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Motivation
q Heterogeneous HPC for exascale computing

❍ Concerns for performance variability and performance portability
q Important to integrate HPC performance analysis technologies

❍ Robust scalable and portable performance tools
❍ Standard post-mortem analysis can miss interesting dynamics

q Growing interest in greater observability of HPC applications
❍ Online observation (measurement) + monitoring + analytics
❍ HPC applications are not generally designed to be observable

q Consider how to build performance observation support
❍ Integrate TAU Performance System with Astaroth application
❍ Design service-based observation, monitoring, analysis (SOMA)
❍ Create SOMA prototype and test with Astaroth on LUMI
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Opportunity 
q Fulbright-Nokia Distinguished Chair

❍ Study performance of HPC scientific and
big data applications on LUMI supercomputer

❍ University of Helsinki (Prof. Keijo Heljanko) 
❍ CSC–IT Center for Science (TAU on LUMI)

q Collaboration with Prof. Maarit Korpi-Lagg
❍ Department of Computer Science, Aalto University
❍ Developing LUMI-G application (LUMI-G pilot)

◆ magnetized astrophysical plasmas based on Astaroth
❍ Began work together in January 2023

q Paper reports research progress thus far
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Introduction to Astaroth
q Multi-GPU high-order stencil library

❍ Host-level interface (C, C++, Fortran)
❍ Domain specific language (DSL) for physics
❍ Multi-GPU MPI (GPUDirect RDMA) 

q Magnetized astrophysical plasmas framework
❍ Magnetohydrodynamics (MHD) regime

q Astaroth operates in SPMD manner
❍ One MPI rank per GPU device
❍ LUMI-G node has 4x AMD MI250x GPUs (8 “devices”)
❍ No explicit CPU multithreading
❍ Logical tasking and scheduling of GPU kernels

q Astaroth-based LUMI-G pilot “hero run”
❍ 16K devices (2K nodes) for 12 hours Magnetic field lines (dark red streamlines) 

and intensity (volume-rendered colours) in 
a dynamo-active Astaroth simulation 
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Astaroth Motivation for In Situ
q Astaroth allows unprecedented resolution

❍ Analysis and movement of data major bottleneck
❍ Need more in situ data reduction and analytics

q Framework solves PDEs for MHD
❍ Continuity, angular momentum, entropy, induction
❍ Conditions in astrophysical plasmas
❍ Non-conservative versus flux-conserving

q Methods used do not necessarily guarantee conserved quantities 
are accurate to the machine precision
❍ Conserved up to the discretization error
❍ However, requires constant monitoring of the conserved

quantities during execution 
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SPMD HPC Applications and Monitoring
q SPMD is the dominant HPC programming model

❍ Shared memory parallelism (e.g., OpenMP)
❍ Distributed memory parallelism (e.g., MPI)
❍ Accelerator parallelism (e.g., CUDA, HIP)

q Performance tools mainly developed for SPMD applications
q Integrating monitoring infrastructure is problematic

❍ Difficult to express monitor operations in SPMD model
❍ Requires asynchronous execution and dynamic resource use
❍ Encounters implementation restrictions with MPI or systems

q Limits ability to take advantage of underutilized capacity
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Special Case of Free Cores
q Heterogeneous accelerated-node applications emphasize GPU use 

and could leave CPU cores idle
q How to take advantage for monitoring purposes
q Consider MPI application with following attributes:

❍ R total ranks on N nodes (r=R/N ranks per node)
❍ C CPU cores per node (c cores unused by application)
❍ Desire M total monitoring processes (m=M/N per node)

q How to create monitoring processes and configure them?
❍ Solution A: Splitting of MPI_Comm_World
❍ Solution B: Using MPI MPMD support (if available)
❍ Solution C: Running separate programs with job scheduler

q Different solutions have different tradeoffs
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High-Performance Services
q Creating monitoring processes is only part of solution
q How to run monitor code and interact with application?
q HPC data services emerged for couple HPC codes

❍ High-performance microservice technologies
❍ Utilize interconnection technology and fabrics

q Mochi software stack for developing data services
❍ Argonne National Lab ( https://www.mcs.anl.gov/research/projects/mochi/ ) 

