
Observability, Monitoring, and In Situ
Analytics in Exascale Applications

Dewi Yokelson1, Oskar Lappi2, Srinivasan Ramesh5

Miika Väisälä3, Kevin Huck1, Touko Puro2

Boyana Norris1, Maarit Korpi-Lagg2,4, Keijo Heljanko2, Allen D. Malony1

Institute of Astronomy & Physics
Academia Sinica, Taiwan3

University of Oregon
Eugene, Oregon, USA1

University of Helsinki
Helsinki, Finland2

NVIDIA Corporation
Santa Clara, California, USA5

Aalto University
Espoo, Finland4

2CUG 2023

Motivation
q Heterogeneous HPC for exascale computing

❍ Concerns for performance variability and performance portability
q Important to integrate HPC performance analysis technologies

❍ Robust scalable and portable performance tools
❍ Standard post-mortem analysis can miss interesting dynamics

q Growing interest in greater observability of HPC applications
❍ Online observation (measurement) + monitoring + analytics
❍ HPC applications are not generally designed to be observable

q Consider how to build performance observation support
❍ Integrate TAU Performance System with Astaroth application
❍ Design service-based observation, monitoring, analysis (SOMA)
❍ Create SOMA prototype and test with Astaroth on LUMI

3CUG 2023

Opportunity
q Fulbright-Nokia Distinguished Chair

❍ Study performance of HPC scientific and
big data applications on LUMI supercomputer

❍ University of Helsinki (Prof. Keijo Heljanko)
❍ CSC–IT Center for Science (TAU on LUMI)

q Collaboration with Prof. Maarit Korpi-Lagg
❍ Department of Computer Science, Aalto University
❍ Developing LUMI-G application (LUMI-G pilot)

◆ magnetized astrophysical plasmas based on Astaroth
❍ Began work together in January 2023

q Paper reports research progress thus far

4CUG 2023

Introduction to Astaroth
q Multi-GPU high-order stencil library

❍ Host-level interface (C, C++, Fortran)
❍ Domain specific language (DSL) for physics
❍ Multi-GPU MPI (GPUDirect RDMA)

q Magnetized astrophysical plasmas framework
❍ Magnetohydrodynamics (MHD) regime

q Astaroth operates in SPMD manner
❍ One MPI rank per GPU device
❍ LUMI-G node has 4x AMD MI250x GPUs (8 “devices”)
❍ No explicit CPU multithreading
❍ Logical tasking and scheduling of GPU kernels

q Astaroth-based LUMI-G pilot “hero run”
❍ 16K devices (2K nodes) for 12 hours Magnetic field lines (dark red streamlines)

and intensity (volume-rendered colours) in
a dynamo-active Astaroth simulation

5CUG 2023

Astaroth Motivation for In Situ
q Astaroth allows unprecedented resolution

❍ Analysis and movement of data major bottleneck
❍ Need more in situ data reduction and analytics

q Framework solves PDEs for MHD
❍ Continuity, angular momentum, entropy, induction
❍ Conditions in astrophysical plasmas
❍ Non-conservative versus flux-conserving

q Methods used do not necessarily guarantee conserved quantities
are accurate to the machine precision
❍ Conserved up to the discretization error
❍ However, requires constant monitoring of the conserved

quantities during execution

6CUG 2023

SPMD HPC Applications and Monitoring
q SPMD is the dominant HPC programming model

❍ Shared memory parallelism (e.g., OpenMP)
❍ Distributed memory parallelism (e.g., MPI)
❍ Accelerator parallelism (e.g., CUDA, HIP)

q Performance tools mainly developed for SPMD applications
q Integrating monitoring infrastructure is problematic

❍ Difficult to express monitor operations in SPMD model
❍ Requires asynchronous execution and dynamic resource use
❍ Encounters implementation restrictions with MPI or systems

q Limits ability to take advantage of underutilized capacity

7CUG 2023

Special Case of Free Cores
q Heterogeneous accelerated-node applications emphasize GPU use

and could leave CPU cores idle
q How to take advantage for monitoring purposes
q Consider MPI application with following attributes:

❍ R total ranks on N nodes (r=R/N ranks per node)
❍ C CPU cores per node (c cores unused by application)
❍ Desire M total monitoring processes (m=M/N per node)

q How to create monitoring processes and configure them?
❍ Solution A: Splitting of MPI_Comm_World
❍ Solution B: Using MPI MPMD support (if available)
❍ Solution C: Running separate programs with job scheduler

q Different solutions have different tradeoffs

8CUG 2023

High-Performance Services
q Creating monitoring processes is only part of solution
q How to run monitor code and interact with application?
q HPC data services emerged for couple HPC codes

