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Abstract—With the rise of exascale systems and large, data-
centric workflows, the need to observe and analyze high perfor-
mance computing (HPC) applications during their execution is
becoming increasingly important. HPC applications are typically
not designed with online monitoring in mind, therefore, the
observability challenge lies in being able to access and analyze
interesting events with low overhead while seamlessly integrating
such capabilities into existing and new applications. We explore
how our service-based observation, monitoring, and analytics
(SOMA) approach to collecting and aggregating both application-
specific diagnostic data and performance data addresses these
needs. We present our SOMA framework and demonstrate its
viability with LULESH, a hydrodynamics proxy application.
Then we focus on Astaroth, a multi-GPU library for stencil
computations, highlighting the integration of the TAU and APEX
performance tools and SOMA for application and performance
data monitoring.

I. INTRODUCTION

There is a growing interest in enabling greater “observabil-
ity” of HPC applications. While HPC tools for performance
measurement, visualization and data checkpointing can be
regarded as “observing” an application during its execution,
traditional HPC applications are not generally designed with
observability in mind. Most tools are tightly integrated with
the application’s implementation, reducing their flexibility,
extendibility, and portability. When new functionality, such as
runtime performance monitoring or in situ data analytics is
required, approaches are often severely constrained by how the
HPC application is implemented and executed. Furthermore,
the rise of scalable heterogeneous HPC systems is increasing
execution dynamics and the need for improved observational
awareness. In particular, the ability to track, analyze, and inter-
rogate interesting events and phenomena about the application
and system is important to support the next generation of
exascale solutions.

Our interest in HPC observability is motivated by the
problem of large-scale performance monitoring and analysis.
Specifically, given robust technology for heterogeneous perfor-
mance measurement (e.g., TAU Performance System ® [27],
HPCToolkit [2], and CALIPER [6]), how can real-time access
to performance data and its in situ processing (e.g., to identify

runtime performance issues and possibly feedback actionable
results) be realized, with minimal impact on the application
and efficiency? While building performance monitoring and
analysis technology that can seamlessly integrate with an
HPC application is a challenge, the objectives are not unique
intrinsically, as they are shared with other domains such as
simulation data analytics and visualization.

Currently, we are investigating a Service-based
Observability, Monitoring, and Analytics (SOMA) strategy
to meet this challenge. The research work follows on
successful outcomes of our SYMBIOMON [35] and
SERVIZ [34] projects where we gained experience with
the high-performance Mochi [37] microservice ecosystem.
A SOMA framework has been under development with
initial objectives of demonstrating flexible configuration,
portable data representation, access to performance
measurement infrastructure, and easy-to-use interfaces
for application integration. Coincidentally, an opportunity
presented itself to test an initial prototype of SOMA with
an astrophysical hydrodynamics application based on a
multi-GPU magnetohydrodynamics solver and the Astaroth
stencil library [32]. The application is targeting the EU’s
flagship supercomputer in Finland, the Large Unified Modern
Infrastructure (LUMI), an HPE Cray EX supercomputer that
is the #3 machine on the Top500 [9] at this time. Given our
interest in using TAU [27] and APEX [17] performance tools
with LUMI applications, the opportunity was accepted. This
paper reports on the progress of our efforts.

While aspects of our work are still in flux and results
are preliminary, the SOMA design approach is validated and
prototype functionality demonstrated with a real application
on an HPC platform. The paper makes the following research
contributions:

• Describing SOMA design and development methodology.
• Validation study of SOMA prototype with LULESH ap-

plication demonstrating different functional features and
configurations on CSC supercomputer Mahti.

• Integration of TAU and APEX with Astaroth and example
use cases.



• Initial experiments of the SOMA prototype with Astaroth
on the CSC supercomputer LUMI.

II. ASTAROTH

Astaroth is a multi-GPU library designed for high-order
stencil computations on modern HPC systems [32]. Recently,
it has been applied to build a simulation framework for mag-
netized astrophysical plasmas in the magnetohydrodynamics
(MHD) regime, for details of the physics and first production
runs, see [43]. The framework solves the standard set of partial
differential equations for MHD, namely the continuity, angular
momentum, entropy, and induction equations, under conditions
that usually occur in astrophysical plasmas. In such plasmas,
the densities and temperatures usually range several orders of
magnitude, in which case non-conservative formulation of the
equations is numerically advantageous over flux conserving
schemes. For example, a formulation in terms of logarithmic
density, albeit non-conservative, can be numerically more
accurate and faster to compute. In this case, however, there is
no guarantee that the conserved quantities are accurate to the
machine precision, but rather conserved up to the discretisation
error of the scheme. Therefore, constant monitoring of the
conserved quantities is necessary, and simulations that do not
adequately conserve them should be disregarded. Magnetic
fields are implemented in terms of the magnetic vector po-
tential to ensure that the field remains divergence-free.

A full-fledged multi-node implementation was taken into
production during the LUMI-G pilot phase to study a setup
intended for investigating the solar fluctuation dynamo, the
physics and highest-resolution CPU simulations so far are de-
scribed in [44]. Astaroth allows for scenarios of unprecedented
resolution, but this comes with the cost of several hundred
terabytes per system state. The analysis and movement of such
data has become a major bottleneck of performing large-scale
computations. This motivates the idea to do data analysis in
situ, thus reducing the amount of data that eventually needs
to be stored.

Astaroth operates in a single-program, multiple data
(SPMD) manner, with one MPI rank per GPU device. LUMI-
G nodes house four AMD MI250x GPUs each, with each
GPU consisting of two Graphics Compute Dies (GCDs).
HIP considers each GCD a separate device, and so Astaroth
maximally uses eight MPI ranks per node, one per GCD. 1

With Astaroth only using eight processes per node, many CPU
cores remain idle during the computation. These CPU cores
could be used for data analysis in situ.

III. SERVICE-BASED PERFORMANCE OBSERVABILITY

A. Status Quo

The dominant computational model for scalable HPC ap-
plications is Single Program, Multiple Data (SPMD). SPMD
programs combine distributed-memory parallelism with some
form of shared-memory parallelism. MPI is the leading library

1During the LUMI pilot, Astaroth ran on 1024 nodes and 8192 GCDs.

Fig. 1. Visualization of magnetic field lines (dark red streamlines) and its
intensity (volume-rendered colours) in a dynamo-active Astaroth simulation
from [43].

for message passing [40], OpenMP [7] is popular for multi-
threading on multi-core CPUs and CUDA [30] or HIP [18]
support accelerator programming. Most HPC performance
tools have been developed to support SPMD applications.
Measurement libraries are primarily implemented to execute
with the application code and run on the same processes and
computational resources. Performance measurements are made
in the context of processes/threads and stored in the application
memory, making them low-overhead and highly efficient. For
the most part, measurements are node-local and performance
data is collected and written at the end of the execution.

Unfortunately, the SPMD model and its implementation
with MPI can constrain the development of new HPC tool
functionality. Consider a simple case of wanting to compute
performance statistics from performance data across all MPI
processes while the application is executing. While MPI does
offer support for both synchronous and asynchronous meth-
ods of computing these statistics, running MPI in threading
mode is notably more difficult than its traditional synchronous
counterpart, either because of the limited support for threaded
MPI, or because it contorts the MPI programming, making it
awkward to integrate more advanced analytics solutions and
forcing the “shoe-horning” of arbitrary analytics functionality
into an MPI program. Further, there is another practical
problem encountered on many leadership class clusters —
some large HPC platforms disallow the running of multiple
binaries (programs) on the nodes used by an application. In
other cases, MPI environments do not allow the number of
application ranks on a single node to exceed the number of
available cores (known as oversubscription).