❍ Mochi used in HPC data and visualization services

https://www.mcs.anl.gov/research/projects/mochi/
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Mochi Software Stack
q Mercury RPC library

❍ High-performance
❍ RDMA

q Argobots
❍ Light-weight threading
❍ High concurrency

q Margo
❍ Programming abstraction for Mercy

q Thallium
❍ Header-only C++ interface to Margo



10CUG 2023

Prior Research with Mochi
q Investigate Mochi microservices for observability
q SYMBIOMON demonstrated monitor was possible

❍ Deployed internally in Mochi
❍ Not flexible enough for general purpose

q SERVIZ applied approach to in situ visualization
❍ Highlighted data models in microservices
❍ Utilized Conduit technology for visualization data
❍ Not developed as a monitoring solution

q Seer in situ analysis with Jupiter frontend
q Colza elastic in situ visualization of HPC simulations
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Conduit
q What data is sent and how it is represented?
q Conduit designed to simplify data

description and sharing across HPC sim tools
❍ Provides an API for data description
❍ C, C++, Python, Fortran interfaces

q Hierarchical variant type call a Node
❍ Capture and represent arbitrary nested data

q Use Conduit to represent performance data
❍ TAU and APEX profiles

q Use Conduit to represent application diagnostic data
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SOMA Framework
q Consider a service-based observation, monitoring, and 

analysis (SOMA) framework
q Implement using Mochi technology

❍ Create “collector” client within an application rank
◆ gathers performance data to send by RPC to monitoring layer

❍ Create “collector” service instance to receive data
◆ endpoint of RPC

❍ Configure clients and service with application
◆ Discovery and registration

q Use Conduit for performance and application data
q Develop SOMA programming stack and API
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SOMA Configuration Examples
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TAU Project at the University of Oregon
q Research and development effort spanning 30+ years
q Focus on parallel performance problems and technologies
q Performance problem solving framework for HPC research

❍ Integrated, scalable, flexible, portable
❍ Target all parallel programming / execution paradigms

q Integrated performance toolkit (TAU Performance System®)
❍ Multi-level performance instrumentation
❍ Flexible and configurable performance measurement
❍ Widely-ported performance profiling / tracing system
❍ Performance data management and data mining
❍ Open source (BSD-style license)

q Broadly used for performance analysis and engineering in complex 
software, systems, applications
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TAU Performance System
q Incorporates two performance toolkits

❍ Each provides measurement and analysis support
❍ TAU (Tuning and Analysis Utilities)
❍ APEX (Autonomic Performance

Environment for Exascale)
q Differ in respects to observation perspective

❍ TAU: who is doing the “work” (per thread measurement)
❍ APEX: what “work” (task) is done (per task measurement)

q Used individually or together
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SOMA Framework with Astaroth

Use MPI communicator splitting approach
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Astaroth Performance Analysis with TAU

Mean time spent per Astaroth 
function across all ranks for an
Astaroth execution on LUMI-G
(16-node, 128-GPU, 128 ranks)

Inset shows the distribution of the 
simulation timer across ranks

Application events  (    )
(instrument w/ Perfstubs):
Ø pre-update
Ø simulation
Ø post-update

Exclusive time
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Astaroth Performance Analysis with Apex

simulation
calls: 1000.0
threads: 1.0
time: 46.08879848129688

hipLaunchKernel
calls: 270000.0
threads: 1.0
time: 2.399046825640625

hipMemcpyAsync
calls: 108000.0
threads: 1.0
time: 1.179405924890625

hipMemcpyToSymbolAsync
calls: 162000.0
threads: 1.0
time: 8.3977500976875

hipSetDevice
calls: 181000.0
threads: 1.0
time: 0.173515476734375

hipStreamQuery
calls: 501221.5625
threads: 1.0
time: 5.954203896140625

hipStreamSynchronize
calls: 216000.0
threads: 1.0
time: 5.907504981453125

int MPI_Irecv(void *, int, MPI_Datatype, int, int, MPI_Comm, MPI_Request *)
calls: 54000.0
threads: 1.0
total recv bytes: 74096640000.0
mean recv bytes: 1372160.0
mode recv bytes: 3932160.0
bytes per call: 1372160.0
time: 0.190635449390625

