
Integration of Modern HPC Performance Analysis
in Vlasiator for Sustained Exascale

Camille Coti1, Yann Pfau-Kempf3, Markus Battarbee3, Urs Ganse3, Sameer Shende2, Kevin Huck2

Jordi Rodriquez2, Leo Kotipalo3, Allen D. Malony2, Minna Palmroth3,4

1École de Technologie Supérieure 2University of Oregon 3University of Helsinki
Montréal, Québec, Canada Eugene, Oregon, USA 4Finnish Meteorological Institute

Helsinki, Finland

Abstract—Key to the success of developing high-performance
applications for present and future heterogeneous supercom-
puters will be the systematic use of measurement and analysis
to understand factors that affect delivered performance in the
context of parallelization strategy, heterogeneous programming
methodology, data partitioning, and scalable algorithm design.
The fact is that the evolving complexity of future exascale
platforms makes it unrealistic for application teams to implement
their own tools. At the same time, it is naı̈ve to expect available ro-
bust performance tools to work effectively out-of-the-box, without
integration and specialization in respect to application-specific
requirements and knowledge. Our work reported here took
advantage of an opportunity to integrate the TAU Performance
System technologies (TAU and APEX) with a leading plasma
physics code, Vlasiator, which is being ported to the LUMI HPC
system for advanced modeling of the Earth’s magnetosphere and
surrounding solar wind. Building on a preexisting performance
API, we successfully enhanced the performance measurement
and analysis capabilities in Vlasiator with the TAU and APEX
tools. Results from initial LUMI performance experiments are
presented and lessons learned from our experience offered as
possible guidance to other related endeavors.

INTRODUCTION

The dawn of exascale computing brings significant chal-
lenges to the development and optimization of advanced sci-
entific applications incorporating state-of-the-art multiphysics
modeling and parallel simulation. The convergence of het-
erogeneous architectures, massive parallelism, highly-scalable
interconnects, and integrated I/O capabilities is delivering
facilities of extreme computational power. However, harness-
ing exascale systems for real-world workloads will require
sustained application performance. In many cases, codes will
need to be (re-)developed with hybrid programming meth-
ods to address heterogeneity complexities and performance
portability objectives. Furthermore, the factors contributing
to performance behavior and scaling efficiency will make
performance variability more acute. Thus, to achieve sustain-
able exascale applications, it will be important to integrate
performance analysis technologies and engineering methods
that have been built to work in exascale environments.

The paper reports on an ongoing collaboration to integrate
exascale performance tools with a leading scientific appli-
cation being ported to the EU’s flagship supercomputer in

Finland. The Large Unified Modern Infrastructure (LUMI)
is an HPE Cray EX supercomputer that is the #3 machine
on the Top500 [1] at this time. In addition to helping to
produce a sustainable exascale-targeted application, we believe
the contributions anticipated from this integration will offer
useful guidance and approaches for other exascale application
projects.

The TAU project at the University of Oregon has developed
a rich suite of performance measurement and analysis tools
for high-performance computing (HPC), specifically the TAU
Performance System® composed of the Tuning and Analysis
Utilities (TAU) [2] and the Autonomic Performance Environ-
ment for eXascale (APEX) [3]. These tools are continuously
being updated and made ready for exascale systems. The Vlasi-
ator project [4]–[6] at the University of Helsinki is developing
a next-generation simulation software for modeling the space
plasma environment of the Earth. The two project teams have
been working together since summer 2022 to incorporate TAU
and APEX in Vlasiator and conduct performance analysis and
tuning on LUMI. An early result from our efforts included
adapting a legacy performance API (Phiprof) to work with
TAU and APEX measurement systems. This was an important
step that enabled the Phiprof events instrumented by the
Vlasiator team to be seen as meaningful events with semantic
context by which to organize and interpret the now broader
scope of performance data that could be collected.

The paper makes the following research contributions:
• Design and implementation of the Vlasiator Phiprof API

for performance instrumentation to operate with TAU and
APEX measurement systems.

• Integration of TAU and APEX with Vlasiator and vali-
dation of Phiprof measurement with performance obser-
vation support TAU and APEX can provide (e.g., MPI,
OpenMP, hardware counters, profiling/tracing).

