
Software-defined Multi-tenancy on HPE Cray EX
Supercomputers

Jeremy Duckworth
Hewlett Packard Enterprise

jeremy.duckworth@hpe.com

Vinay Gavirangaswamy
Hewlett Packard Enterprise

vinay.gavirangaswamy@hpe.com

David Gloe
Hewlett Packard Enterprise

david.gloe@hpe.com

Brad Klein
Hewlett Packard Enterprise

bradley.klein@hpe.com

Abstract— Sandia National Laboratory’s Red Storm System
was designed to support “switching” hardware to isolate
computation and data between data classification levels. This
enabled Sandia and derivative system architectures to adapt
investments in capability computing to evolving needs. Today,
industry demand for multi-tenancy in modern converged HPC
and AI platforms has not waned, but expectations around how the
solution should be delivered have changed – as have the types of
workloads being run. The industry is now strongly advocating for
and investing in cloud-like platforms that treat multi-tenancy as a
first-principles capability, align with modern DevOps
management techniques, support resource elasticity, and enable
customers to deliver their own IaaS, PaaS, and SaaS solutions.
Enter HPE Cray Systems Management (CSM). CSM is a
Kubernetes-based, turnkey, open source, API-driven HPC
systems software solution. Using CSM as a foundation, we have
developed a software-defined, multi-tenancy architecture,
anchored by a tenancy “controller hub,” called the Tenant and
Partition Management System (TAPMS). TAPMS, through extant
features in CSM, inherits availability, scale, resiliency, disaster
recovery, and security properties of the platform. This paper
presents TAPMS, the supporting architecture, and the resulting
composable, declarative tenant configuration interfaces that
TAPMS and the underlying Kubernetes Operator Pattern enable.

Keywords—Multi-tenancy, multitenancy, high performance
computing, HPC

I. INTRODUCTION
 Supercomputers are increasingly employed to host
unconventional workloads alongside HPC simulations,
incorporating computational methods like AI and ML into more
sophisticated workflows, some spanning multiple distributed
but discrete systems. Success with these workflows ultimately
necessitates accommodation of their runtime requirements and
configuration management practices, catalyzing some in the
industry to push the boundary of HPC system solutions to adopt
modern platform engineering techniques [3, 4]. By integrating
key cloud native technologies and management techniques with
those of traditional supercomputing, purposefully
reconfigurable HPC system solutions are beginning to emerge
[5, 6, 20] outside of public cloud. These systems have an
opportunity to exploit the data performance and data locality
efficiencies inherent in supercomputing with configuration

flexibility only found in the cloud, today [3]. While the origins
of multi-tenancy in HPC date at least back to Sandia National
Laboratory’s Red Storm System [1, 2], and hardware
“switching”, cloud technologies have revolutionized the space.
Cloud native multi-tenancy architectures rely heavily on rapid,
elastic, logical reconfiguration of resources through well-
defined software interfaces – representing a significant
advancement in programmable infrastructure.

 In this paper, we start by defining multi-tenancy, its
differentiating characteristics, and related terms (section II). We
then explore and summarize strengths and weaknesses
associated with multi-tenancy (section II). Next, we briefly
discuss the “as a service” (aaS) business model, practically
inseparable from a discourse on multi-tenancy (section II). After
providing background, we describe our work (section III) on
development of a software-defined multi-tenancy feature set in
Cray Systems Management (CSM) using Cray EX Hardware. In
closing, we provide a conclusion (section IV) and cover future
work (section V).

II. BACKGROUND

A. Multi-tenancy Definition AND Related Terms
 We adopt a definition of multi-tenancy from [15]:

“Multi-tenancy is a property of a system where multiple
customers, so-called tenants, transparently share the system’s
resources, such as services, applications, databases, or
hardware, with the aim of lowering costs, while still being able
to exclusively configure the system to the needs of the tenant.”

While multi-tenancy is intuitively a sharing of resources, the
first distinguishing characteristic of note here is that resources
are shared in a transparent manner – meaning tenants are
unaware of other tenants and view their own resources as a
dedicated environment [16]. The second distinguishing
characteristic is that the system can be exclusively configured to
meet the needs of the tenant. In contrast, while multi-user
systems can be configured to accommodate several classes of
users, they are often unable to cater exclusively to each class
individually. Much like a multi-user environment,
configurability also includes reserving and then guaranteeing
performance and other quality of service measures [17].

 Multi-instance and elasticity are terms that are often
concomitant with multi-tenancy. Multi-instance is a term used
to describe the scenario where there is no sharing of resources
between tenants. For example, rather than multiple tenants using
a single application instance in a SaaS environment, they each
have access to independent copies or instances [16]. Elasticity is
a system property whereby resources can be rapidly [23] added
or removed from a tenant’s resource pool to address changes in
workload demand and manage cost [17, 27].

