND Related Terms 
 We adopt a definition of multi-tenancy from [15]: 

“Multi-tenancy is a property of a system where multiple 
customers, so-called tenants, transparently share the system’s 
resources, such as services, applications, databases, or 
hardware, with the aim of lowering costs, while still being able 
to exclusively configure the system to the needs of the tenant.” 

While multi-tenancy is intuitively a sharing of resources, the 
first distinguishing characteristic of note here is that resources 
are shared in a transparent manner – meaning tenants are 
unaware of other tenants and view their own resources as a 
dedicated environment [16]. The second distinguishing 
characteristic is that the system can be exclusively configured to 
meet the needs of the tenant. In contrast, while multi-user 
systems can be configured to accommodate several classes of 
users, they are often unable to cater exclusively to each class 
individually. Much like a multi-user environment, 
configurability also includes reserving and then guaranteeing 
performance and other quality of service measures [17].  



 Multi-instance and elasticity are terms that are often 
concomitant with multi-tenancy. Multi-instance is a term used 
to describe the scenario where there is no sharing of resources 
between tenants. For example, rather than multiple tenants using 
a single application instance in a SaaS environment, they each 
have access to independent copies or instances [16]. Elasticity is 
a system property whereby resources can be rapidly [23] added 
or removed from a tenant’s resource pool to address changes in 
workload demand and manage cost [17, 27]. 

B. Multi-tenancy: Strengths and Weaknessnes 
Some strengths of multi-tenancy are in lowering costs for 

either the consumer or provider [15] through leveraging 
economies of scale [15] or gains in energy efficiency (power 
savings) [17]; and accelerating availability of the latest 
technology [18].  Elasticity is a related but distinct strength often 
associated with multi-tenancy, whereby a tenant can scale 
resources based on workload demand [17, 27]. While isolation 
of data and processing between tenants is innate in multi-
tenancy, some multi-tenant systems are purposefully designed 
to support hard multi-tenancy. Hard multi-tenancy requires strict 
isolation between tenants, such as might be required in a multi-
level security (MLS) environment [1, 19]. Conversely, soft 
multi-tenancy is optimized for accident prevention (e.g., 
avoiding outages) and agility versus strict isolation [24].  

 Some strengths may skew towards the HPC industry. The 
first is using multi-tenancy to isolate heterogenous workloads 
while still benefiting from the data locality and accelerated 
performance of the underlying platform [3]. With elasticity and 
rapid reconfiguration, the system could be decomposed into 
smaller tenants to manage heterogenous software and hardware 
workflows, and then quickly reassembled into a capability 
supercomputing asset to run jobs at scale, and vice-versa, 
making supercomputing systems more adaptable. When 
combined with DevOps practices, multi-tenancy in HPC could 
also be deployed to serve select features of a Test and 
Development System (TDS), including support of a “blue 
green” deployment model [25], where configuration changes 
could be easier to orchestrate across tenants versus across 
independent systems.  

 Potential weaknesses associated with multi-tenancy are 
increased software complexity [16], difficulty in managing 
change without impacting multiple tenants [16] and heightened 
cybersecurity concerns (e.g., a heightened sense of urgency to 
quickly patch security vulnerabilities) [16]. As cybersecurity in 
HPC is often optimized towards maximum performance versus 
robust security [26], it could be considered a weakness if not 
treated properly in a multi-tenant design. Table I summarizes 
strengths and weaknesses.   

C. As a Service (aaS) Business Model 
Multi-tenancy is often associated with the as a service (aaS) 

business model as a key enabler [16, 17]. Services are typically 
delivered across stratified layers (Table II), and service 
providers often leverage capabilities in lower layers (e.g., IaaS) 
to easily offer high order services (e.g., WaaS) [17].  

 Operational risks are amortized across all parties involved in 
delivery or consumption of the service. Parties typically require 
contractual agreements to protect shared interests and limit 

liability should events like a security breach or data loss occur, 
often canonized into a shared responsibility model [28]. 