B. Special Case of Idle Cores

Heterogeneous HPC places an emphasis on the use of ac-
celerated devices, primarily GPUs, for achieving performance
gains. In some heterogeneous applications that take advantage
of GPUs it can be the case that the CPUs (cores) on accelerated
nodes are under-utilized during the execution. One motivation
for our monitoring research is to take advantage of such
situations by finding techniques to locate monitoring processes
on the same nodes as the application. Suppose we consider a
special case where an MPI application does not use all of the
available cores on each node allocated to it. Instead, the cores
remain idle for the entirety of the execution.

APP: MPI_Comm_split() Mon: MPI_Comm_split()

MPI_COMM_WORLD

APP Comm MON Comm

Fig. 2. Example of how MPI_Comm_split works to run two applications
on the same node.

Without loss of generality, consider an MPI-based applica-
tion configured to run with R total ranks on N nodes where
each node has r = R/N ranks per nodes (assume N evenly
divides R). Let C be the number of CPU cores on a node and c
be the number of cores not used by the application at all during
execution. These unused CPU cores could be available to run
monitoring processes. Suppose M total monitoring processes
are to run with m = M/N monitoring processes on each node
(assume N evenly divides M ). The question is then how to
create the monitoring processes and configure them to run with
the application such that m are assigned to each node.

One way of doing this is with the Multiple Program,
Multiple Data (MPMD) approach can be done entirely in MPI.
The idea is to run the application with R + M ranks and
split MPI_COMM_WORLD into two communicators: one for the
application (call it APP) and one for the monitor (call it MON).
The application code must be modified to do the split and to
use the APP communicator in place of MPI_COMM_WORLD
throughout. When launching the computation, r + m ranks
must be allocated to each node. There are two potential
downsides to this approach. First, it might be problematic to
modify the application code, for several valid reasons. Second,
it might be difficult to integrate the monitor code with the
application code. This is necessary because a single binary
that includes the application and monitor code is being run
by the MPI processes. A simple example of this approach is
shown in Figure 2.

A big advantage of the above approach is that it does not
require anything special to be done by the job submission
system. Another approach that does not involve changes to

the application or monitor MPI communicators is to launch
the application (with R ranks) and the monitor (with M ranks)
as separate binaries at the same time on the same nodes where
r application ranks and m monitor ranks are running on each
node. This can be done using a script that is launched on
N nodes and then executes the monitor and application. Each
would be able to use MPI_COMM_WORLD for MPI operations.
Each would be its own binary. A different technique might be
needed for the application to discover the monitor above. For
this approach to be viable, the environment must allow two
different binaries to run at the same time on the same resource
set. Unfortunately, for some platforms, this is not the case.
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Fig. 3. Mochi microservice stack and example microservice.

C. Microservices

Being able to create monitoring processes alongside the
HPC application and place them within the resource allocation
(even on additional resources) is a first step. The question then
becomes what code is being run on them and how do they
interact with the application. We can think of a performance
monitor as a coupled data service to an application for pur-
poses of capturing and processing performance information.
HPC data services have emerged as an essential component of
coupled HPC workflow architectures. Mochi [37] is a software
stack for developing data services built by composing individ-
ual microservices through the remote procedure call (RPC) as
the communication mechanism. A client instance is the origin
of the RPC and the service provider instance is the target.
By providing a set of microservice building blocks, necessary
tools, and a development environment, the Mochi framework
enables the rapid development of customized functionality.

Figure 3 depicts three microservices (A, B, and C) interact-
ing through RPC calls to generate different call paths through
the network. These microservices can be located on the same
process, on different processes within the same computing
node, or on completely different nodes depending on how
they are configured. The Mochi microservice software stack
enabling this interaction consists of five core components:
Mercury RPC library, Argobots, Margo, Thallium, and Scal-
able Service Groups. We focus on the first four:

• Mercury [41] is a high-performance RPC library that can
utilize remote data memory access (RDMA) capabilities
to transfer large RPC arguments efficiently.



• Argobots [38] is a lightweight user-level threading library
that enables the development of highly concurrent soft-
ware components.

• The Margo library provides a convenient abstraction that
hides the complexities of programming the callback-
driven Mercury library.

• Thallium is a header-only, C++ interface to Margo and is
provided as a convenient wrapper to ease programming
with Mochi.

D. SOMA Data Model

Inspired by the Mochi project [37] for composing HPC
data services, we investigated the use of Mochi microservices
for developing improved performance observability solutions.
Our SYMBIOMON monitoring framework [35] demonstrates
how a more flexible, configurable, and extensible monitor is
possible with advanced distributed middleware that leverages
high-performance interconnection hardware. We soon realized
that other runtime HPC tools could benefit from this approach.
Our SERVIZ [34] system for in situ visualization demonstrates
another example of how service-based methods can help to
overcome challenges of HPC observability.

SYMBIOMON is not flexible or general enough to serve as
a starting point for our SOMA framework. In particular, it does
not offer a solution for a shared representation of data between
different workflow components. The time-series data model
exposed by SYMBIOMON is not general enough to be appli-
cable for monitoring any type of scientific or performance data.
On the other hand, while SERVIZ is not a monitoring solution,
it does utilize the Conduit [16] technology for representing and
transferring simulation data between the application client and
a visualization server.

Data representation and coupling between scientific code
bases is a key challenge to building a vibrant ecosystem of
HPC simulation tools. It requires agreeing on or adapting
between data representations. This is also true for HPC
application monitoring. It is not enough to set up SOMA
services using Mochi on processes and execute RPC oper-
ations, since what data is sent and how it is represented
matters. Conduit is an open-source project from Lawrence
Livermore National Laboratory (LLNL) designed to simplify
data description and sharing across HPC simulation tools. It
provides an intuitive API for in-memory data description that
enables human-friendly hierarchical data organization. There
are commonly shared conventions for exchanging complex
data and modular interfaces (in C++, C, Python, and Fortran)
for use across software libraries and simulation applications.
Conduit provides easy-to-use I/O interfaces for moving and
storing data, including support for moving complex data with
MPI (serialization). At the heart of Conduit is a hierarchical
variant type called a Node. A Node can be used to capture and
represent arbitrarily nested numeric data. Further, Conduit also
provides convenient interfaces to serialize Conduit Nodes —
we rely on this capability to store and transport monitoring
data within the SOMA environment.

We apply the Conduit techniques to create a shared per-
formance data representation that becomes the basis for data
sharing across a SOMA environment. The Conduit data model
was chosen for its ability to capture arbitrary hierarchical
data. One clear example of hierarchical data would be TAU
or APEX profiles. Listing 1 is an example of a TAU profile
data capture in a Conduit representation for the LULESH
application. The profile represents the data for MPI rank 0,
which forms the second level of the Conduit::Node hierarchy,
the first being the TAU namespace. Lower levels in the
hierarchy represent the event classes, while the Conduit::Leaf
nodes hold the actual interval timer or counter data.