B. Multi-tenancy: Strengths and Weaknessnes
Some strengths of multi-tenancy are in lowering costs for

either the consumer or provider [15] through leveraging
economies of scale [15] or gains in energy efficiency (power
savings) [17]; and accelerating availability of the latest
technology [18]. Elasticity is a related but distinct strength often
associated with multi-tenancy, whereby a tenant can scale
resources based on workload demand [17, 27]. While isolation
of data and processing between tenants is innate in multi-
tenancy, some multi-tenant systems are purposefully designed
to support hard multi-tenancy. Hard multi-tenancy requires strict
isolation between tenants, such as might be required in a multi-
level security (MLS) environment [1, 19]. Conversely, soft
multi-tenancy is optimized for accident prevention (e.g.,
avoiding outages) and agility versus strict isolation [24].

 Some strengths may skew towards the HPC industry. The
first is using multi-tenancy to isolate heterogenous workloads
while still benefiting from the data locality and accelerated
performance of the underlying platform [3]. With elasticity and
rapid reconfiguration, the system could be decomposed into
smaller tenants to manage heterogenous software and hardware
workflows, and then quickly reassembled into a capability
supercomputing asset to run jobs at scale, and vice-versa,
making supercomputing systems more adaptable. When
combined with DevOps practices, multi-tenancy in HPC could
also be deployed to serve select features of a Test and
Development System (TDS), including support of a “blue
green” deployment model [25], where configuration changes
could be easier to orchestrate across tenants versus across
independent systems.

 Potential weaknesses associated with multi-tenancy are
increased software complexity [16], difficulty in managing
change without impacting multiple tenants [16] and heightened
cybersecurity concerns (e.g., a heightened sense of urgency to
quickly patch security vulnerabilities) [16]. As cybersecurity in
HPC is often optimized towards maximum performance versus
robust security [26], it could be considered a weakness if not
treated properly in a multi-tenant design. Table I summarizes
strengths and weaknesses.

C. As a Service (aaS) Business Model
Multi-tenancy is often associated with the as a service (aaS)

business model as a key enabler [16, 17]. Services are typically
delivered across stratified layers (Table II), and service
providers often leverage capabilities in lower layers (e.g., IaaS)
to easily offer high order services (e.g., WaaS) [17].

 Operational risks are amortized across all parties involved in
delivery or consumption of the service. Parties typically require
contractual agreements to protect shared interests and limit

liability should events like a security breach or data loss occur,
often canonized into a shared responsibility model [28].

TABLE I. MULTI-TENANCY: STRENTGHS AND WEAKNESSES

TABLE II. AS A SERVICE LAYERS

III. MULTI-TENANCY: CRAY SYSTEMS MANAGEMENT
HPE Cray CSM (Cray Systems Management) is a cloud

native HPC platform solution [6], based on the Shasta
architecture [5]. CSM is open-source software (MIT), first
released as closed source approximately two years ago, and is
soon to celebrate its fifth major release (1.4). CSM currently
supports HPE Cray EX hardware and provides a base platform
for several hardware and software product streams comprising a
complete HPC solution, such as the Cray Operating System
(COS), the System Monitoring Application (SMA), the Cray
Programming Environment (CPE), and the Slingshot High-
speed Network (HSN) Fabric. CSM represents a notable
paradigm shift in systems architecture and is being successfully
hardened by the first cohort of supercomputers it has been
deployed to manage.

CSM heavily leverages Kubernetes (K8s) [10], along with a
larger portfolio of Cloud Native Compute Foundation
Landscape [33] and other open technologies. Management
services in CSM run as micro-services inside K8s, using Istio
[29] for secure service-to-service communication, and build

Strengths Weaknesses
General HPC General HPC

Cost Savings
(provider, consumer)
via shared hardware,
economies of scale,
and energy efficiency

Elasticity

Accelerated access to
the latest technology

Support for multiple
security trust
domains per system
to meet MLS
requirements

Rapid, software-
based
reconfigurability,
at very large
scale

Logical Test and
Development
Systems, support
for blue/green
deployments

System
Complexity

Difficulty in
managing
change
without
impacting
multiple
tenants

Multi-
tenancy
requires
“advanced”
security

Layer Description

Workflow as a Service (WaaS) Hosted workflows, like those that can
be modeled as Directed Acyclic Graphs
(DAGs) [17]

Function as a Service (FaaS) Hosted functions [22]

Database as a Service (DBaaS) Hosted databases [17]

Software as a Service (SaaS) Hosted applications [17]

Platform as a Service (PaaS) Hosted operating systems [17]