TABLE I.  MULTI-TENANCY: STRENTGHS AND WEAKNESSES 

TABLE II.   AS A SERVICE LAYERS 

III. MULTI-TENANCY: CRAY SYSTEMS MANAGEMENT 
HPE Cray CSM (Cray Systems Management) is a cloud 

native HPC platform solution [6], based on the Shasta 
architecture [5]. CSM is open-source software (MIT), first 
released as closed source approximately two years ago, and is 
soon to celebrate its fifth major release (1.4). CSM currently 
supports HPE Cray EX hardware and provides a base platform 
for several hardware and software product streams comprising a 
complete HPC solution, such as the Cray Operating System 
(COS), the System Monitoring Application (SMA), the Cray 
Programming Environment (CPE), and the Slingshot High-
speed Network (HSN) Fabric. CSM represents a notable 
paradigm shift in systems architecture and is being successfully 
hardened by the first cohort of supercomputers it has been 
deployed to manage. 

CSM heavily leverages Kubernetes (K8s) [10], along with a 
larger portfolio of Cloud Native Compute Foundation 
Landscape [33] and other open technologies. Management 
services in CSM run as micro-services inside K8s, using Istio 
[29] for secure service-to-service communication, and build 

Strengths Weaknesses 
General HPC General HPC 

Cost Savings 
(provider, consumer) 
via shared hardware, 
economies of scale, 
and energy efficiency 
 
Elasticity 
 
Accelerated access to 
the latest technology 
 
Support for multiple 
security trust 
domains per system 
to meet MLS 
requirements 

Rapid, software-
based 
reconfigurability, 
at very large 
scale 
 
Logical Test and 
Development 
Systems, support 
for blue/green 
deployments 
 

System 
Complexity 
 
Difficulty in 
managing 
change 
without 
impacting 
multiple 
tenants 

Multi-
tenancy 
requires 
“advanced” 
security 

Layer Description 

Workflow as a Service (WaaS) Hosted workflows, like those that can 
be modeled as Directed Acyclic Graphs 
(DAGs) [17] 
 

Function as a Service (FaaS) Hosted functions [22] 
 

Database as a Service (DBaaS) Hosted databases [17] 
 

Software as a Service (SaaS) Hosted applications [17] 
 

Platform as a Service (PaaS) Hosted operating systems [17] 
 

Infrastructure as a Service (IaaS) Hosted virtual machines or bare metal 
services [17] 
 



upon zero downtime features rooted in K8s. CSM further 
leverages Keycloak (for federated person identities) and 
Spire/SPIFFE [31] (for non-person identities) to provide 
horizontally scaled, Zero Trust Architecture [30] focused API 
and UI ingress services. CSM uses Ceph [32] for remote block, 
clustered file system, and S3-compatible utility storage. 
Presently, all deployed services in the management and compute 
zones [26] execute on bare metal 1 , except for an emerging 
feature that uses virtualization techniques to emulate ARM OS 
image builds on x86_64 K8s worker nodes. An investigation is 
also currently under way to virtualize K8s master and worker 
nodes towards online migration between management clusters, 
and support for “blue green” promotion techniques [25].  

A. Community Engagement 
The Swiss National Supercomputing Centre (CSCS) and 

HPE Cray are collaborating on the CSM multi-tenancy feature 
set. CSCS has a history of innovation in the space [3], and 
eventually plans to host several, production grade tenants on 
their Alps system [34] – through a vision CSCS calls “software-
defined infrastructure.” In 2023, CSCS and HPE Cray started an 
open, co-chaired multi-tenancy special interest group (SIG). 
Over the course of approximately the last year and a half, CSCS 
and HPE Cray have worked to accelerate the multi-tenancy 
feature set in CSM.  

B. Design Philosophy and Approach 
Multi-tenancy is currently being designed as a feature toggle 

that must peacefully coexist with and ideally improve the 
incumbent, single-tenancy user experience. Consequently, all 
assignable resources that are not explicitly associated with a 
named tenant belong to an implicit infrastructure tenant.  

Multi-tenancy in CSM is focused on PaaS-aligned, soft 
multi-tenancy. We plan to iterate towards “harder” multi-
tenancy through key isolation capabilities. In an attempt to 
balance implementation complexity, amortize risk to the overall 
product, and make efficient use of existing management system 
hardware, tenant awareness is being phased into CSM 
management API micro-services. For tenant owned or 
configurable resources, we are focused on bare metal application 
and compute nodes, and the software resources associated with 
their configuration and operation. 

