o ER SR e = -
pagp o p S M i S 3
R e X > g
o e o e J? .
e o i x

- £ : e i — T A — s B - -
> = -~ : B ~ ~e —
- - - T e - s ; - -

Observability, Monitoring, and In Situ
Analytics in Exascale Applications

Dewi Yokelson!, Oskar Lappi?, Srinivasan Ramesh?
Miika Viisild® Kevin Huck!, Touko Puro?
Boyana Norris!, Maarit Korpi-Lagg?*, Keijo Heljanko?, Allen D. Malony!

University of Oregon University of Helsinki Institute of Astronomy & Physics Aalto University NVIDIA Corporation
Eugene, Oregon, USA! Helsinki, Finland? Academia Sinica, Taiwan’ Espoo, Finland* Santa Clara, California, USA?

<

A

|
7
i ! x’r g
ASTA>
[|

Moftivation

0 Heterogeneous HPC for exascale computing
o Concerns for performance variability and performance portability

0o Important to integrate HPC performance analysis technologies
o Robust scalable and portable performance tools
o Standard post-mortem analysis can miss interesting dynamics

0 Growing interest 1n greater observability of HPC applications
o Online observation (measurement) + monitoring + analytics
o HPC applications are not generally designed to be observable

0 Consider how to build performance observation support
o Integrate TAU Performance System with Astaroth application

o Design service-based observation, monitoring, analysis (SOMA)
o Create SOMA prototype and test with Astaroth on LUMI

CUG 2023

Opportunity

0 Fulbright-Nokia Distinguished Chair 7\ NO<|A
o Study performance of HPC scientific and ™“roomon

big data applications on LUMI supercomputer
o University of Helsinki (Prof. Keijo Heljanko)
o CSC-IT Center for Science (TAU on LUMI)

0 Collaboration with Prof. Maarit Korpi-Lagg

o Department of Computer Science, Aalto University
o Developing LUMI-G application (LUMI-G pilot)

¢ magnetized astrophysical plasmas based on Astaroth
o Began work together in January 2023

0 Paper reports research progress thus far

CUG 2023 ;

Introduction to Astaroth

0 Multi-GPU high-order stencil library
o Host-level interface (C, C++, Fortran)
o Domain specific language (DSL) for physics
o Multi-GPU MPI (GPUDirect RDMA)
0 Magnetized astrophysical plasmas framework
o Magnetohydrodynamics (MHD) regime

0 Astaroth operates in SPMD manner
o One MPI rank per GPU device
o LUMI-G node has 4x AMD MI250x GPUs (8 “devices”™)
o No explicit CPU multithreading
o Logical tasking and scheduling of GPU kernels

a0 Astaroth-based LUMI-G pilot “hero run™

o 16K devices (2K nodes) fOI' 12 hOU.I'S Magnetic field lines (dark red streamlines)

and intensity (volume-rendered colours) in

a dynamo-active Astaroth simulation
CUG 2023 4

Astaroth Motivation for In Situ

0 Astaroth allows unprecedented resolution

o Analysis and movement of data major bottleneck
o Need more 1n situ data reduction and analytics

a2 Framework solves PDEs tfor MHD

o Continuity, angular momentum, entropy, induction
o Conditions 1n astrophysical plasmas
o Non-conservative versus flux-conserving
0 Methods used do not necessarily guarantee conserved quantities
are accurate to the machine precision
o Conserved up to the discretization error

o However, requires constant monitoring of the conserved
quantities during execution

CUG 2023

SPMD HPC Applications and Monitoring

0 SPMD is the dominant HPC programming model

o Shared memory parallelism (e.g., OpenMP)
o Distributed memory parallelism (e.g., MPI)
o Accelerator parallelism (e.g., CUDA, HIP)

0 Performance tools mainly developed for SPMD applications

0 Integrating monitoring infrastructure 1s problematic
o Difficult to express monitor operations in SPMD model
o Requires asynchronous execution and dynamic resource use
o Encounters implementation restrictions with MPI or systems