Infrastructure as a Service (IaaS) Hosted virtual machines or bare metal
services [17]

upon zero downtime features rooted in K8s. CSM further
leverages Keycloak (for federated person identities) and
Spire/SPIFFE [31] (for non-person identities) to provide
horizontally scaled, Zero Trust Architecture [30] focused API
and UI ingress services. CSM uses Ceph [32] for remote block,
clustered file system, and S3-compatible utility storage.
Presently, all deployed services in the management and compute
zones [26] execute on bare metal 1 , except for an emerging
feature that uses virtualization techniques to emulate ARM OS
image builds on x86_64 K8s worker nodes. An investigation is
also currently under way to virtualize K8s master and worker
nodes towards online migration between management clusters,
and support for “blue green” promotion techniques [25].

A. Community Engagement
The Swiss National Supercomputing Centre (CSCS) and

HPE Cray are collaborating on the CSM multi-tenancy feature
set. CSCS has a history of innovation in the space [3], and
eventually plans to host several, production grade tenants on
their Alps system [34] – through a vision CSCS calls “software-
defined infrastructure.” In 2023, CSCS and HPE Cray started an
open, co-chaired multi-tenancy special interest group (SIG).
Over the course of approximately the last year and a half, CSCS
and HPE Cray have worked to accelerate the multi-tenancy
feature set in CSM.

B. Design Philosophy and Approach
Multi-tenancy is currently being designed as a feature toggle

that must peacefully coexist with and ideally improve the
incumbent, single-tenancy user experience. Consequently, all
assignable resources that are not explicitly associated with a
named tenant belong to an implicit infrastructure tenant.

Multi-tenancy in CSM is focused on PaaS-aligned, soft
multi-tenancy. We plan to iterate towards “harder” multi-
tenancy through key isolation capabilities. In an attempt to
balance implementation complexity, amortize risk to the overall
product, and make efficient use of existing management system
hardware, tenant awareness is being phased into CSM
management API micro-services. For tenant owned or
configurable resources, we are focused on bare metal application
and compute nodes, and the software resources associated with
their configuration and operation.

As a configuration approach, we are aligning with DevOps
and GitOps patterns [35], in some cases using these patterns as
a transition path towards a completely native, multi-tenancy
offering in CSM. To support tenant-driven configurability, we
have introduced a new CSM IAM (Identity and Access
Management) persona, that of tenant administrator, and re-
positioned the existing global administrative persona as
infrastructure administrator. While we are approaching the
tenant administrator model from a least-privilege perspective,
we are also accumulating architectural guidelines for
development of the access control model, such as:

1 Management services are heavily containerized.

• Tenant administrator access to hardware control or
configuration must be constrainted through API
middleware (e.g., no direct access to RedFish [40]
endpoints)

• For power control, tenant administrators must be
limited to nodes in the power hierarchy (not slots,
chassis, etc)

• Tenant administrators must not have the ability to
configure power capping

• Tenant administrators must not have the ability to
update firmware.

Development has progressed across phases involving multiple
HPE Cray product streams. The first phase was started and
completed in 2022. Feature content for phase two was defined
earlier this year, with implementation starting in April of
2023. Planning for our phases is expected to start later this
year. We detail the user stories, objectives, and design for
phases one and two in the next section.

C. Soft PaaS Multi-tenancy: Phase One
 The theme of phase one was the incorporation of CSCS’s
“virtual cluster” [3] design into the CSM product, with a desired
outcome of yielding tighter integration, better automation, and a
progressive shift towards a GitOps development experience. We
also established initial IAM extensions for administrative tenant
use cases. The resultant capabilities were delivered as a technical
preview in the 22.11 Software Release, which included CSM
1.3. Each user story (US) included in phase one (verbatim) is
listed below, accompanied by a feature response.

US1: As an infrastructure administrator, I would like to
create, update, and delete tenants.

 Infrastructure administrators can manage tenants via the
Tenant and Partition Management System (TAPMS) [7].
TAPMS is the “controller hub” of CSM’s composable,
declarative, multi-tenancy architecture. TAPMS is implemented
as a K8s Operator [8]. Thus, the principal API (Application
Programming Interfaces) for TAPMS is the K8s API, and tenant
provisioning occurs based on the K8s operator reconciliation
process. The Kubernetes Custom Resource Definition (CRD)
data model provides tenant schema validation, enables support
of multiple schema versions, and enables support of schema
version migration. Custom resources, much like native K8s
resources can also be stored in git as a YAML or JSON file. This
also makes tenant definitions suitable for management by
GitOps focused continuous deployment (CD) tools like Argo
CD [12] or Flux CD [13].