{
TAU:

Rank 0:
Uninstrumented:

.TAU application_Calls: 1.0

.TAU application_Inclusive: 13871247.0
MPI_Routines:

MPI_Init_thread()_Calls: 1.0
MPI_Init_thread()_Inclusive: 992535.0
MPI_Comm_rank()_Calls: 4507.0
MPI_Comm_rank()_Inclusive: 3196.0
MPI_Comm_split()_Calls: 1.0
MPI_Comm_split()_Inclusive: 21108.0
MPI_Comm_dup()_Calls: 1.0
MPI_Comm_dup()_Inclusive: 31.0
MPI_Comm_size()_Calls: 2.0
MPI_Comm_size()_Inclusive: 1.0
MPI_Barrier()_Calls: 2.0
MPI_Barrier()_Inclusive: 321011.0
MPI_Irecv()_Calls: 8507.0
MPI_Irecv()_Inclusive: 5445.0
MPI_Isend()_Calls: 5007.0
MPI_Isend()_Inclusive: 16987.0
MPI_Waitall()_Calls: 1501.0
MPI_Waitall()_Inclusive: 143129.0
MPI_Wait()_Calls: 8507.0
MPI_Wait()_Inclusive: 32587.0
MPI_Allreduce()_Calls: 499.0
MPI_Allreduce()_Calls: 499.0
MPI_Allreduce()_Inclusive: 5400.0

TAU:
Tau_plugin_mochi_dump_Calls: 500.0
Tau_plugin_mochi_dump_Inclusive: 808.0

MPI_Counters:
Message size for all-reduce_Mean: 8.0
Message size for all-reduce_Min: 8.0
Message size for all-reduce_Max: 8.0

}

Listing 1. Conduit::Node of the TAU performance data model

However, SOMA does not have to be limited to only
performance data. Monitoring of application execution state
can be insightful to identify anomalous behavior and other
artifacts. In this case, the data is application-specific, and
the knowledge of how to best represent it lies with the
application developer. Conduit is also gaining support in the
scientific computing community as a data model to exchange
scientific data within components in a workflow. SOMA, like
SERVIZ and SYMBIOMON, is assembled out of robust, high-
performance Mochi services. The use of a well-supported API
and data model in Conduit is in line with our strategy of
building a high-performance monitoring service using “off-
the-shelf” components. This strategy promotes a high degree
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Fig. 4. (Top-Left): Standard MPI application. (Bottom-Left): A SOMA client is embedded within each MPI rank (i.e., process). The client is called via
a TAU plug-in. The application is launched with an additional node on which a SOMA service instance executes. Each client will interact with the service.
(Top-Right): The client is the same as Bottom-Left. However, the application is launched with another process on each application node where an service
executes. Each client will interact with the local service instance. The services will interact with each other for distributed processing. (Bottom-Right): The
client and local service are the same as the Top-Right. An additional node is allocated for a global service instance. The service instances will interact with
each other and with the global service instance.

of code reuse, resulting in a monitoring service that is (1)
easier to maintain and (2) whose functionality is easier to
extend compared to ad-hoc implementations.

E. SOMA API
Table I depicts the entirety of the SOMA Collector API.

The core API revolves around the idea of a monitoring
namespace, borrowed from our earlier SYMBIOMON imple-
mentation. The creation of the namespace requires the user
to supply a string argument representing the namespace
name, following which an empty Conduit::Node is created
inside the collector client’s memory. Following creation, the
namespace can be updated by providing a key:value pair,
wherein the key represents the hierarchy level of the nu-
meric data (e.g., “TAU/MPI/MPI Allreduce”), and the value
is the numeric data to be stored. Note that the top level
in the hierarchy is always the namespace name — this
name is automatically prefixed to the key argument and
is not required to be supplied by the calling code. If the
key exists, the value is either updated or appended to an
existing list depending on the operation_type passed to
the soma_update_namespace API call. If the key does
not exist, a new Conduit::Leaf object is created.

A namespace that is updated is left in an uncom-
mitted or open state until the user explicitly invokes
the soma_commit_namespace API call. Committing a
namespace decrements a frequency counter associated with
the namespace. When this frequency counter reaches zero,
soma_publish_namespace is triggered internally, result-
ing in an RPC call to the collector service instance carrying
the payload of the namespace — a Conduit::Node object
representing the data being monitored. The frequency counter
can be set using the soma_set_publish_frequency

TABLE I
SOMA API DESCRIPTION

soma_create_namespace
Creates a SOMA namespace and returns a handle to the namespace

soma_update_namespace
Updates the SOMA namespace with hierarchical data in a key:value pair

soma_publish
Publishes a raw Conduit::Node to the SOMA collector service instance

soma_publish_namespace
Publishes the Conduit::Node underlying the namespace

soma_commit_namespace
Commits a namespace — akin to closing a file

soma_set_publish_frequency
Sets the monitoring frequency associated with a namespace

soma_write
Instructs the collector service to write Conduit::Node data to a file

API. Association of a monitoring frequency with a namespace
in SOMA is an improvement over SYMBIOMON — the
latter only allowed monitoring frequencies to be set on a per-
metric basis, resulting in a flurry of RPCs in the system and
a tendency for the monitoring system to be more network-
latency-sensitive than necessary. SOMA also exposes an API
to publish a raw Conduit::Node object directly to the collector
instance. In summary, the SOMA API encompasses all of
SYMBIOMON’s features, while simultaneously being simpler,
offering better performance, and being more generally appli-
cable for scientific and performance data monitoring alike.

F. SOMA Implementation

SOMA is a Mochi microservice component implementing
the API depicted in Table I. The collector client is stub that
is linked against an application requiring SOMA monitoring
capabilities. The collector service instance typically resides on
a separate process and is contacted by means of an RPC call.
The client-server abstraction allows SOMA to be configured
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Fig. 5. An example configuration of SOMA with Astaroth. While Astaroth runs on the GPUs, we allocate extra ranks to run SOMA servers on the idle CPU.
Data is collected from Astaroth in numerous ways, packaged as Conduit nodes and sent via RPC to the SOMA servers.

in a variety of ways without modifying the client stub code.
Figure 5 depicts the SOMA stack in the context of an Astaroth
application. Shown here is a scenario where each node is
executing a SOMA performance data service instance and a
SOMA application data service instance alongside the appli-
cation, i.e., SOMA service instances share the computing node
resources with Astaroth. SOMA can also be configured to run
on a different node than Astaroth without any changes to the
application or client stub code. The only difference between
these two scenarios would be the datapath for the RPC calls —
the former would involve shared-memory copies on the node
(supported by most operating systems) while the latter would
traverse the system network links. It is worth mentioning
that Mochi microservices automatically support a variety of
different communication “plugins” via Mercury — a few of
which are shared-memory, TCP, and verbs. This plugin
model allows us to switch between communication protocols
through a simple configuration change, thereby circumventing
the need for any code changes to the application client stub or
SOMA service instance. Here we enlist the steps necessary for
an application to establish a connection to SOMA and begin
the monitoring workflow:

• Generation of Server Addresses: The SOMA MPI
program is launched first, following which the division
of the processes into the configured number of server
instances takes place. Each process instantiates its SOMA
service provider and makes its unique RPC address public
through a file. SOMA implements server instances to
support the scenario depicted in Figure 5. One instance
can monitor scientific application data from Astaroth,
while another instance can monitor TAU performance

data. Once the RPC addresses are written out to an
address file, the service is now ready to accept client
requests.

• Service Discovery: Astaroth and TAU connect to SOMA
by reading in the RPC address through the address file
and creating a client object to manage the connection.
This logic is housed inside the initialization routines of
the client software. If there are N SOMA service instance
ranks and M Astaroth (or TAU) client ranks such that
M>N, our current implementation assigns the N SOMA
ranks in a round-robin fashion to the M client ranks.
Other client-server mapping strategies are also possible.