0 Limits ability to take advantage of underutilized capacity
CUG 2023 6

Special Case of Free Cores

0 Heterogeneous accelerated-node applications emphasize GPU use
and could leave CPU cores 1dle

0 How to take advantage for monitoring purposes

0 Consider MPI application with following attributes:
o R total ranks on N nodes (r=R/N ranks per node)
o C CPU cores per node (¢ cores unused by application)
o Desire M total monitoring processes (m=M/N per node)

0 How to create monitoring processes and configure them?
o Solution A: Splitting of MPI Comm World
o Solution B: Using MPI MPMD support (if available)
o Solution C: Running separate programs with job scheduler

a Different solutions have difterent tradeofts
CUG 2023 :

High-Performance Services

0 Creating monitoring processes 1s only part of solution
0 How to run monitor code and interact with application?

0 HPC data services emerged for couple HPC codes

o High-performance microservice technologies

o Utilize interconnection technology and fabrics

0 Mochi software stack for developing data services

O Argonne National Lab (https://www.mcs.anl.gov/research/projects/mochi/)

o Mochi used in HPC data and visualization services

CUG 2023 "

https://www.mcs.anl.gov/research/projects/mochi/

Mochi Software Stack

D Mercury RPC llbrary ,."i Microservice API

o High-performance o RPC AP

A (Margo) Storage

O RDMA /\ Cucr:rc;r:cy . (LeeleDIIIDB,

a Argobots o Meo S Lave el |
serl\3/|ce serélce ;“‘ (Argobots) |

o Light-weight threading Network Abstracton

 High coneurrency '
a Margo |

o Programming abstraction for Mercy

Thalls ~,= ,=Mochi
R

o Header-only C++ interface to Margo

CUG 2023 0

Prior Research with Mochi

a Investigate Mochi microservices for observability

0 SYMBIOMON demonstrated monitor was possible

o Deployed internally in Mochi
o Not flexible enough for general purpose

0 SERVIZ applied approach to 1n situ visualization
o Highlighted data models in microservices
o Utilized Conduit technology for visualization data
o Not developed as a monitoring solution

0 Seer 1n situ analysis with Jupiter frontend
a Colza elastic 1n situ visualization of HPC simulations

CUG 2023 10

Conduit

0 What data is sent and how it is represented? Q

0 Conduit designed to simplity data CONDUIT
description and sharing across HPC sim tools

o Provides an API for data description
o C, C++, Python, Fortran interfaces

0 Hierarchical variant type call a Node
o Capture and represent arbitrary nested data
0 Use Conduit to represent performance data
o TAU and APEX profiles
0 Use Conduit to represent application diagnostic data

CUG 2023 11

SOMA Framework

0 Consider a service-based observation, monitoring, and
analysis (SOMA) framework

0 Implement using Mochi technology

o Create “collector” client within an application rank
¢ gathers performance data to send by RPC to monitoring layer

o Create “collector’ service instance to receive data
¢ endpoint of RPC

o Configure clients and service with application
¢ Discovery and registration

0 Use Conduit for performance and application data
0 Develop SOMA programming stack and API

CUG 2023

12

SOMA Configuration Examples

e .0

e .0

® .0

© Application MPI process (rank)

Y v

Application compute node

v Y

O Collector client (within application process)
© Collector service istance (global, own node)

CUG 2023

;

O

Q-0 -

Q-0 - --

¥

0.

)

¥

O Collector client (within application process)
O Collector service instance (local, own process)

-0
@,

Y

0.0 .-

0.0
o

Y

@
+
;

o

Collector client (within application process)

O
O Collector service instance (local, own process)
O

Collector service instance (global, own node)

14

TAU Project at the University of Oregon

0 Research and development effort spanning 30+ years %

0 Focus on parallel performance problems and technologies

0 Performance problem solving framework for HPC research

o Integrated, scalable, flexible, portable
o Target all parallel programming / execution paradigms