TAPMS is integrated with the Hierarchical Namespace
Controller (HNC) [9] to provide namespace-based multi-
tenancy in K8s. As tenants are created, TAPMS, through HNC,
creates a hierarchical tree of K8s Namespaces2 based on the
declared configuration. These namespaces could be used to host

2 K8s does not natively support namespace hierarchies.

siloed “management” software instances, such as Slurm.
Creation of child namespaces in this way is optional.

 Through IAM (Identity and Access Management)
extensions, TAPMS is integrated with the Keycloak [11]
OpenID Connect (OIDC) identity provider in CSM, where it
provides one group per tenant, and automates the group mapping
to select OIDC clients in the “shasta” realm. Infrastructure
administrators can then assign these groups to a tenant
administrator in Keycloak, and the resulting credentials can be
used for federated K8s administration (e.g., via kubectl). By
default, no users are assigned to tenant groups, and no access
exists for federated users. The capability was initially added to
support the use case whereby infrastructure administrators opt
to allow tenant administrators patently restricted access to a
workload running in a tenant namespace, like viewing logs in
Slurm [37] K8s pods. It will be extended to support API gateway
access control as part of phase two.

TAPMS schedules compute node resources into a tenant
through integration with Hardware State Manager (HSM) in
CSM, using HSM exclusive groups. Exclusive groups enforce
partitioning behavior at the node set level. Nodes can be added
or removed from the TAPMS tenant configuration providing
rudimentary elasticity support. Internally, TAPMS tracks a
unique UUID for each tenant instantiation (separate from K8s
UUID on the resource).

Figure 1 illustrates the TAPMS tenant provisioning process.
As TAPMS is reconciling the state of a tenant, it updates the
tenant custom resource with a status of New, Deploying,
Deployed, or Deleting. Figure 2 illustrates an example TAPMS
tenant configuration file. See [14] for CSM’s multi-tenancy
documentation, in CSM 1.3.

Fig. 1. TAPMS Tenant Provisioning

US2: As an infrastructure administrator, I would like a
clear procedure for configuring UANs and CNs with their
respective Slurm credentials and LDAP configuration.

After a tenant specific Slurm cluster is deployed as
subsequently described in US3, Ansible (CFS) Group Variables,
matching the HSM exclusive group, can be used to deploy the
configuration to application or compute nodes as described in
the documentation tree at [14].

Fig. 2. TAPMS Tenant Declaration

US3: As an infrastructure administrator, I would like to
not have jobs or nodes exposed across tenants. Likewise, I
would like the availability of tenant resources to be
protected.

Infrastructure administrators can automate the deployment
of one Slurm cluster per tenant using the HPE Slurm K8s
Operator. The Slurm operator is configured in a similar manner
as TAPMS also references the TAPMS tenant resource (the
operators are composable). The Slurm operator sources node
membership from TAPMS and automatically reacts to changes
in TAPMS node membership (as nodes are added or removed).
As only nodes that belong to a tenant are accessible in the multi-
instance model of Slurm, jobs and nodes are not exposed by
Slurm outside the tenant. Usage here is not related to Slurm
native multi-tenancy features.

 In the case of the example Slurm Operator configuration
shown in Figure 4, the Slurm server-side components (slurmctl,
slurmdb, pxc, etc.) are deployed into an HNC child namespace
previously provisioned by TAPMS. Figure 3 illustrates the
Slurm Operator tenant provisioning process.

Fig. 3. Slurm Cluster Tenant Provisioning Process

Fig. 4. Slurm Cluster Tenant Declaration

US4: As a tenant user, I would like to log into my user
environment using my tenant-specific credentials and
orchestrate Slurm jobs against the nodes in my tenant
compute partition.

After (UANs) are provisioned using the identity provider of
choice, the Slurm configuration can be deployed as noted in
response to US2.

D. Soft PaaS Multi-tenancy: Phase Two

 The themes of phase two are enablement of the tenant
administrator persona for basic image build, node configuration,
and node boot use cases, and tenant network isolation. Each user
story currently included in phase two is listed below,
accompanied by a working design response.

US5: As a tenant administrator, I would like to build and
customize compute, user access, and application node
images, limited to the tenants that I manage.