• Running of initial Vlasiator performance experiments on
HPC systems, in particular LUMI-C (CPU partition), to
gain experience in using the tools, explore interesting
performance outcomes, and inform directions for further
performance analysis.

• Progress on Vlasiator porting to LUMI-G (GPU partition)
and performance tool requirements.

The organization of the paper is as follows. Section§I describes
the Vlasiator application and outlines its performance anal-
ysis challenges. Section§II describes the TAU Performance
System. Our work to adopt the Phiprof API is discussed in
Section§III. Some of the early experiments with Vlasiator and
its new integrated performance support on LUMI are reported
in Section§IV. We emphasize here more of the process of
learning about the tools and how best to apply them, instead of
focusing necessarily on optimization outcomes. Related work
is presented in Section§V and Section§VI gives conclusions
and outlines future work.

I. VLASIATOR

A. Overview

Vlasiator is a simulation software for modeling the colli-
sionless space plasma physics of the Earth’s magnetosphere
and surrounding solar wind. The understanding of the in-
teraction of the solar wind and its perturbations such as
coronal mass ejections originating from the Sun is critical in
improving the prediction capabilities for space weather. The
latter comprises all phenomena in and from space that have
potential impacts on human life and technology, such as GNSS
perturbations or ground-induced currents.

Fig. 1. Vlasiator simulation of the interaction of the supersonic solar wind
with the Earth’s magnetosphere. A shock and sheath form, encompassing
the magnetosphere, in three spatial dimensions. The insets highlight the
phase-space density distribution in the three velocity dimensions at selected
locations.

B. Numerical model

Describing space plasma phenomena requires equations
modeling the behavior of charged particles in dynamic elec-
tromagnetic fields. Direct numerical simulation based on New-
ton’s and Maxwell’s equations is intractable for a macroscopic
system, hence the use of statistical approaches to derive
more suitable equations. Vlasiator simulates the evolution of
ion phase-space density using the collisionless Boltzmann
equation under the exclusive action of electromagnetic fields,
also known as the Vlasov equation. By neglecting the short
space- and time-scale dynamics of the much lighter electrons,
the method becomes what is called the hybrid-Vlasov model
of plasma physics, used to simulate the behavior of ions, and

in the context of the solar wind primarily protons (H+ ions).
[4].

The Vlasov equation can be understood as a six-dimensional
advection equation, where flows in 3D position space are
governed by the velocity of plasma, and flows in 3D velocity
space (i.e., acceleration) are governed by the acceleration
provided by the Lorentz force acting on the ions. This logical
decomposition of the physics is reflected in the solution that is
split in separate spatial (translation) and velocity (acceleration)
steps that are intertwined in a leapfrog fashion [4], [7], [8].
These translation and acceleration solution steps use a semi-
Lagrangian approach [9] which helps in relieving the CFL
condition imposed by finite-volume methods. The ion velocity
distribution function is represented and propagated on an
adaptive Cartesian 3D-3V grid [10]. The spatial grid can be
cell-based refined to increase resolution in regions of interest
[11], either using parametrized regions or refining adaptively
during runtime [12]. The velocity grid is sparse, storing and
propagating ions only in regions of velocity space with non-
negligible phase-space density [5].

The closure of the equation system is provided by
Maxwell’s equations, solved by an upwind constrained-
transport electromagnetic field solver [13] that is computation-
ally lightweight compared to the 3D-3V Vlasov propagation.
Therefore the choice was made to keep the field solver acting
on a separate, uniform grid at a resolution matching the
AMR spatial grid’s finest resolution [14], [15]. The closure
of the Maxwell equation system enforces a fluid description
of electrons, the assumption of quasineutrality – the modeled
system cannot exhibit or sustain large-scale charge gradients,
and is represented through Ohm’s law with the Hall and
electron pressure gradient terms included [16].

C. Software

Vlasiator is written in C++17, hybrid parallelized, using
CPU SIMD vectorization, OpenMP threading, and decom-
position of simulation space over MPI domains, with the
Zoltan [17] library performing recursive coordinate bisection
or, more recently, recursive inertial bisection load-balancing
in the spatial domain based on the number of phase-space
cells to propagate in each spatial cell. Support for SIMT GPU
instructions is under development for both the Vlasov solvers
and the field solver.