0 Integrated performance toolkit (TAU Performance System®)
o Multi-level performance instrumentation
o Flexible and configurable performance measurement
o Widely-ported performance profiling / tracing system
o Performance data management and data mining
o Open source (BSD-style license)

0 Broadly used for performance analysis and engineering in complex
software, systems, applications

CUG 2023 15

TAU Performance System

0 Incorporates two performance toolkits

o Each provides measurement and analysis support
o TAU (Tuning and Analysis Utilities)

o APEX (Autonomic Performance
Environment for Exascale)

0 Daiffer 1in respects to observation perspective
o TAU: who 1s doing the “work™ (per thread measurement)

o APEX: what “work” (task) 1s done (per task measurement)
0 Used individually or together

CUG 2023

16

SOMA Framework with Astamth

_GPU .GPU _GPU .GPU
=+ = (ealies)
TS | APEX T. APEX TS APEX To | APEX

° % O) %®
[s%"ﬁ"A] [SOMA] e A [s%"&"AJ [scf)"'f\"/i'A]

client client { S OM AJ client client
[SOMA] L SOMA client {SOILIA] SOMA

SErver SErver J
performance application

RPC to performance service

Server server J
performance applicatio
D node ‘ rank

CUG 2023 Use MPI communicator splitting approach 17

{ SOMA }
SCTVCT

RPC to application service

performance application

Astaroth Performance Analysis with TAU

Exclusive time

5.15
5.088
3.544
3.007

2.994 |

2.637

simulation

27.5 1}

Il

225 1|

20.0 4}

17.5 1]

Threads

Ao |

10.0 1}

5.391

4.852

1.617 2.157 2696 3.235 3.774 4.313
Exclusive TIME (seconds)

CUG 2023

PNOARAONN
WAOWNNRON:
mmmmmmmmm
DOOONNNAD

il

S —r =1] 1

MPI Collective Sync
hipEventSynchronize
MPI_Barrier()
simulation
MPI_Init_thread()

&

inttaupreload_main(int, char **, char **)

hipMemcpyAsync
hipLaunchKernel
hipStreamQuery
MPI_Isend()

hipStream Synchronize
MPI_Wait()
MPI_Allreduce()
hipStream CreateWithPriority
MPI_Finalize()
hipEventElapsedTime
hipMemcpy
hipDeviceSynchronize
hipEventRecord
hipMemcpyToSymbolAsync
MPI_Test() [THROTTLED]
hipStreamDestroy
pthread_join

hipFree

hipMallocHost
MPI_Irecw()

pre-update
hipSetDevice
MPI_Bcast()
post-update
hipEventDestroy
hipEventCreate
hipGetDeviceProperties
hipGetLastError
MPI_Test()

hipMalloc
MPI_Comm_rank()
MPI_Comm _split()
MPI_Cancel()

.TAU application
MPI_Comm __free()
hipDeviceGetStream PriorityRange
hipPeekAtLastError
MPI_Comm_size()
MPI_Get_processor_name()
MPI_Type_size()
hipDeviceSetSharedMem Config

-
-

Application events (<{3)
(instrument w/ Perfstubs):
> pre-update

> simulation

> post-update

Mean time spent per Astaroth
function across all ranks for an
Astaroth execution on LUMI-G
(16-node, 128-GPU, 128 ranks)

Inset shows the distribution of the
simulation timer across ranks

18

Astaroth Performance Analysis with Apex

CUG 2023

hipLaunchKernel
calls: 270000.0

GPU: kernel_pack_data(VertexBufferArray, HIP_vector_type<int, 3u>, HIP_vector_type<int, 3u>, double*)
calls: 54000.0

threads: 1.0

time: 1.6518152518125

=

GPU: kernel_unpack_data(double const®*, HIP_vector_type<int, 3u>, HIP_vector_type<int, 3u>, VertexBufferArray)
calls: 54000.0