 The set of CSM micro-services and APIs that would need to
be refactored to accomplish this using native CSM multi-
tenancy awareness is large, would impact several critical path
services, and would likely have considerable downstream
effects that could slow overall product velocity. As an
alternative to refactoring a large dependency tree in parallel and
the associated risk, we are currently planning to enable tenant
administrator functionality here via a prevailing DevOps
pattern. Specifically, we plan to support mirroring of the CSM
Gitea VCS for configuration state into an enterprise Git
implementation, external to CSM. There, access controls could
be put into place that appropriately reflect the providers shared
responsibility practices. In the canonical tenant administrator
case, a change would first have to be approved by an
infrastructure administrator, be further subjected to other
conditions and checks before merge, and then be provisioned
indirectly through a pipeline build agent that might also execute
system tests for further validation. Figure 5 illustrates the
DevOps pattern for tenant administration. The red lines
represent privilege control boundaries. As allowing tenants to
manipulate operating system image configurations begins to
blur the line between PaaS and IaaS, and care must be taken not
to overexpose IaaS layers to tenants, due acutely to

cybersecurity related risks that may arise. The provisioning tools
in scope, notably Ansible and CFS, have broad authority at the
infrastructure layer in CSM. Note that the default state of the
VCS repository structure and provisioning logic does not
innately support multi-tenancy currently – requiring site
customizations and perhaps custom Git project structures. This
is an area of active discussion and collaboration but will likely
remain an integration exercise for the foreseeable future.

 We also plan to add two automation focused features into
TAPMS. The first is basic power fencing when a node is added
to or removed from a tenant, which will guard against volatile
state leakage. The second is a configurable webhook capability,
where webhooks can be configured as blocking or non-blocking
and will exist for common types of configuration events (e.g.,
additions or removals of nodes). Webhooks will be configured
as part of the TAPMS tenant declaration. We plan to incorporate
their use into CSM services to act as barriers for gating tenant
transitions where needed (e.g., don’t allow a node to transition
in the middle of a firmware upgrade operation), and as a light-
weight messaging model. We anticipate their use outside of
CSM as well for similar use cases, and this is one reason we are
pursuing this functionality in a webhook form rather than a
message bus. See Figure 6 for an illustration of the webhook,
application node tracking, and power fencing concept.

Fig. 5. DevOps Pattern for Tenant Administration

US6: As a tenant administrator, I would like to automate
post-boot configuration of compute, user access, and
application nodes, limited to the tenants that I manage.

 We are planning to use a similar approach to the one noted
in US5, with one exception – secrets management. For a tenant-
aware secret management solution, we are currently researching
the use of encrypted secrets in Git, protected by per-tenant
asymmetric cryptographic keys in Hashicorp Vault, using
Mozilla’s SOPS (Secrets as Operations) [39] as both an Ansible
(CFS) plugin and interactive CLI tool. In this model, TAPMS
would provision a tenant specific Hashicorp Vault Transit
engine and key(s) during tenant provisioning and expose public
key material that could be shared with tenant administrators.
Then, during CFS execution, Ansible (AEE) would make API
calls into the Vault Transit Engine [38] requesting decryption,
but not exposing private key material. Provisioning per-tenant
key management service (KMS) enclaves could also be used for
future use cases, as well.

Fig. 6. TAPMS webhook, application node tracking, and power fencing
concept

 For rudimentary node targeting, HSM exclusive groups can
be used via Ansible dynamic inventory, where these groups are
managed by TAPMS. Application nodes (e.g., UANs) are also
being added to TAPMS as resources that can be assigned to a
tenant.

US7: As a tenant administrator, I would like to assign
bootable images, kernels, kernel parameters, initrd, and
CFS plays to compute, user access, and application nodes,
limited to the tenants that I manage.

 We are planning to use a similar approach to the one noted
in US5. In this case, a configuration set (in git) that expresses
the desired configuration state and CI/CD pipelines to reconcile
state is additionally required.

US8: As a tenant administrator, I would like to observe the
status of image build and node boot operations, limited to
the tenants that I manage.

 We are planning to use a similar approach to the one noted
in US5. Observability for at least image build operations may
initially be limited to CI/CD pipeline-based operations and agent
job output.

US9: As a tenant administrator, I would like to power
nodes on and off and perform OS-level shutdown and
reboot operations on compute, user access, and application
nodes, limited to the tenants that I manage.

 For this user story, we plan to focus on implementing the
noted functionality using native tenant awareness in the Boot
Orchestration Service (v2), as an exemplar service. We plan to
leverage lessons learned from this experience to establish a
blueprint for transitioning other services and as a baseline for
future system architectures. Tenant administrator access will be
limited to the discrete operations listed, and configuration of the
BOS boot “session templates” and related resources will be
addressed as previously discussed.

 To implement tenant awareness in BOSv2, we plan to add
tenant awareness to the CLI and API gateway implementations

in CSM. A configuration context setting will be added to the
Cray CLI to support configuration of a tenant name. Then, when
the configuration context is active, the Cray CLI will add an
associated header to all API requests. After the API gateway
(Istio) receives the request, it will pass the request through Open
Policy Agent (OPA), where OPA will apply the following rules
(in addition to fundamental processing like cryptographic
validation of the bearer token [40]):

1. If the request contains a tenant name header, and the
role is infrastructure administrator, match the request
attributes against the API access control list (e.g.,
allowed BOS HTTPS endpoints and HTTP verbs) that
applies to the infrastructure administrator role.