As a configuration approach, we are aligning with DevOps 
and GitOps patterns [35], in some cases using these patterns as 
a transition path towards a completely native, multi-tenancy 
offering in CSM. To support tenant-driven configurability, we 
have introduced a new CSM IAM (Identity and Access 
Management) persona, that of tenant administrator, and re-
positioned the existing global administrative persona as 
infrastructure administrator. While we are approaching the 
tenant administrator model from a least-privilege perspective, 
we are also accumulating architectural guidelines for 
development of the access control model, such as: 

 
1 Management services are heavily containerized. 

• Tenant administrator access to hardware control or 
configuration must be constrainted through API 
middleware (e.g., no direct access to RedFish [40] 
endpoints) 

• For power control, tenant administrators must be 
limited to nodes in the power hierarchy (not slots, 
chassis, etc) 

• Tenant administrators must not have the ability to 
configure power capping 

• Tenant administrators must not have the ability to 
update firmware. 

 
Development has progressed across phases involving multiple 
HPE Cray product streams. The first phase was started and 
completed in 2022. Feature content for phase two was defined 
earlier this year, with implementation starting in April of 
2023.  Planning for our phases is expected to start later this 
year. We detail the user stories, objectives, and design for 
phases one and two in the next section.  

C. Soft PaaS Multi-tenancy: Phase One 
 The theme of phase one was the incorporation of CSCS’s 
“virtual cluster” [3] design into the CSM product, with a desired 
outcome of yielding tighter integration, better automation, and a 
progressive shift towards a GitOps development experience. We 
also established initial IAM extensions for administrative tenant 
use cases. The resultant capabilities were delivered as a technical 
preview in the 22.11 Software Release, which included CSM 
1.3. Each user story (US) included in phase one (verbatim) is 
listed below, accompanied by a feature response.  

US1: As an infrastructure administrator, I would like to 
create, update, and delete tenants. 

 Infrastructure administrators can manage tenants via the 
Tenant and Partition Management System (TAPMS) [7]. 
TAPMS is the “controller hub” of CSM’s composable, 
declarative, multi-tenancy architecture. TAPMS is implemented 
as a K8s Operator [8]. Thus, the principal API (Application 
Programming Interfaces) for TAPMS is the K8s API, and tenant 
provisioning occurs based on the K8s operator reconciliation 
process. The Kubernetes Custom Resource Definition (CRD) 
data model provides tenant schema validation, enables support 
of multiple schema versions, and enables support of schema 
version migration. Custom resources, much like native K8s 
resources can also be stored in git as a YAML or JSON file. This 
also makes tenant definitions suitable for management by 
GitOps focused continuous deployment (CD) tools like Argo 
CD [12] or Flux CD [13].  

TAPMS is integrated with the Hierarchical Namespace 
Controller (HNC) [9] to provide namespace-based multi-
tenancy in K8s. As tenants are created, TAPMS, through HNC, 
creates a hierarchical tree of K8s Namespaces2 based on the 
declared configuration. These namespaces could be used to host 

2 K8s does not natively support namespace hierarchies. 



siloed “management” software instances, such as Slurm. 
Creation of child namespaces in this way is optional.  

 Through IAM (Identity and Access Management) 
extensions, TAPMS is integrated with the Keycloak [11] 
OpenID Connect (OIDC) identity provider in CSM, where it 
provides one group per tenant, and automates the group mapping 
to select OIDC clients in the “shasta” realm. Infrastructure 
administrators can then assign these groups to a tenant 
administrator in Keycloak, and the resulting credentials can be 
used for federated K8s administration (e.g., via kubectl). By 
default, no users are assigned to tenant groups, and no access 
exists for federated users. The capability was initially added to 
support the use case whereby infrastructure administrators opt 
to allow tenant administrators patently restricted access to a 
workload running in a tenant namespace, like viewing logs in 
Slurm [37] K8s pods. It will be extended to support API gateway 
access control as part of phase two. 

TAPMS schedules compute node resources into a tenant 
through integration with Hardware State Manager (HSM) in 
CSM, using HSM exclusive groups. Exclusive groups enforce 
partitioning behavior at the node set level.  Nodes can be added 
or removed from the TAPMS tenant configuration providing 
rudimentary elasticity support. Internally, TAPMS tracks a 
unique UUID for each tenant instantiation (separate from K8s 
UUID on the resource).  