• RPC Invocation: Most SOMA API operations depicted
in Table I are local operations, i.e., they execute di-
rectly inside the client stub memory. However, the
soma_publish API results in a Mochi RPC call. When
this RPC is invoked, the Conduit::Node underlying the
SOMA namespace is serialized to a string representa-
tion using native Conduit routines. The resulting string
representation is passed to Mercury, which serializes the
string on the client, manages the data transfer through the
chosen communication plugin, and de-serializes the data
back into a string representation on the collector service
instance. Serializing the Conduit::Node object to a string
representation can be expensive if the Conduit::Node is
large. In the future, we plan to explore binary represen-
tations as a way to reduce the RPC payload size, thereby
improving performance.

• RPC Execution: The collector service instances can
be effectively modeled as workers executing RPCs
from their local work queue. When an RPC for



soma_publish is executed on the server, the string
representation is converted back into a Conduit::Node and
stored inside an in-memory queue. This queue is emptied
upon receipt of a soma_write call on the collector
service instance.

IV. PERFORMANCE TOOLS

The TAU project began in the early 1990s with the goal
of creating a performance instrumentation, measurement, and
analysis framework that could produce robust, portable, and
scalable performance tools for use in all parallel programs
and systems over several technology generations. Today, the
TAU Performance System® [39] is a ubiquitous performance
tool suite for shared-memory, message passing, and task-
based parallel applications written in multiple programming
languages that can scale to the largest parallel machines
available. It is installed on many HPC systems around the
world and is used on a daily basis for performance analysis
and tuning of applications across multiple domains.

The TAU Performance System consists of two toolkits: the
tuning and analysis utilities (TAU) and the autonomic per-
formance environment for exascale (APEX). The TAU model
of performance measurement is based on a “worker” (first-
person) perspective. Essentially, each thread of execution in
a program will make performance measurements with respect
to its operation. A measurement could occur as a results of an
instrumentation probe the thread executes or an event-based
sample interrupt that occurs on that thread. All performance
data (e.g., time, HW counters) are stored within the thread
context and retained during execution. All threads output
their performance information when the program terminates.
Many HPC performance tools are like TAU, including HPC-
Toolkit [2], Score-P [23], Scalasca [45], and Caliper [6].

In contrast, APEX [17] is based on a “task” (third-
person) perspective, with event-based and sample-based mea-
surements. APEX uses an event API and event listeners to
observe when a task is created, started, yielded or stopped, and
updating timers for measurement. (Note, this is with respect to
what constitutes a task, not necessarily its thread of execution.)
Dependencies between tasks are also tracked, using globally
unique identifiers (GUID). APEX periodically and on-demand
interrogates (samples) OS, hardware, or runtime states (e.g.,
CPU utilization, resident set size, or memory “high water
mark”). This also occurs in TAU, but in a different manner.
APEX measurement includes background buffer processing to
record GPU kernel execution and memory transfers to and
from GPUs. Available runtime counters (e.g., idle rate, queue
lengths) are also captured on-demand or on a periodic basis.

Both TAU and APEX can produce profiles and/or traces.
With this in mind, the TAU profile data model provides
for a type of analysis that can look at individual thread
operation and the performance of particular events across
multiple threads. It is possible to compute statistics for specific
events to get a sense of aggregated performance. APEX is
particularly appropriate for task-based runtime environments.

Existing and emerging programming models present tech-
nical challenges that first-person measurement systems had
not considered: untied task execution and migration, runtime
thread control and execution, state sampling, and runtime
performance tuning. APEX can address these issues while
being lightweight enough to be present in an application for
continuous performance introspection and adaptation.

Several programming systems and communication libraries
implement a performance interface that allows tools to observe
events and associated data associated with those components
(e.g., OMPT [31] for OpenMP and PMPI [11] for MPI).
Some adopt a plugin design that enables tool connection at
runtime. However, user code instrumentation generally lacks
support for tool interfaces. The PerfStubs library [5] is a thin,
stubbed-out, “adapter” interface for instrumenting library or
application code. The PerfStubs library itself does not do
any measurement, it merely provides access to an API that
performance tools can implement.

The Astaroth computational model benefits from both TAU
and APEX performance measurement and analysis. Both pro-
vide process-level measurement, MPI, and GPUs, including
NVIDIA and AMD. Because TAU and APEX implement
the PerfStubs API, Astaroth can use PerfStubs to instrument
high-level computation events. In addition, it is possible to
instrument the task scheduler used in Astaroth [24] in order
for APEX to observe asynchronous GPU kernel operations.

A. Performance Integration in Astaroth

While TAU includes an instrumentation API, adding it to
Astaroth would significantly change the build configuration for
the application and make TAU a build dependency. Rather than
add TAU calls directly to capture timer data, TAU provides
an instrumentation library called PerfStubs [5]. PerfStubs
is self-contained, and creates a “stub” implementation of a
timer library, with support for counters and metadata. At
runtime, the PerfStubs library will check if specific symbols
are implemented by any tool libraries in the environment, and
if they are it will initialize the tool and pass any timer start/stop
events to the tool. If no tool is present, PerfStubs will just
return without any action.

Astaroth was instrumented in three locations: pre-update,
simulation, and post-update. The simulation phase is the
core simulation loop and consists of GPU kernel calls and
MPI point-to-point communication calls, which are sched-
uled asynchronously to avoid global synchronization. The
pre-update and post-update phases consist of control logic,
global reductions, and output procedures, they contain calls to
MPI_Allreduce and MPI_Barrier which force global
synchronizations. These global MPI calls do not occur every
timestep, but at configurable intervals. These three phases
represent the computationally interesting portions of the code
- all other time is attributed to initialization and finalization.
Figure 6 demonstrates the mean time spent per function
as measured by TAU profiling of Astaroth, including the
instrumented functions, across 128 GPUs. Figure 7 shows
the simulation phase of a benchmark when executed with 64



Fig. 6. The mean time spent per Astaroth function across all ranks for an
Astaroth execution on LUMI-G (16-node, 128-GPU, 128 ranks). Inset shows
the distribution of the simulation timer across ranks.

ranks and the APEX performance tool enabled. Even though
only three timers were added to the application source code,
APEX automatically captures MPI, HIP and GPU activity
on both the CPU and the GPU. APEX is added to the
application at run time with the apex_exec script, which
preloads libapex.so and enables requested support through
command line options. Each node in the graph is colored
relative to the intensity of how much time is contributed to
the overall execution time of the sub-tree.