2. If the request contains a tenant name header, and the
role is tenant administrator, first validate that the bearer
token contains a group claim that grants the tenant
administrator access to the tenant. Then, match the
request attributes against the API access control list
that applies to the tenant administrator role.

If the request is authenticated and authorized, then it is allowed
to pass to BOS. Once BOS receives the request, to validate that
the scope of the request is within the bounds of the tenant, it will
call out to a read-only, API endpoint in TAPMS for tenant status
and composition. Once it contextually validates the request via
interactions with TAPMS, it will attempt to service the request.
In addition to this behavior, the BOS team is currently
investigating application name spacing techniques to partition
BOS managed application objects for tenant ownership. In this
case, if an infrastructure administrator wanted to interact with
tenant owned resources, the request would need to be scoped to
the tenant (e.g., via the Cray CLI setting). Figure 7 illustrates
the request flow described above. Cray CLI, Istio, OPA, and
KeyCloak (OIDC as bearer token implementation) are pre-
existing components in CSM that we are building upon.

Fig. 7. Tenant aware BOSv2 API Request

US10: As an infrastructure administrator, I would like my
node management network and HSN networks to be
logically isolated, so that there is no cross-tenant network
communication.

 For the NMN (node management network), we are planning
to support a static configuration that prevents managed node to
managed node communication, while also restricting managed
node to management node communication (isolated to only
required ports and protocols). For Cray Ex Mountain hardware,

isolation will be limited to units larger than a chassis, and the
underlying control is accomplished via Layer 3 and 43 NACLs
(network access control lists) implemented in the CDU switch
pair. For Cray Ex River hardware, isolation would be limited to
application nodes, and the current plan is to isolate each
application node into its own Layer 3 network, using a point-to-
point configuration that masquerades as the existing, canonical
NMN network address (to provide backward compatibility).
Support for this configuration may be limited to Aruba switch
hardware, and we may decide to feature toggle this functionality.
The HMN (hardware management network) is not being
partitioned as it is an OOB (out of band) network, and there are
no plans to support tenant presence in this network enclave.

 The Slingshot team is planning to deliver an operator, similar
in form to the TAPMS and Slurm operators previously covered,
that integrates with at least TAPMS for node topology and
tenant state, and then uses fabric-managed, switch-enforced
policies to logically isolate traffic within a shared Slingshot
fabric at tenant boundaries. For VNIs, the operator will allocate
a block for the tenant, that can further be sub-allocated as needed
(e.g., for Slurm). Plans for the operator also include the ability
to provision shared VNIs and accommodate VLAN-based
isolation policies. See Figure 8 for an illustration of Slingshot
tenant provisioning.

Fig. 8. Slingshot Operator Tenant Provisioning Model

IV. CONCLUSION
Multi-tenancy, the aaS business model, and heterogenous

HPC workflows are catalyzing the state of the art for
programmable infrastructure and cybersecurity in HPC. HPE
Cray, in partnership with CSCS and the HPC community, is
engaged and actively influencing these trends towards improved
outcomes in scientific computing. We are excited about the
future of the technology and applications, and opportunities for
collaborative development with the HPC community.

V. FUTURE WORK
Our immediate focus is on helping CSM users, like CSCS,

to operationalize the phase one multi-tenancy capabilities, and
likewise for phase two to meet production goals. Next, as the
demarcation point between PaaS and IaaS may benefit from
added clarity, we are exploring use case alignment, alongside
technologies, designs, and trade-offs that could bring true IaaS

3 Open Systems Interconnect (OSI) network and transport

layers

multi-tenancy to large scale HPC. Finally, while multi-tenancy
represents a very broad and diverse set of architectural concerns,
we would like to explore predicate-based scheduling in TAPMS
(e.g., implicit tenant resource selection by hardware properties
versus explicit geolocation identifiers), and the state of HPC
storage multi-tenancy from a systems architecture perspective.

ACKNOWLEDGMENT
We would like to acknowledge CSCS for their collaboration

in this space, and specifically the following current and former
colleagues (in no order): Mark Klein, Felipe Cruz, Miguel Gila,
Cerlane Leong, Maxime Martinasso, Narendra Challa, and
Sadaf Alam. We would also like to acknowledge others on the
HPE Cray Team that have and continue to contribute towards
forward progress and critical review and discussion (again in no
order): Larry Kaplan, Jesse Treger, Ed Benson, Marten Turpstra,
Jason Sollom, Andrew Nieuwsma, and Dennis Walker. Finally,
we highly value the interactions we have had through the CSM
Multi-tenancy SIG with technical leadership in the HPC
community and desire to make this an increasingly more vibrant
and active forum for future collaboration.