Figure 1 illustrates the TAPMS tenant provisioning process. 
As TAPMS is reconciling the state of a tenant, it updates the 
tenant custom resource with a status of New, Deploying, 
Deployed, or Deleting. Figure 2 illustrates an example TAPMS 
tenant configuration file. See [14] for CSM’s multi-tenancy 
documentation, in CSM 1.3.  

 

Fig. 1. TAPMS Tenant Provisioning 

US2: As an infrastructure administrator, I would like a 
clear procedure for configuring UANs and CNs with their 
respective Slurm credentials and LDAP configuration. 

After a tenant specific Slurm cluster is deployed as 
subsequently described in US3, Ansible (CFS) Group Variables, 
matching the HSM exclusive group, can be used to deploy the 
configuration to application or compute nodes as described in 
the documentation tree at [14].  

 

 

Fig. 2. TAPMS Tenant Declaration 

US3: As an infrastructure administrator, I would like to 
not have jobs or nodes exposed across tenants. Likewise, I 
would like the availability of tenant resources to be 
protected. 

Infrastructure administrators can automate the deployment 
of one Slurm cluster per tenant using the HPE Slurm K8s 
Operator. The Slurm operator is configured in a similar manner 
as TAPMS also references the TAPMS tenant resource (the 
operators are composable). The Slurm operator sources node 
membership from TAPMS and automatically reacts to changes 
in TAPMS node membership (as nodes are added or removed). 
As only nodes that belong to a tenant are accessible in the multi-
instance model of Slurm, jobs and nodes are not exposed by 
Slurm outside the tenant. Usage here is not related to Slurm 
native multi-tenancy features. 

 In the case of the example Slurm Operator configuration 
shown in Figure 4, the Slurm server-side components (slurmctl, 
slurmdb, pxc, etc.) are deployed into an HNC child namespace 
previously provisioned by TAPMS. Figure 3 illustrates the 
Slurm Operator tenant provisioning process.  

 

Fig. 3. Slurm Cluster Tenant Provisioning Process 



 

Fig. 4. Slurm Cluster Tenant Declaration 

US4: As a tenant user, I would like to log into my user 
environment using my tenant-specific credentials and 
orchestrate Slurm jobs against the nodes in my tenant 
compute partition. 

After (UANs) are provisioned using the identity provider of 
choice, the Slurm configuration can be deployed as noted in 
response to US2.  

D. Soft PaaS Multi-tenancy: Phase Two 
 
 The themes of phase two are enablement of the tenant 
administrator persona for basic image build, node configuration, 
and node boot use cases, and tenant network isolation. Each user 
story currently included in phase two is listed below, 
accompanied by a working design response.  

US5: As a tenant administrator, I would like to build and 
customize compute, user access, and application node 
images, limited to the tenants that I manage.   

 The set of CSM micro-services and APIs that would need to 
be refactored to accomplish this using native CSM multi-
tenancy awareness is large, would impact several critical path 
services, and would likely have considerable downstream 
effects that could slow overall product velocity. As an 
alternative to refactoring a large dependency tree in parallel and 
the associated risk, we are currently planning to enable tenant 
administrator functionality here via a prevailing DevOps 
pattern. Specifically, we plan to support mirroring of the CSM 
Gitea VCS for configuration state into an enterprise Git 
implementation, external to CSM. There, access controls could 
be put into place that appropriately reflect the providers shared 
responsibility practices. In the canonical tenant administrator 
case, a change would first have to be approved by an 
infrastructure administrator, be further subjected to other 
conditions and checks before merge, and then be provisioned 
indirectly through a pipeline build agent that might also execute 
system tests for further validation. Figure 5 illustrates the 
DevOps pattern for tenant administration. The red lines 
represent privilege control boundaries. As allowing tenants to 
manipulate operating system image configurations begins to 
blur the line between PaaS and IaaS, and care must be taken not 
to overexpose IaaS layers to tenants, due acutely to 

cybersecurity related risks that may arise. The provisioning tools 
in scope, notably Ansible and CFS, have broad authority at the 
infrastructure layer in CSM. Note that the default state of the 
VCS repository structure and provisioning logic does not 
innately support multi-tenancy currently – requiring site 
customizations and perhaps custom Git project structures. This 
is an area of active discussion and collaboration but will likely 
remain an integration exercise for the foreseeable future. 