B. Astaroth Performance Experiments

We benchmarked Astaroth with a grid resolution of 5123,
the total resident set size of the simulation is about 21 GB.
We ran this benchmark in a strong scaling study, from 8 to
256 MPI ranks. The scaling behavior of the pre-update,
simulation, and post-update timers are shown in
Figure 8. While simulation has near perfect scaling,
the pre-update and post-update phases both actually
become more expensive with more MPI ranks, because they
contain global synchronizations. The overhead starts to be-
come noticeable at 64 MPI ranks. In Figure 9, we plotted
the total time recorded in the post-update timer against
the total time taken by MPI_Allreduce. The time taken
by MPI_Allreduce starts to grow after 256 MPI ranks,
and it seems to be the main contributor to the runtime of
post-update at higher rank counts.

simulation
calls: 1000.0
threads: 1.0
time: 46.08879848129688

hipLaunchKernel
calls: 270000.0
threads: 1.0
time: 2.399046825640625

hipMemcpyAsync
calls: 108000.0
threads: 1.0
time: 1.179405924890625

hipMemcpyToSymbolAsync
calls: 162000.0
threads: 1.0
time: 8.3977500976875

hipSetDevice
calls: 181000.0
threads: 1.0
time: 0.173515476734375

hipStreamQuery
calls: 501221.5625
threads: 1.0
time: 5.954203896140625

hipStreamSynchronize
calls: 216000.0
threads: 1.0
time: 5.907504981453125

int MPI_Irecv(void *, int, MPI_Datatype, int, int, MPI_Comm, MPI_Request *)
calls: 54000.0
threads: 1.0
total recv bytes: 74096640000.0
mean recv bytes: 1372160.0
mode recv bytes: 3932160.0
bytes per call: 1372160.0
time: 0.190635449390625

int MPI_Isend(const void *, int, MPI_Datatype, int, int, MPI_Comm, MPI_Request *)
calls: 54000.0
threads: 1.0
total send bytes: 74096640000.0
mean send bytes: 1372160.0
mode send bytes: 3932160.0
bytes per call: 1372160.0
time: 6.51031881834375

int MPI_Wait(MPI_Request *, MPI_Status *)
calls: 52920.0
threads: 1.0
time: 0.024601059203125

GPU: kernel_pack_data(VertexBufferArray, HIP_vector_type<int, 3u>, HIP_vector_type<int, 3u>, double*)
calls: 54000.0
threads: 1.0
time: 1.6518152518125

GPU: kernel_unpack_data(double const*, HIP_vector_type<int, 3u>, HIP_vector_type<int, 3u>, VertexBufferArray)
calls: 54000.0
threads: 1.0
time: 1.632844011484375

GPU: twopass_solve_final
calls: 81000.0
threads: 1.0
time: 4.31750864221875

GPU: twopass_solve_intermediate
calls: 81000.0
threads: 1.0
time: 27.1508375884375

GPU: CopyDeviceToHost
calls: 54000.0
threads: 1.0
time: 4.9382329944375

GPU: CopyHostToDevice
calls: 54000.0
threads: 1.0
time: 4.49611332103125

hipMemcpyAsync
calls: 162000.0
threads: 1.0
time: 7.77314356134375

GPU: CopyHostToDevice
calls: 162000.0
threads: 1.0
time: 0.663538037

Fig. 7. Mean taskgraph from an Astaroth benchmark executed with 64 ranks.
The graph represents a pruned sub-tree rooted at the simulation timer (other
data is not shown), and shows both MPI and HIP API calls as well as the
GPU activity that is launched from the HIP calls like memory transfers and
kernel executions.

Fig. 8. Scaling behavior of the simulation phases, mean time per phase.

V. ASTAROTH AND PERFORMANCE INTEGRATIONS

The type of data analysis that is most valuable for large-
scale Astaroth runs is determining the numerical health of
the simulation. Simulations sometimes fail due to misconfig-
uration of numerical parameters — the simulation becomes
unstable or starts behaving nonphysically. For well-tested
schemes this is less likely to occur, but during the development
of Astaroth, new numerical methods are constantly being
added. Without the experimential knowledge of how these new
methods interact with Astaroth’s existing system components,
it is very difficult to create an intuitive understanding of
the mechanisms that cause simulation failures. Being able
to observe and analyze the numerical state of the simulation
improves our ability to build an intuitive understanding of the
numerical processes and how they should be tuned to avoid



Fig. 9. Scaling behavior of the post-update phase and MPI Allreduce, mean
over ranks of the total time per timer.

failures. With increasing number of nodes and processing
elements, in addition, the probability of bit flips and node
failures increases, in which case monitoring the health of the
system becomes of high importance, to avoid unnecessary
crashes, corruption of data, and loss of computing time.

The most common symptom of a numerical failure in
Astaroth is that the simulation becomes numerically unstable.
Due to the non-conservative scheme, such an instability will
manifest itself as a loss/gain in the quantity that is required to
be conserved. Usually such events occur very localized in the
simulation grid, where locally high gradients or extrema occur,
and a numerical quantity will begin to grow uncontrollably.
There are two possible actions once an instability starts
developing: 1) the simulation is scrapped and reconfigured or
reseeded to avoid the instability, 2) the simulation is recovered
by reconfiguring the simulations parameters on the fly to
counteract the instability. In both cases, instabilities should
preferably be caught early. As the instability grows, it becomes
harder and harder to recover any useful data, and if the
simulation has to be scrapped, then one can iterate through
simulation parameters more quickly if instabilities are caught
early. Recovery is made even more difficult at high resolutions,
where it is not feasible to keep more than two snapshots
on disk. The snapshot frequency then determines the limit
of how far back a simulation can be rewound. The period
between snapshots forms a deadline within which Astaroth
should detect instabilities.

In order to diagnose numerical instabilities, each Astaroth
rank calculates certain reductions on the computational mesh
that act as signals of a developing local instability. There are
two kinds of data that we are interested in: 1) the numerical
loss or gain of conserved quantities, 2) extreme values and
their locations. The most important conserved quantity is the
mass, on which we concentrate for this proof-of-concept study.
For extrema, we record the minimum and maximum values of
each field, and their corresponding location. Astaroth considers

NaN values to be extremum and detects these as well. It is
almost certainly too late to recover once the simulation has
produced a NaN value, as they provide a clear indication that
the simulation has failed. The mass is obtained as an integral
over density, for this Astaroth uses a handcrafted reduction
operation. The extrema and NaN locations are obtained using
the thrust [4] library, which supports reductions on GPU
buffers, both through CUDA and HIP.

Tracking extrema is useful not only for the detection of
numerical instabilities, but also for identifying points or re-
gions of interest within the simulation domain. By following
the locations of extrema, we could carve out slices or volumes
in the simulation domain for visualization and analysis, which
would reduce the total amount of data needed to be stored
on disk for post-processing. If this was done in situ, the
observability of high-resolution Astaroth simulations would
improve considerably.

Astaroth logs these signals, the mass conservation and
extrema, but a human needs to interpret them in order to take
action. The end goal in monitoring the signals is for Astaroth
to be able to configure a policy in Astaroth that, e.g., pauses
a simulation when one of these signals indicate a certain like-
lihood of an instability, or adjusts the simulation parameters
on the fly, and continues computations in a numerically safer
regime. Methods for calculating the likelihood of instabilities
will be easier to develop in a separate component outside of
Astaroth. A step towards this goal is to stream the diagnostics
from Astaroth through a channel to which analysis components
can subscribe. As examples, the diagnostics stream could be
fed into a machine learning model doing inference, or a signal
processing component that detects spikes in the extrema or
fluctuations in the mass conservation.

SOMA provides an API through which such structured data
can be published. This API is provided by a client library that
Astaroth is linked against. We have set a publishing interval
in Astaroth that determines how often Astaroth publishes
diagnostics to SOMA. As a proof of concept, we write the
data to a file and visualize this data in section VI-A. It is not
difficult to imagine how SOMA could provide on-line analysis
of the data through a plugin system, or forward the data to a
completely separate analysis engine.