threads: 1.0

time: 1.632844011484375

>

GPU: twopass_solve_final
calls: 81000.0

threads: 1.0
time: 2.399046825640625

hipMemcpyAsync
calls: 108000.0
threads: 1.0

hipMemcpyToSymbolAsync
calls: 162000.0

threads: 1.0

time: 8.3977500976875

hipSetDevice

calls: 181000.0

threads: 1.0

time: 0.173515476734375

hipStreamQuery
calls: 501221.5625

threads: 1.0
time: 5.954203896140625

hipStreamSynchronize
calls: 216000.0

threads: 1.0

time: 5.907504981453125

int MPI_Irecv(void *, int, MPI_Datatype, int, int, MPI_Comm, MPI_Request ¥*)
calls: 54000.0

threads: 1.0

total recv bytes: 74096640000 .0

mean recv bytes: 1372160.0

mode recv bytes: 3932160.0

bytes per call: 1372160.0

time: 0.190635449390625

threads: 1.0
time: 4.9382329944375
time: 1.179405924890625 . GPU: CopyHostToDevice
calls: 54000.0

Y

threads: 1.0
time: 4.31750864221875

GPU: twopass_solve_intermediate
calls: 81000.0

threads: 1.0
time: 27.1508375884375

GPU: CopyDeviceToHost
calls: 54000.0

threads: 1.0
time: 4.49611332103125

int MPI_Isend(const void *, int, MPI_Datatype, int, int, MPI_Comm, MPI_Request *)
calls: 54000.0

threads: 1.0

total send bytes: 74096640000.0

mean send bytes: 1372160.0

mode send bytes: 3932160.0

bytes per call: 1372160.0

time: 6.51031881834375

int MPI_Wait(MPI_Request *, MPI_Status *)
calls: 52920.0

threads: 1.0

time: 0.024601059203125

hipMemcpyAsync

calls: 162000.0

threads: 1.0

time: 7.77314356134375

GPU: CopyHostToDevice
calls: 162000.0

threads: 1.0

time: 0.663538037

Mean taskgraph from Astaroth benchmark with
64 ranks on LUMI-G, showing pruned sub-tree
rooted at simulation event with both MPI and

HIP API calls as well as the GPU activity

Astaroth Performance Scaling

)
S

160 +

140 {1 x

120 +

100 +

80 4

60 -

40

20 A

0

=

—— post-update

- post-update ideal scaling
—— simulation

- simulation ideal scaling
—»— pre-update

.

8

16

32

GPUs

64 128 256

)
S

140000 1

120000 A

100000 A

80000 -

60000 -

40000 A

20000 H

post-update
- post-update ideal scaling
MP|_Allreduce

0

8

16

32

GPUs

0 Scaling behavior of the simulation and GPU activity

0 GPU kernel has near pertect scaling
o Additional overheads in the timers

o Not accounted for by MPI or HIP calls

CUG 2023

64

128 256

20

Conduit Data Models for Astaroth Monitoring

TAU performance data

{
TAU:

MP1I:
Allreduce: fpo64, fp64,
MPI_Wait: fp64,
Application Functions:
Foo: fpo64,
Counters:
MPI_Message_Sizes:

Astaroth diagnostic data

{
pid: uint32,
timestep: uint64,
simulation_time: fpé64,
local_mass: fpo64,
FIELD 1: {
min: { value: fp32, location:
max: { value: fp32, location:
nan: { value: bool, location:

} s
FIELD 2: { min: ..., max:

e o o ,

}

[uint16]
[uint16]
[uint16]

x 3},
x 3 1},
X 3 }

1 TAU performance data model 1s application agnostic

1 SOMA also accepts any Conduit Node schema

CUG 2023

21

Monitoring Overhead Experiment Setup

Name System CPU Total CPU Cores | Memory (GB) | # GPUs GPU Arch
LUMI-G HPE Cray EX AMD EPYC 7653 64 512 8 MI250X
MAHTI | Atos BullSequana XH2000 | AMD Rome 7H12 128 256 4 NVIDIA A100

o LULESH a Astaroth
o Mahti o LUMI-G

o 1,4,8 nodes
o Scaled problem size

(total elements) per rank

o Varied monitoring

CUG 2023

frequency

o 1,2,4,8,16 nodes

(8,16,32,64,128 GPUs)

o Increased global grid
dimensions for strong
scaling

22

Monitoring Overhead - LULESH

Elapsed Time (seconds)