 We also plan to add two automation focused features into 
TAPMS. The first is basic power fencing when a node is added 
to or removed from a tenant, which will guard against volatile 
state leakage. The second is a configurable webhook capability, 
where webhooks can be configured as blocking or non-blocking 
and will exist for common types of configuration events (e.g., 
additions or removals of nodes). Webhooks will be configured 
as part of the TAPMS tenant declaration. We plan to incorporate 
their use into CSM services to act as barriers for gating tenant 
transitions where needed (e.g., don’t allow a node to transition 
in the middle of a firmware upgrade operation), and as a light-
weight messaging model. We anticipate their use outside of 
CSM as well for similar use cases, and this is one reason we are 
pursuing this functionality in a webhook form rather than a 
message bus. See Figure 6 for an illustration of the webhook, 
application node tracking, and power fencing concept. 

 
Fig. 5. DevOps Pattern for Tenant Administration 

US6: As a tenant administrator, I would like to automate 
post-boot configuration of compute, user access, and 
application nodes, limited to the tenants that I manage.   

 We are planning to use a similar approach to the one noted 
in US5, with one exception – secrets management. For a tenant-
aware secret management solution, we are currently researching 
the use of encrypted secrets in Git, protected by per-tenant 
asymmetric cryptographic keys in Hashicorp Vault, using 
Mozilla’s SOPS (Secrets as Operations) [39] as both an Ansible 
(CFS) plugin and interactive CLI tool. In this model, TAPMS 
would provision a tenant specific Hashicorp Vault Transit 
engine and key(s) during tenant provisioning and expose public 
key material that could be shared with tenant administrators. 
Then, during CFS execution, Ansible (AEE) would make API 
calls into the Vault Transit Engine [38] requesting decryption, 
but not exposing private key material. Provisioning per-tenant 
key management service (KMS) enclaves could also be used for 
future use cases, as well.  



 

 
Fig. 6. TAPMS webhook, application node tracking, and power fencing 
concept 

 For rudimentary node targeting, HSM exclusive groups can 
be used via Ansible dynamic inventory, where these groups are 
managed by TAPMS. Application nodes (e.g., UANs) are also 
being added to TAPMS as resources that can be assigned to a 
tenant. 

US7: As a tenant administrator, I would like to assign 
bootable images, kernels, kernel parameters, initrd, and 
CFS plays to compute, user access, and application nodes, 
limited to the tenants that I manage.   

 We are planning to use a similar approach to the one noted 
in US5. In this case, a configuration set (in git) that expresses 
the desired configuration state and CI/CD pipelines to reconcile 
state is additionally required.   

US8: As a tenant administrator, I would like to observe the 
status of image build and node boot operations, limited to 
the tenants that I manage.   

 We are planning to use a similar approach to the one noted 
in US5. Observability for at least image build operations may 
initially be limited to CI/CD pipeline-based operations and agent 
job output.  

US9: As a tenant administrator, I would like to power 
nodes on and off and perform OS-level shutdown and 
reboot operations on compute, user access, and application 
nodes, limited to the tenants that I manage.   

 For this user story, we plan to focus on implementing the 
noted functionality using native tenant awareness in the Boot 
Orchestration Service (v2), as an exemplar service. We plan to 
leverage lessons learned from this experience to establish a 
blueprint for transitioning other services and as a baseline for 
future system architectures. Tenant administrator access will be 
limited to the discrete operations listed, and configuration of the 
BOS boot “session templates” and related resources will be 
addressed as previously discussed. 

 To implement tenant awareness in BOSv2, we plan to add 
tenant awareness to the CLI and API gateway implementations 

in CSM. A configuration context setting will be added to the 
Cray CLI to support configuration of a tenant name. Then, when 
the configuration context is active, the Cray CLI will add an 
associated header to all API requests. After the API gateway 
(Istio) receives the request, it will pass the request through Open 
Policy Agent (OPA), where OPA will apply the following rules 
(in addition to fundamental processing like cryptographic 
validation of the bearer token [40]): 

1. If the request contains a tenant name header, and the 
role is infrastructure administrator, match the request 
attributes against the API access control list (e.g., 
allowed BOS HTTPS endpoints and HTTP verbs) that 
applies to the infrastructure administrator role.   