In this proof-of-concept study we use a low magnetic
Prandtl number setup, meaning that the molecular magnetic
resistivity in the induction equation is much higher than the
viscosity in the Navier-Stokes equation. This setup is similar
to [44], mimicking small-scale dynamo action in the solar
and stellar convection zones. We initiate a non-zero but very
small in magnitude seed magnetic field in the domain, and the
crucial physics question is whether the flow field can act as a
dynamo and exponentially amplify its seed? In such a setup,
the plasma flow is highly turbulent, and Reynolds numbers,
measuring the vigor of fluid turbulence, are high, while the
magnetic Reynolds number can only be kept slightly above the
threshold for dynamo action due to numerical reasons. In this
kind of a system, the dynamo will grow, but very slowly, and
the stability properties of the system are mainly determined by



the hydrodynamical part. Hence, in this paper, we concentrate
on monitoring the conservation of mass and extrema of the
flow field. In the study of [43], systems with magnetic Prandtl
numbers of unity were investigated, see Fig. 1. In such a setup,
the magnetic field can grow to a significant strength, and also
participate in the dynamical evolution. In this case, monitoring
also the magnetic field diagnostics becomes important. This is
not the case in the setups presented in this paper, however.

VI. SOMA AND EXPERIMENTS

A. Monitoring Overhead Experiments

Our project objective was to build a SOMA framework
for Astaroth that enables online performance monitoring,
application-specific diagnostics, and simulation state data an-
alytics. The use of microservice architectures allows us sig-
nificant flexibility concerning how and where to run SOMA
in relation to the application. The most straightforward con-
figuration for monitoring in general would be to launch a
job with extra compute nodes and run the SOMA monitoring
service there. However, in the case of Astaroth, since there
were idle CPU cores we implemented a scenario where the
SOMA monitoring service ran on those idle CPUs.

Running two different binaries (applications) on the same
compute node required splitting the MPI ranks appropriately
between the different applications. Figure 2 shows how we
split the MPI_COMM_WORLD communicator between our two
applications. In this process, SLURM passes certain ranks to
each application, and it is the responsibility of the application
to assign these ranks to it’s own communicator group. This
functionality works without modifications in the case where
all ranks on a node are assigned to one application as well
– in this scenario the application just copies all ranks to its
new communicator group. All experiments were carried out on
either the LUMI-G or MAHTI systems detailed in Table II.

LUMI-G MAHTI
System HPE Cray EX Atos BullSequana XH2000

CPU AMD EPYC 7653 AMD Rome 7H12
Total CPU Cores 64 128

Memory (GB) 512 256
# GPUs 8 4

GPU Arch AMD MI250X NVIDIA A100

TABLE II
ARCHITECTURES USED FOR THE SIMULATIONS AND EXPERIMENTS.

1) LULESH: It was interesting to us to show the use
of microservices in an application that could be configured
similarly to Astaroth. For this purpose, we installed LULESH
hydrodynamics proxy application [20], [21] on the CSC Mahti
supercomputer and ran it successfully with SOMA in both
the node-local and remote scenarios shown in Figure 4. In
particular, we used an MPI-only version and allocated up to
64 ranks on each node, leaving 64 or more unused cores of
the 128 cores available. We modified LULESH to launch with
additional ranks per node and split the MPI_COMM_WORLD
communicator to use certain ranks for LULESH and the rest
for SOMA (see the top-right configuration in Figure 4).

These LULESH experiments were performed with a prob-
lem size of 45 (per domain) which is the equivalent of
5,832,000 elements. LULESH simulations must be run with a
number of ranks that is also the cube of an integer. Because
we used up to 64 ranks per node, while we increased the
node count, we also had to calculate the ratio to keep the total
ranks equal to the cube of an integer. We measure SOMA
overhead by varying the monitoring frequency (how often both
application and performance data is published to the servers),
with every 50 application iterations, every 5 iterations, and
every single iteration. Results shown in Figure 10 demonstrate
interesting results as compared to the baseline (Monitoring
Frequency = 0). The network protocol used for all Mahti
experiments was ofi+verbs. We see that as expected, using
a minimal monitoring frequency of 50 iterations has the least
overhead. The configuration of running the SOMA monitoring
ranks on a remote node from the application does typically
outperform the case where we run the SOMA monitoring ranks
on the local node.

When only running on a single application node, we see a
trend of greater overhead percentage than more nodes, but the
total execution time remains within range. This is based on
an average of 5 runs in each configuration. However, as we
scale LULESH to run on an increasing number of compute
nodes, we see the overhead begin to converge slightly. Running
the SOMA servers on an extra allocated node likely utilizes
completely free resources, even though there are free cores
on the local node, perhaps more free cores would be better.
Further tuning can be done when looking at message size,
publishing frequency, number of SOMA server instances per
rank to find the best performance in each scenario.

2) Astaroth: We analyze the overhead of collecting applica-
tion data via SOMA for Astaroth. The description and analysis
of the data are in Section VI-B. For the purpose of measuring
overhead, we conducted, first, baseline execution times for
Astaroth without any monitoring. This baseline is pictured in
Figure 11 with Monitoring Frequency = 0.

We scale Astaroth from one node up to 16 nodes on LUMI-
G, which contains 8 GPUs per CPU node. In all scenarios
we run 8 Astaroth ranks per node to utilize all of the GPUs
available. The grid size of Astaroth must be adjusted for each
scaled run, beginning with x,y,z dimensions of 256,256,256
for one rank and multiplying each dimension by the number
of ranks starting with z, e.g., for 8 ranks x,y,z was 512, 512,
512, for 16 ranks it was 1024,1024,2048. Application data
is structured as a Conduit node and configured to publish to
the SOMA service instance every five application iterations.
Performance data monitoring is conducted via the SOMA TAU
plugin which converts TAU profiles to conduit nodes for the
SOMA RPC calls. Publishing frequency is varied between
every 5 iterations and every 50 iterations for the performance
data. The communication protocol used for publishing SOMA
data between nodes used was ofi+tcp — we are investigating
other high-performance communication protocols for Mochi
on LUMI-G.

We launch the Astaroth jobs in the same configurations
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Fig. 10. Execution time (Left) and averaged overhead percent (Right) based on the configuration of our monitoring service with LULESH on Mahti. The
baseline is indicated by the blue dotted line. In the case of the remote configuration, we run the indicated number of application nodes and an extra node
solely for the SOMA servers. In cases where we publish more frequently, and run the SOMA servers on the same node we see increased overhead. The
dashed lines demonstrate our performance when publishing data in the remote node configuration, which tend to outperforming the node-local solid lines.
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Fig. 11. Execution time (Left) and percent overhead (Right) based on the configuration of our monitoring service for Astaroth on LUMI-G. In the case of
the remote configuration, we run the indicated number of application nodes, and an extra node solely for the SOMA servers. We ran a baseline with no
monitoring, application only monitoring, and performance + application monitoring. We see only a small increase in overhead when we combine performance
monitoring with the application monitoring (Perf Monitoring Frequency = 5,50).

as the baseline, but with SOMA ranks on either an extra
ranks on an extra node, or extra ranks on each node already
allocated. These ranks are reserved for the SOMA service
instances, whether that be the application data or performance
data service. On this additional node, we use the number of
ranks equal to the number of Astaroth nodes, giving us an
8:1 ratio of Astaroth ranks to each type of SOMA service
rank. This allows us to compare the results with the node-
local version. For the node-local version, we run a SOMA
service instance with an extra rank on each Astaroth node,
also at an 8:1 process count ratio.