REFERENCES

[1] TOMKINS, JAMES L. RED STORM: THE BIRTH OF A NEW
SUPERCOMPUTER. UNITED STATES: N. P., 2008.
HTTPS://WWW.OSTI.GOV/BIBLIO/1142434.

[2] SANDIA PRESS RELEASE. SANDIA RED STORM SUPERCOMPUTER EXISTS
WORLD STAGE. 2012. HTTPS://NEWSRELEASES.SANDIA.GOV/RED-STORM-
EXITS/.

[3] S. R. ALAM, M. GILA, M. KLEIN AND M. MARTINASSO, "MULTI-
TENANCY MANAGEMENT AND ZERO DOWNTIME UPGRADES USING
CRAY-HPE SHASTA SUPERCOMPUTERS," 2021 SC WORKSHOPS
SUPPLEMENTARY PROCEEDINGS (SCWS), ST. LOUIS, MO, USA, 2021,
PP. 87-94, DOI: 10.1109/SCWS55283.2021.00021.

[4] B. S. ALLEN, M. EZELL, P. PELTZ, D. JACOBSEN, E. ROMAN, C.
LUENINGHOENER, ET AL., "MODERNIZING THE HPC SYSTEM SOFTWARE
STACK", ARXIV, 2020, [ONLINE] AVAILABLE:
HTTPS://ARXIV.ORG/PDF/2007.10290.PDF.

[5] CRAY HPE SHASTA SOFTWARE STACK. 2019.
HTTPS://CUG.ORG/PROCEEDINGS/CUG2019_PROCEEDINGS/INCLUDES/FIL
ES/INV113S1-FILE1.PDF.

[6] HPE CRAY SYSTEMS MANAGEMENT (CSM) OPEN-SOURCE SOFTWARE.
HTTPS://GITHUB.COM/CRAY-HPE/. LAST ACCESSED MAY 4, 2023.

[7] HPE CRAY TENANT AND PARTITION MANAGEMENT SYSTEM (TAPMS)
KUBERNETES OPERATOR. HTTPS://GITHUB.COM/CRAY-HPE/CRAY-
TAPMS-OPERATOR. LAST ACCESSED MAY 4, 2023.

[8] KUBERNETES OPERATOR PATTERN.
HTTPS://KUBERNETES.IO/DOCS/CONCEPTS/EXTEND-
KUBERNETES/OPERATOR/. LAST ACCESSED MAY 4, 2023.

[9] HIERARCHICAL NAMESPACE CONTROLLER.
HTTPS://GITHUB.COM/KUBERNETES-SIGS/HIERARCHICAL-NAMESPACES.
LAST ACCESSED MAY 4, 2023.

[10] KUBERNETES OVERVIEW.
HTTPS://KUBERNETES.IO/DOCS/CONCEPTS/OVERVIEW/. LAST ACCESSED
MAY 4, 2023.

[11] KEYCLOAK: IDENTITY AND ACCESS MANAGEMENT (IAM) SOLUTION.
HTTPS://WWW.KEYCLOAK.ORG/. LAST ACCESSED MAY 4, 2023.

[12] ARGO CD: DECLARATIVE GITOPS CD FOR KUBERNETES. HTTPS://ARGO-
CD.READTHEDOCS.IO/EN/STABLE/. LAST ACCESSED MAY 4, 2023.

[13] FLUX CD. HTTPS://FLUXCD.IO/. LAST ACCESSED MAY 4, 2023.
[14] MULTI-TENANCY SUPPORT, CSM. HTTPS://GITHUB.COM/CRAY-

HPE/DOCS-
CSM/BLOB/RELEASE/1.3/OPERATIONS/MULTI_TENANCY/OVERVIEW.MD.
LAST ACCESSED MAY 4, 2023.

[15] KABBEDIJK, JAAP, ET AL. "DEFINING MULTI-TENANCY: A SYSTEMATIC
MAPPING STUDY ON THE ACADEMIC AND THE INDUSTRIAL
PERSPECTIVE." JOURNAL OF SYSTEMS AND SOFTWARE 100 (2015): 139-
148.

[16] C. P. BEZEMER, A. ZAIDMAN, B. PLATZBEECKER, T. HURKMANS AND A.
HART, “ENABLING MULTI-TENANCY: AN INDUSTRIAL EXPERIENCE
REPORT”. 2010 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE
MAINTENANCE, TIMISOARA, ROMANIA, 2010, PP. 1-8, DOI:
10.1109/ICSM.2010.5609735.