❍ High-performance microservice technologies
❍ Utilize interconnection technology and fabrics

q Mochi software stack for developing data services
❍ Argonne National Lab (https://www.mcs.anl.gov/research/projects/mochi/)

❍ Mochi used in HPC data and visualization services

https://www.mcs.anl.gov/research/projects/mochi/

9CUG 2023

Mochi Software Stack
q Mercury RPC library

❍ High-performance
❍ RDMA

q Argobots
❍ Light-weight threading
❍ High concurrency

q Margo
❍ Programming abstraction for Mercy

q Thallium
❍ Header-only C++ interface to Margo

10CUG 2023

Prior Research with Mochi
q Investigate Mochi microservices for observability
q SYMBIOMON demonstrated monitor was possible

❍ Deployed internally in Mochi
❍ Not flexible enough for general purpose

q SERVIZ applied approach to in situ visualization
❍ Highlighted data models in microservices
❍ Utilized Conduit technology for visualization data
❍ Not developed as a monitoring solution

q Seer in situ analysis with Jupiter frontend
q Colza elastic in situ visualization of HPC simulations

11CUG 2023

Conduit
q What data is sent and how it is represented?
q Conduit designed to simplify data

description and sharing across HPC sim tools
❍ Provides an API for data description
❍ C, C++, Python, Fortran interfaces

q Hierarchical variant type call a Node
❍ Capture and represent arbitrary nested data

q Use Conduit to represent performance data
❍ TAU and APEX profiles

q Use Conduit to represent application diagnostic data

12CUG 2023

SOMA Framework
q Consider a service-based observation, monitoring, and

analysis (SOMA) framework
q Implement using Mochi technology

❍ Create “collector” client within an application rank
◆ gathers performance data to send by RPC to monitoring layer

❍ Create “collector” service instance to receive data
◆ endpoint of RPC

❍ Configure clients and service with application
◆ Discovery and registration

q Use Conduit for performance and application data
q Develop SOMA programming stack and API

14CUG 2023

SOMA Configuration Examples

15CUG 2023

TAU Project at the University of Oregon
q Research and development effort spanning 30+ years
q Focus on parallel performance problems and technologies
q Performance problem solving framework for HPC research

❍ Integrated, scalable, flexible, portable
❍ Target all parallel programming / execution paradigms

q Integrated performance toolkit (TAU Performance System®)
❍ Multi-level performance instrumentation
❍ Flexible and configurable performance measurement
❍ Widely-ported performance profiling / tracing system
❍ Performance data management and data mining
❍ Open source (BSD-style license)

q Broadly used for performance analysis and engineering in complex
software, systems, applications

16CUG 2023

TAU Performance System
q Incorporates two performance toolkits

❍ Each provides measurement and analysis support
❍ TAU (Tuning and Analysis Utilities)
❍ APEX (Autonomic Performance

Environment for Exascale)
q Differ in respects to observation perspective

❍ TAU: who is doing the “work” (per thread measurement)
❍ APEX: what “work” (task) is done (per task measurement)

q Used individually or together

17CUG 2023

SOMA Framework with Astaroth

Use MPI communicator splitting approach

18CUG 2023

Astaroth Performance Analysis with TAU

Mean time spent per Astaroth
function across all ranks for an
Astaroth execution on LUMI-G
(16-node, 128-GPU, 128 ranks)

Inset shows the distribution of the
simulation timer across ranks

Application events ()
(instrument w/ Perfstubs):
Ø pre-update
Ø simulation
Ø post-update

Exclusive time

19CUG 2023

Astaroth Performance Analysis with Apex

simulation
calls: 1000.0
threads: 1.0
time: 46.08879848129688

hipLaunchKernel
calls: 270000.0
threads: 1.0
time: 2.399046825640625

hipMemcpyAsync
calls: 108000.0
threads: 1.0
time: 1.179405924890625

hipMemcpyToSymbolAsync
calls: 162000.0
threads: 1.0
time: 8.3977500976875

hipSetDevice
calls: 181000.0
threads: 1.0
time: 0.173515476734375

hipStreamQuery
calls: 501221.5625
threads: 1.0
time: 5.954203896140625

hipStreamSynchronize
calls: 216000.0
threads: 1.0
time: 5.907504981453125

int MPI_Irecv(void *, int, MPI_Datatype, int, int, MPI_Comm, MPI_Request *)
calls: 54000.0
threads: 1.0
total recv bytes: 74096640000.0
mean recv bytes: 1372160.0
mode recv bytes: 3932160.0
bytes per call: 1372160.0
time: 0.190635449390625