We can see in Figure 11 that for both configurations,
there is a non-negligible amount of monitoring overhead.
One potential reason for this is due to the use of the lower-
performance ofi+tcp interconnect. Based on the significantly
lower overheads we saw with the ofi+verbs network in our
Mahti/LULESH experiments we anticipate significant perfor-
mance improvement when we use the high-performance Cray

network (ofi+cxi) on LUMI-G. On a positive note, we see very
little increase in overhead when we conduct the performance
data monitoring simultaneously with the application data mon-
itoring, even at more frequent publication rates. Although these
results may seem a bit underwhelming, we are early in our
design, and there are many opportunities for optimization,
beyond the network changes, that we believe will have a
significant impact. For example, we are further scrutinizing
the size of the data being sent, the serialization protocol used
for the data, the frequency of publication, and the ratios of
SOMA server instances per application rank, node count, and
problem size. Analysis of the application telemetry data that
we collect for Astaroth in these experiments with SOMA is
described in the following section.

B. Application Diagnostics and Data Analytics

SOMA collects data from Astaroth live during a simulation.
At the moment, for this proof-of-concept, we simply write the
application data stream to a file at the end of the simulation,



which we postprocess using Astaroth’s analysis tools. While
the analysis in the proof-of-concept is not done live, there
is no fundamental reason why these analysis tools cannot be
attached to the data stream while the simulation is running.
Live analysis would allow us to pause/stop the simulation or
in the most ideal case to adjust the simulation parameters and
carry on the integration with numerically safe parameters, if
signs of numerical instability would be detected.

As discussed in section II, an Astaroth simulation can fail
due to numerical instabilities, which result from the simulation
encountering an extreme state, for which the chosen simulation
parameters do no longer guarantee numerical stability. Typical
cases are the viscosities being too small or the time integration
step being too high to resolve the plasma flow and its evolu-
tion. These are the two example cases investigated here. As
the most typical sign of an approaching numerical instability
is the loss/gain of mass, which should be a conserved quantity
in a healthy simulation, we will use this quantity for our proof-
of-concept monitoring cases.

In the case of a healthy simulation, the mass as a whole
and the isotropic turbulent fluid in each rank remains constant.
Mass diagnostics collected from different ranks from such a
simulation is shown in the leftmost panel of Fig. 12, and the
evolution of density over time in each rank in the leftmost
panel of Fig. 13, both showing healthy statistics with constant
mass and nearly constant density extrema amongst all ranks.
{

pid: uint32,
timestep: uint64,

simulation_time: fp64,
local_mass: fp64,

FIELD_1: {
min: { value: fp32, location: [uint16] x 3 },
max: { value: fp32, location: [uint16] x 3 },
nan: { value: bool, location: [uint16] x 3 }
},
FIELD_2: { min: ..., max: ..., nan: ... },
...

}

Listing 2. Conduit pseudoschema of the Astaroth diagnostics data model. The
pid and timestep uniquely identify a node in a data stream. The simulation
time and local mass provide

Next we demonstrate a case, where the integration over
time, which is in this case performed with 3rd order Runge-
Kutta scheme, is done too inaccurately. The simulation does
use the Courant-Friedrichs-Levy (CFL) condition for calcu-
lating the maximum allowed time step length during each
iteration, but in addition different physical setups require a
safety prefactor around 0.1 ... 0.9 for stability. The required
value of the prefactor is not known a priori for different
types of physical setups, and hence it often happens that the
user gives too high a value for it in the simulation parameter
setup. Mass diagnostics collected from such a simulation are
shown in Fig. 12 middle panel. We see that in such a case
the mass is systematically lost. The mass loss is global, but
happens isotropically in each rank, giving a clear imprint of
the simulation parameters being globally wrong instead of
indicating numerical instability developing due to an extreme
condition localized to some rank/simulated region. Also the

middle panel of Fig. 13 consistently agrees with this picture,
the density extrema showing linearly decreasing trend with the
same slope.

Next we will study a case, where the viscosity is set to
a value that turns out to be too small to guarantee numer-
ical stability. In this case, some parts of the flow are well
resolved, while more extreme conditions happen only as local
fluctuations in the turbulent fluid. These extreme conditions
cause a numerical instability on one individual rank, in this
case rank 14, the instability grows rapidly, and causes the
entire simulation to crash. In the mass distribution plot Fig. 12
rightmost panel the local rapid increase of mass in rank 14 is
clearly visible.

Even more information can be retrieved by plotting the
density evolution in each rank, Fig. 13 rightmost panel. From
there one can see that the explosion of mass is clearly
preceeded by abnormal behavior of the minimum density on
Rank 14. It starts diminishing abnormally fast in comparison
to the other ranks already 1500 timesteps before the actual
crash happens. This gives us a clear hint of the nature of the
numerical instability. In the location of the extreme conditions
in the turbulent flow some mass is actually lost, pressure in
the location is decreased, and that causes a rapid inflow of
plasma towards that location. This results in the break-down
of the numerical scheme and the seen mass explosion.

VII. RELATED WORK

There are a wealth of robust performance measurement
and analysis tools that have been developed for HPC sys-
tems and applications. These include HPCToolkit [2], Score-
P [23], Scalasca [45], Extrae/Paraver [33], Caliper [6], Timem-
ory [26], and others, as well as machine-specifc vendor
offerings. For the most part, these tools were designed for
offline performance analysis and tuning, with a focus on first-
person performance measurement of tied task functions on
a per-thread OS thread basis. In addition to capturing time
and hardware counter data, some of the tools also support
heterogeneous systems and are able to measure GPU perfor-
mance. TAU provides a comprehensive set of performance
measurement and analysis capabilities that covers practically
all HPC environments and parallel computing models.

In contrast, there are fewer performance tools that address
existing/emerging programming models and runtime systems
where there exists untied task execution and migration, run-
time thread control and execution, third-person observation,
and runtime performance tuning. What also sets APEX apart
from runtime-specific solutions is that it has been refactored
from its HPX-centric design [19] to a more general purpose
asynchronous multi-tasking runtime profiling library. TAU and
APEX form a powerful combination (as the TAU Performance
System) for HPC application performance analysis and engi-
neering that is not replicated in other performance toolkits.

Concurrent with the significant research and development
work in the performance tools community, there has been long-
term interest in parallel performance monitoring. System-level



Fig. 12. Time series of the mass distribution from different types of simulation setups: healthy (left), too large time step prefactor (middle) and too small
viscosity (right). Each shaded region in the stack plot is the local mass in a rank over the runtime of the simulation. In a healthy simulation the total mass in
the system remains constant to the accuracy of the spatial discretization scheme. Note: in the rightmost series, for a better visualization of the instability, the
y-axis is on a log scale and the x-axis starts from 10000 .

Fig. 13. Time series of the density range from different types of simulation setups: healthy (left), too large a time step prefactor (middle) and too small
viscosity (right). Each gray curve is a minimum or maximum of one rank’s density field over the runtime of the simulation.

monitors like LDMS [3] provide extensive online measure-
ment of machine infrastructure and OS activities. Tools like
Falcon [15], Autopilot [1], Periscope [12], ActiveHarmony
[42], and WOWMON [47] utilized monitoring to provide
online analysis and support for adapting and steering the
application. Chimbuko [22], utilizing TAU as a performance
measurement system, implemented in situ trace analysis to
detect performance anomalies and generate provenance for
root cause analysis.

Our own monitorng work has focused on the architec-
ture design and high-performance implementation, specifically
to access TAU performance data. TAUoverSupermon [29],
TAUoverMRNet [28], TAUmon [25], and SOS [46] explored
different approaches and technologies for scalable application-
level monitoring. Our recent research on SYMBIOMON [36]
instead chose to build upon the Mochi high-performance
microservices framework [37] thereby adopting a existing
development model with well-defined interfaces, available
components, and active users. Seer [14], SERVIZ [34], Colza
[10], and other projects have taken this route to build in situ
analysis, visualization, and autotuning.