2. If the request contains a tenant name header, and the 
role is tenant administrator, first validate that the bearer 
token contains a group claim that grants the tenant 
administrator access to the tenant. Then, match the 
request attributes against the API access control list 
that applies to the tenant administrator role.  

If the request is authenticated and authorized, then it is allowed 
to pass to BOS. Once BOS receives the request, to validate that 
the scope of the request is within the bounds of the tenant, it will 
call out to a read-only, API endpoint in TAPMS for tenant status 
and composition. Once it contextually validates the request via 
interactions with TAPMS, it will attempt to service the request. 
In addition to this behavior, the BOS team is currently 
investigating application name spacing techniques to partition 
BOS managed application objects for tenant ownership. In this 
case, if an infrastructure administrator wanted to interact with 
tenant owned resources, the request would need to be scoped to 
the tenant (e.g., via the Cray CLI setting). Figure 7 illustrates 
the request flow described above. Cray CLI, Istio, OPA, and 
KeyCloak (OIDC as bearer token implementation) are pre-
existing components in CSM that we are building upon.  

 
Fig. 7. Tenant aware BOSv2 API Request 

US10: As an infrastructure administrator, I would like my 
node management network and HSN networks to be 
logically isolated, so that there is no cross-tenant network 
communication.  

 For the NMN (node management network), we are planning 
to support a static configuration that prevents managed node to 
managed node communication, while also restricting managed 
node to management node communication (isolated to only 
required ports and protocols). For Cray Ex Mountain hardware, 



isolation will be limited to units larger than a chassis, and the 
underlying control is accomplished via Layer 3 and 43 NACLs 
(network access control lists) implemented in the CDU switch 
pair. For Cray Ex River hardware, isolation would be limited to 
application nodes, and the current plan is to isolate each 
application node into its own Layer 3 network, using a point-to-
point configuration that masquerades as the existing, canonical 
NMN network address (to provide backward compatibility). 
Support for this configuration may be limited to Aruba switch 
hardware, and we may decide to feature toggle this functionality. 
The HMN (hardware management network) is not being 
partitioned as it is an OOB (out of band) network, and there are 
no plans to support tenant presence in this network enclave. 

 The Slingshot team is planning to deliver an operator, similar 
in form to the TAPMS and Slurm operators previously covered, 
that integrates with at least TAPMS for node topology and 
tenant state, and then uses fabric-managed, switch-enforced 
policies to logically isolate traffic within a shared Slingshot 
fabric at tenant boundaries. For VNIs, the operator will allocate 
a block for the tenant, that can further be sub-allocated as needed 
(e.g., for Slurm). Plans for the operator also include the ability 
to provision shared VNIs and accommodate VLAN-based 
isolation policies. See Figure 8 for an illustration of Slingshot 
tenant provisioning. 

 
Fig. 8. Slingshot Operator Tenant Provisioning Model 

IV. CONCLUSION 
Multi-tenancy, the aaS business model, and heterogenous 

HPC workflows are catalyzing the state of the art for 
programmable infrastructure and cybersecurity in HPC. HPE 
Cray, in partnership with CSCS and the HPC community, is 
engaged and actively influencing these trends towards improved 
outcomes in scientific computing. We are excited about the 
future of the technology and applications, and opportunities for 
collaborative development with the HPC community. 

V. FUTURE WORK 
Our immediate focus is on helping CSM users, like CSCS, 

to operationalize the phase one multi-tenancy capabilities, and 
likewise for phase two to meet production goals. Next, as the 
demarcation point between PaaS and IaaS may benefit from 
added clarity, we are exploring use case alignment, alongside 
technologies, designs, and trade-offs that could bring true IaaS 

 
3 Open Systems Interconnect (OSI) network and transport 

layers 

multi-tenancy to large scale HPC. Finally, while multi-tenancy 
represents a very broad and diverse set of architectural concerns, 
we would like to explore predicate-based scheduling in TAPMS 
(e.g., implicit tenant resource selection by hardware properties 
versus explicit geolocation identifiers), and the state of HPC 
storage multi-tenancy from a systems architecture perspective.  
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