int MPI_Isend(const void *, int, MPI_Datatype, int, int, MPI_Comm, MPI_Request *)
calls: 54000.0
threads: 1.0
total send bytes: 74096640000.0
mean send bytes: 1372160.0
mode send bytes: 3932160.0
bytes per call: 1372160.0
time: 6.51031881834375

int MPI_Wait(MPI_Request *, MPI_Status *)
calls: 52920.0
threads: 1.0
time: 0.024601059203125

GPU: kernel_pack_data(VertexBufferArray, HIP_vector_type<int, 3u>, HIP_vector_type<int, 3u>, double*)
calls: 54000.0
threads: 1.0
time: 1.6518152518125

GPU: kernel_unpack_data(double const*, HIP_vector_type<int, 3u>, HIP_vector_type<int, 3u>, VertexBufferArray)
calls: 54000.0
threads: 1.0
time: 1.632844011484375

GPU: twopass_solve_final
calls: 81000.0
threads: 1.0
time: 4.31750864221875

GPU: twopass_solve_intermediate
calls: 81000.0
threads: 1.0
time: 27.1508375884375

GPU: CopyDeviceToHost
calls: 54000.0
threads: 1.0
time: 4.9382329944375

GPU: CopyHostToDevice
calls: 54000.0
threads: 1.0
time: 4.49611332103125

hipMemcpyAsync
calls: 162000.0
threads: 1.0
time: 7.77314356134375

GPU: CopyHostToDevice
calls: 162000.0
threads: 1.0
time: 0.663538037

Mean taskgraph from Astaroth benchmark with
64 ranks on LUMI-G, showing pruned sub-tree
rooted at simulation event with both MPI and
HIP API calls as well as the GPU activity

20CUG 2023

Astaroth Performance Scaling

q Scaling behavior of the simulation and GPU activity
q GPU kernel has near perfect scaling

❍ Additional overheads in the timers
❍ Not accounted for by MPI or HIP calls

21CUG 2023

Conduit Data Models for Astaroth Monitoring
TAU performance data Astaroth diagnostic data

q TAU performance data model is application agnostic
q SOMA also accepts any Conduit Node schema

22CUG 2023

Monitoring Overhead Experiment Setup

q LULESH
❍ Mahti
❍ 1,4,8 nodes
❍ Scaled problem size

(total elements) per rank
❍ Varied monitoring

frequency

q Astaroth
❍ LUMI-G
❍ 1,2,4,8,16 nodes

(8,16,32,64,128 GPUs)
❍ Increased global grid

dimensions for strong
scaling

23CUG 2023

Monitoring Overhead - LULESH

q Node-local and remote configurations of SOMA and LULESH
❍ 64 ranks per node

q CSC Mahti (128 CPU cores per node)

24CUG 2023

Monitoring Overhead - Astaroth

q Node-local and remote configurations of SOMA and Astaroth
❍ 8 ranks per node

q CSC LUMI-G (64 CPU cores per node)

25CUG 2023

Astaroth Mass Conservation Diagnostics

q Shaded regions are the local mass in a rank over simulation
q Left: Mass is conserved (healthy simulation)
q Middle: Time step too large and mass disappears (bad simulation)
q Right: Viscosity too low resulting in numerical instability

and mass gain (bad simulation)

26CUG 2023

Astaroth Density Extrema Diagnostics

q Density evolution same three simulations
❍ Each gray curve is a min or max of a rank's density field over simulation

q Left: Density field develops naturally (no systematic error)
q Middle: Density systematically decreases in the system (bad)
q Right: Catastrophic mass increase due to a numerical instability

27CUG 2023

Conclusion
q Early results from a productive collaborative effort
q Successful integration of Astaroth with TAU/APEX

❍ More to be done on kernel tasking measurements
q SOMA approach for observability proves promising

❍ Look at different configurations and evaluate performance
❍ Investigate use of asynchronous RPC
❍ Additional opportunities to run at larger-scale
❍ Potential for feedback between Astaroth and SOMA

q Leverage other Mochi-based infrastructure for Astaroth