[17] JIA, RU, ET AL. "A SYSTEMATIC REVIEW OF SCHEDULING APPROACHES ON
MULTI-TENANCY CLOUD PLATFORMS." INFORMATION AND SOFTWARE
TECHNOLOGY 132 (2021): 106478.

[18] S. JAMALIAN, H. RAJAEI, ASETS: A SDN EMPOWERED TASK SCHEDULING
SYSTEM FOR HPCAAS ON THE CLOUD, IN: PROCEEDINGS OF IEEE
INTERNATIONAL CONFERENCE ON CLOUD ENGINEERING (IC2E), IEEE,
2015, PP. 329-334.

[19] NIST SP 800-53R5.
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
53r5.pdf.

[20] STACKHPC, LTD. HTTPS://WWW.STACKHPC.COM/PAGES/ABOUT.HTML.
LAST ACCESSED MAY 4, 2023.

[21] D. SATO. CANARY RELEASE, MARTIN FOWLER BLOG.
HTTPS://MARTINFOWLER.COM/BLIKI/CANARYRELEASE.HTML. LAST
ACCESSED MAY 4, 2023.

[22] M. ROBERTS. SERVERLESS ARCHITECTURES (FAAS). MARTIN FOWLER
BLOG. https://martinfowler.com/articles/serverless.html#unpacking-faas.
LAST ACCESSED MAY 4, 2023.

[23] NIST SP 800-145.
HTTPS://NVLPUBS.NIST.GOV/NISTPUBS/LEGACY/SP/NISTSPECIALPUBLICA
TION800-145.PDF.

[24] AWS RE:INVENT 2019: ARCHITECTING MULTI-TENANT PAAS OFFERINGS
WITH AMAZON EKS (GPSTEC337).
https://www.youtube.com/watch?v=P29eL_51iYU. LAST ACCESSED
MAY 4, 2023.

[25] M. FOWLER. BLUE GREEN DEPLOYMENT.
HTTPS://MARTINFOWLER.COM/BLIKI/BLUEGREENDEPLOYMENT.HTML.
LAST ACCESSED MAY 4, 2023.

[26] NIST 800-223 INITIAL PUBLIC DRAFT.
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
223.ipd.pdf.

[27] BUILDING THE #7 GLOBAL SUPERCOMPUTER WITH GOOGLE
KUBERNETES, PETROLEUM GEO-SERVICES (PGS).
https://www.pgs.com/company/newsroom/news/industry-insights--hpc-
in-the-cloud/. LAST ACCESSED MAY 4, 2023.

[28] DIGITALOCEAN, SHARED RESPONSIBILITY MODEL.
https://www.digitalocean.com/trust/faq. LAST ACCESSED MAY 4, 2023.

[29] ISTIO SERVICE MESH. https://istio.io/. LAST ACCESSED MAY 4, 2023.
[30] NIST ZERO TRUST ARCHITECTURE.

https://csrc.nist.gov/publications/detail/sp/800-207/final.
[31] SPIRE/SPIFFE. https://github.com/spiffe/spire. LAST ACCESSED MAY 4,

2023.
[32] CEPH. https://docs.ceph.com. LAST ACCESSED MAY 4, 2023.
[33] CLOUD NATIVE COMPUTE FOUNDATION LANDSCAPE TECHNOLOGIES.

https://landscape.cncf.io/. LAST ACCESSED MAY 4, 2023.
[34] INTRO TO ALPS: WHAT EXACTLY IS THE NEW SWISS SUPERCOMPUTER

INFRASTRUCTURE? HTTPS://WWW.HPCWIRE.COM/2023/04/05/INTO-THE-
ALPS-WHAT-EXACTLY-IS-THE-NEW-SWISS-SUPERCOMPUTER-
INFRASTRUCTURE/. LAST ACCESSED MAY 4, 2023.

[35] HISTORY OF GITOPS. https://www.weave.works/blog/the-history-of-
gitops. LAST ACCESSED MAY 4, 2023.

[36] GITLAB. https://about.gitlab.com/. LAST ACCESSED MAY 4, 2023.
[37] SLURM. https://www.schedmd.com/. LAST ACCESSED MAY 4, 2023.
[38] HASHICORP VAULT TRANSIT ENGINE.

https://developer.hashicorp.com/vault/docs/secrets/transit. LAST
ACCESSED MAY 4, 2023.

[39] MOZILLA SOPS. https://github.com/mozilla/sops. LAST ACCESSED MAY
4, 2023.

[40] REDFISH STANDARD, DISTRIBUTED MANAGEMENT TASK FORCE
(DMTF). HTTPS://WWW.DMTF.ORG/STANDARDS/REDFISH. LAST
ACCESSED MAY 4, 2023.