int MPI_Isend(const void *, int, MPI_Datatype, int, int, MPI_Comm, MPI_Request *)
calls: 54000.0
threads: 1.0
total send bytes: 74096640000.0
mean send bytes: 1372160.0
mode send bytes: 3932160.0
bytes per call: 1372160.0
time: 6.51031881834375

int MPI_Wait(MPI_Request *, MPI_Status *)
calls: 52920.0
threads: 1.0
time: 0.024601059203125

GPU: kernel_pack_data(VertexBufferArray, HIP_vector_type<int, 3u>, HIP_vector_type<int, 3u>, double*)
calls: 54000.0
threads: 1.0
time: 1.6518152518125

GPU: kernel_unpack_data(double const*, HIP_vector_type<int, 3u>, HIP_vector_type<int, 3u>, VertexBufferArray)
calls: 54000.0
threads: 1.0
time: 1.632844011484375

GPU: twopass_solve_final
calls: 81000.0
threads: 1.0
time: 4.31750864221875

GPU: twopass_solve_intermediate
calls: 81000.0
threads: 1.0
time: 27.1508375884375

GPU: CopyDeviceToHost
calls: 54000.0
threads: 1.0
time: 4.9382329944375

GPU: CopyHostToDevice
calls: 54000.0
threads: 1.0
time: 4.49611332103125

hipMemcpyAsync
calls: 162000.0
threads: 1.0
time: 7.77314356134375

GPU: CopyHostToDevice
calls: 162000.0
threads: 1.0
time: 0.663538037

Mean taskgraph from Astaroth benchmark with 
64 ranks on LUMI-G, showing pruned sub-tree 
rooted at simulation event with both MPI and 
HIP API calls as well as the GPU activity
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Astaroth Performance Scaling

q Scaling behavior of the simulation and GPU activity
q GPU kernel has near perfect scaling

❍ Additional overheads in the timers
❍ Not accounted for by MPI or HIP calls
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Conduit Data Models for Astaroth Monitoring
TAU performance data Astaroth diagnostic data

q TAU performance data model is application agnostic
q SOMA also accepts any Conduit Node schema
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Monitoring Overhead Experiment Setup

q LULESH
❍ Mahti
❍ 1,4,8 nodes 
❍ Scaled problem size

(total elements) per rank
❍ Varied monitoring 

frequency

q Astaroth
❍ LUMI-G
❍ 1,2,4,8,16 nodes 

(8,16,32,64,128 GPUs)
❍ Increased global grid 

dimensions for strong 
scaling
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Monitoring Overhead - LULESH

q Node-local and remote configurations of SOMA and LULESH
❍ 64 ranks per node

q CSC Mahti (128 CPU cores per node)
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Monitoring Overhead - Astaroth

q Node-local and remote configurations of SOMA and Astaroth
❍ 8 ranks per node

q CSC LUMI-G (64 CPU cores per node)
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Astaroth Mass Conservation Diagnostics

q Shaded regions are the local mass in a rank over simulation 
q Left: Mass is conserved (healthy simulation) 
q Middle: Time step too large and mass disappears (bad simulation)
q Right: Viscosity too low resulting in numerical instability

and mass gain (bad simulation)
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Astaroth Density Extrema Diagnostics

q Density evolution same three simulations
❍ Each gray curve is a min or max of a rank's density field over simulation

q Left: Density field develops naturally (no systematic error) 
q Middle: Density systematically decreases in the system (bad)
q Right: Catastrophic mass increase due to a numerical instability
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Conclusion
q Early results from a productive collaborative effort
q Successful integration of Astaroth with TAU/APEX

❍ More to be done on kernel tasking measurements
q SOMA approach for observability proves promising

❍ Look at different configurations and evaluate performance
❍ Investigate use of asynchronous RPC
❍ Additional opportunities to run at larger-scale
❍ Potential for feedback between Astaroth and SOMA

q Leverage other Mochi-based infrastructure for Astaroth