The SOMA research here continues in this direction with
the additional incorporation of data models which are nec-
essary for the semantic communication of application and
performance data between microservices. Conduit [16] is an

established project born out of the visualization community
for the purpose of describing and sharing data in situ.

Harvesting unused computing cycles has been explored in
the context of inline visualization and analytics. The TINS [8]
package leverages work-stealing strategies to execute analytics
tasks when there are no available simulation tasks scheduled.
GoldRush [48] and Landrush [13] employ smart co-scheduling
of analytics routines alongside MPI-OpenMP and GPU simu-
lation tasks. They combine monitoring data with a scheduler
to identify regions of idle time on the processor that can
be used to run these routines demonstrating significant cost
savings without perturbing the execution of the simulation.
Our approach is not nearly as sophisticated as these research
results, but nevertheless attempts to take advantage of a
situation with free CPU resources via a straightforward MPI-
based strategy.

VIII. CONCLUSION AND FUTURE WORK

Our research work presented in this paper was in two
main directions. First, we integrated the TAU and APEX tools
with Astaroth to provide a robust, portable, and configurable
environment for performance analysis and engineering. These
tools work on heterogeneous HPC platforms, across different
processor architectures, and at scale. Astaroth did not previ-
ously employ such powerful performance technology and the
integration makes possible detailed analysis and optimization



going forward. Importantly, it helps to address the challenges
that come with measurement of leading-edge CPU and GPU
technologies present in supercomputer systems like LUMI.
The key to success in this endeavor is for the Astaroth
team to work with the features the tools offer. Instrumenting
application-specific events with PerfStubs is a good, straight-
forward example of how developers can add semantic value
to the tools. Furthermore, the Astaroth team should be em-
powered to develop more substantial performance engineering
features built around the TAU Performance System ecosystem,
including parametric performance studies, cross-architecture
performance characterization, performance regresssion testing,
and continuous integration. The TAUdb performance database
and other performance analysis are relevant to this objective.

The second research direction we pursued was the design
and development of a microservices-based monitoring frame-
work called SOMA and its deployment with HPC applications.
Based on the robust Mochi infrastructure, SOMA is a new
monitoring system that is targeting in situ performance and
application observation, data collection, and analysis. We
described the architecture and functionality of our SOMA
prototype and demonstrated its operation with the well-known
LULESH benchmark application. The high degree of con-
figurability possible with SOMA allows it to be flexibly
deployed to address in situ objectives. In the case of Astaroth,
the opportunity exists to utilize idle CPU cores for SOMA
operations. We demonstrated different SOMA configurations
with Astaroth to show the collection of application and data
diagnostics. Another unique research contribution was the
design of a performance data model for TAU to enable data
representation and sharing, in this case, between SOMA clien-
t/server processes. An application data model was also created
for in situ transmission and processing within SOMA. Again,
it was important to engage with the Astaroth team to define the
application data of interest. The Conduit [16] technology was
used to implement both data models. In this proof-of-concept
study, the data harvested was tailored to monitor the numerical
stability of the code, with great future potential to optimize the
simulation workflow. Now that SOMA functionality has been
validated with Astaroth, we hope to find optimal configurations
for minimal overhead, test its performance in larger-scale
scenarios, and build on its capabilities for specific Astaroth
purposes. It is technically possible to build support in SOMA
that allows feedback to an application and Astaroth could take
advantage of this for runtime adaptation.
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[23] Andreas Knüpfer, Christian Rössel, Scott Biersdorff, Kai Diethelm,
Dominic Eschweiler, Markus Geimer, Michael Gerndt, Daniel Lorenz,
Allen Malony, Wolfgang E Nagel, et al. Score-p: A joint performance
measurement run-time infrastructure for periscope, scalasca, tau, and
vampir. In Tools for High Performance Computing 2011, pages 79–91.
Springer, 2012.

[24] Oskar Lappi. A task scheduler for astaroth, the astrophysics simulation
framework, 2021. Masters Thesis.

[25] C.W. Lee, A. Malony, and A. Morris. TAUmon: Scalable Online
Performance Data Analysis in TAU. In Workshop on Productivity and
Performance (PROPER 2010), September 2010.

[26] Jonathan R Madsen, Muaaz G Awan, Hugo Brunie, Jack Deslippe,
Rahul Gayatri, Leonid Oliker, Yunsong Wang, Charlene Yang, and
Samuel Williams. Timemory: modular performance analysis for hpc.
In International Conference on High Performance Computing, pages
434–452. Springer, 2020.

[27] Allen D. Malony, Sameer Shende, Wyatt Spear, Chee Wai Lee, and Scott
Biersdorff. Advances in the tau performance system. In Parallel Tools
Workshop, 2011.

[28] A. Nataraj, A. Malony, A. Morris, D. Arnold, and B. Miller.
TAUoverMRNet (ToM): A Framework for Scalable Parallel Performance
Monitoring. In International Workshop on Scalable Tools for High-End
Computing (STHEC ’08), 2008.

[29] Aroon Nataraj, Matthew Sottile, Alan Morris, Allen D Malony, and
Sameer Shende. Tauoversupermon: low-overhead online parallel per-
formance monitoring. In Euro-Par 2007 Parallel Processing: 13th
International Euro-Par Conference, Rennes, France, August 28-31, 2007.
Proceedings 13, pages 85–96. Springer, 2007.

[30] John R. Nickolls, Ian Buck, Michael Garland, and Kevin Skadron.
Scalable parallel programming with CUDA. 2008 IEEE Hot Chips 20
Symposium (HCS), pages 1–2, 2008.

[31] OpenMP. Openmp specifications, 2023.
[32] Johannes Pekkilä, Miikka S. Väisälä, Maarit J. Käpylä, Matthias
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[33] Vincent Pillet, Jesús Labarta, Toni Cortes, and Sergi Girona. Paraver: A
tool to visualize and analyze parallel code. In Proceedings of WoTUG-
18: Transputer and occam Developments, volume 44, pages 17–31. mar,
1995.

[34] Srinivasan Ramesh, Hank Childs, and Allen Malony. Serviz: A shared
in situ visualization service. In 2022 SC22: International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC) (SC), pages 277–290, Los Alamitos, CA, USA, nov 2022. IEEE
Computer Society.

[35] Srinivasan Ramesh, Robert Ross, Matthieu Dorier, Allen Malony, Philip
Carns, and Kevin Huck. SYMBIOMON: A high-performance, compos-
able monitoring service. In 2021 IEEE 28th International Conference
on High Performance Computing, Data, and Analytics (HiPC), pages
332–342, 2021.

[36] Srinivasan Ramesh, Robert Ross, Matthieu Dorier, Allen Malony, Philip
Carns, and Kevin Huck. Symbiomon: A high-performance, composable
monitoring service. In 2021 IEEE 28th International Conference on
High Performance Computing, Data, and Analytics (HiPC), pages 332–
342. IEEE, 2021.

[37] Robert B. Ross, George Amvrosiadis, Philip H. Carns, Charles D.
Cranor, Matthieu Dorier, Kevin Harms, Gregory R. Ganger, Garth A.
Gibson, Samuel Keith Gutierrez, Robert Latham, Robert W. Robey, Dana
Robinson, Bradley W. Settlemyer, Galen M. Shipman, Shane Snyder,
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