280

270

260

250

240

230

220

Comparing Execution Time (s) for Different Configurations of LULESH and SOMA Servers

Monitoring Frequency
— 0
1
— 5
— 50
Configuration
—— Node-Local
——- Remote
-------- Baseline

Number of Application Nodes

Overhead Percent

0.06

0.05

0.04

0.03

0.02

0.01

0.00

Comparing Overhead Percentages for Different Configurations of LULESH and SOMA Servers

Monitoring Frequency
— 0
1
— 5
— 50

® Configuration

—— Node-Local
——- Remote
-------- Baseline

Number of Application Nodes

0 Node-local and remote configurations of SOMA and LULESH

o 64 ranks per node

o CSC Maht (128 CPU cores per node)

CUG 2023

23

Monitoring Overhead - Astaroth

44

42

N
o

Elapsed Time (seconds)
w
oo

w
(o2}

34

32

Comparing Execution Time (s) for Different Configurations of Astaroth and SOMA Servers

Perf Monitoring Frequency
— 0
5

— 50 o

Configuration }
—— Node-Local B
—-—- Remote T
........ Baseline /

2 4 6 8 10 12 14
Number of Application Nodes

Overhead Percent

0.3

0.2

0.1

0.0

Comparing Overhead Percentages for Different Configurations of Astaroth and SOMA Servers

Perf Monitoring Frequency \ ,

— 0 \ 4
S AN /

— 50 \ %

Configuration s ’
—— Node-Local \ ,
=== Remote AN
-------- Baseline

2 4 6 8 10 12 14
Number of Application Nodes

16

0 Node-local and remote configurations of SOMA and Astaroth

o 8 ranks per node

a CSC LUMI-G (64 CPU cores per node)

CUG 2023

24

Astaroth Mass Conservation Diagnostics

250 1 250 1 Bl rank 14
1040-
200 A 200 A 10344
0 28
: T ————— z 5 10
g 19071 e ——— g 190 &
— 1 —~ 1022
© © ©
o e S o
'S 1.0/0 | S 100 S 1016
1
1010
50 - 50
104_
0 - 0 - = S— .- =
0 2500 5000 7500 10000 12500 15000 0 2000 4000 6000 10000 10100 10200 10300 10400
timestep timestep timestep

a Shaded regions are the local mass in a rank over simulation
a Left: Mass 1s conserved (healthy simulation)
O Middle: Time step too large and mass disappears (bad simulation)

O Right: Viscosity too low resulting in numerical instability
and mass gain (bad simulation)

CUG 2023 25

Astaroth Density Extrema Diagnostics

— rank 14
0.06_ 4_ 0.10'
0.04-
2 0.05
o 0.02 g oy
: < 0 g
< 0.007 i‘ a E:N = W00 —
~ —0.02 - L1 TR Gl M =21
e R ~0.05-
ot
-0.04 1 f T A PLURY Y
ol —4
O 06. \’ O.lo
| .
0 2500 5000 7500 10000 12500 15000 0 2000 4000 6000 0 2000 4000 6000 8000 10000
timestep timestep timestep

a Density evolution same three simulations
O Each gray curve 1s a min or max of a rank's density field over simulation

O Left: Density field develops naturally (no systematic error)
O Middle: Density systematically decreases in the system (bad)
O Right: Catastrophic mass increase due to a numerical instability

CUG 2023 26

Conclusion

0 Early results from a productive collaborative effort
0 Successful integration of Astaroth with TAU/APEX

o More to be done on kernel tasking measurements

0 SOMA approach for observability proves promising
o Look at different configurations and evaluate performance
o Investigate use of asynchronous RPC

o Additional opportunities to run at larger-scale
o Potential for feedback between Astaroth and SOMA

0 Leverage other Mochi-based infrastructure for Astaroth

CUG 2023 27