D. HPC-relevant characteristics

Compared to many other kinetic plasma simulation codes,
which are typically based on the Particle-in-Cell (PiC) method-
ology [18], which make up a significant fraction of HPC
resource use, Vlasiator’s Eulerian grid structure and cell-
based mesh refinement approach mean that the memory access
patterns and scalability challenges it faces are quite distinct.
The 3D-3V space would require massive resources in terms
of memory and computations if sampled uniformly to the full
physically potentially accessible extents. Therefore, Vlasiator
uses a sparse approach whereby the phase-space density is
stored only in regions above a set threshold (see Fig. 1 and

[5]). This means however that data is constantly moving
in physical space as well as memory, leading to continual
dynamics and e.g. the necessity to redefine MPI datatypes to
communicate the distribution function parts that move from
one task’s domain to the next at every step.

A further characteristic of (space) plasma simulations are
the large contrasts in plasma density and temperature, which
directly map to large contrasts in the absolute number of
sample points retained in 3V velocity space at different 3D
locations. Typically, these contrasts range about three orders of
magnitude between different regions of the simulation, directly
mapping to equivalent disparities in the computational load
distribution across the simulation domain. Figure 2 illustrates
the difference in domain size between computationally heavier
and lighter regions of the domain.

Fig. 2. Illustration of the 3D domain decomposition in a 3D-3V Vlasiator
run using recursive inertial bisection with Zoltan [17].

The historical development strategy of Vlasiator has been
to target the next-generation supercomputers, so that current
algorithmic development efforts allow to leverage planned
architectures. Figure 3 illustrates how the major milestones in
algorithm development have allowed to reach performance lev-
els compatible with the modeling of the Earth’s magnetosphere
on a coarse 2D-3V grid first, reaching higher resolutions
thanks to the use of the semi-Lagrangian solver, before finally
reaching the goal of modeling on a full 3D-3V grid after
the development of the adaptive grid solver. The next critical
breakthroughs, non-uniform timestepping across the domain
and the use of GPUs to accelerate the major Vlasov and field
solvers, will allow to extend the total physical time of the
simulations, so that typical magnetospheric events such as the
development of geomagnetic substorms will be achievable.

II. TAU PERFORMANCE SYSTEM

One truism of high-performance computing (HPC) is the
importance of assessing how well HPC systems meet the

2010 2012 2014 2016 2018 2020 2022 2024 2026

100

103

106

109

1012

1015

Coarse 2D

Hires 2D

3D

Sparse
 VDF

Semi-Lagrangian
 Vlasov solvers

Spatial AMR

Non-uniform
 timestepping

GPU

Estimated relative performance gains in Vlasiator
Top500 following Moore's Law
Vlasiator performance

Fig. 3. Estimated evolution of the relative performance of Vlasiator as a
function of time and major algorithmic improvements allowing to reach levels
required to model Earth’s magnetosphere in coarse and high-resolution 2D-3V,
and finally 3D-3V setups.

performance expectations of the applications that run on them.
It is about performance afterall. Fundamentally, parallelism in
its various forms in HPC hardware and software is what make
performance observability of actual parallel computations on
real HPC machines a hard problem. State-of-the-art perfor-
mance tools play an important role in helping to understand
application performance, diagnose performance problems, and
guide tuning decisions on modern parallel platforms. However,
performance tool technology must also respond to the growing
complexity of next-generation parallel systems and how they
are programmed in order to help deliver the promises of HPC.

Presently, the advances in HPC hardware and systems
have made it possible to develop parallel applications of
greater sophistication and power for purposes of achieving
more ambitious objectives in computational and data science
domains. With the potential for scalable parallelism, heteroge-
neous execution, massive concurrency, and low-latency/high-
bandwidth interconnection, applications try to maximize the
advantage these advances bring. Clearly, the evolution of
HPC technology and integration have increased the complexity
of this challenge. While new features in parallel languages,
programming tools, and runtime system environments can help
to transform existing applications or to develop new ones in
ways that leverage HPC’s strengths, they can also introduce
complexities of their own. At the end of the day, the goal of
gaining high performance is paramount, but productivity and
performance portability concerns are important as well.

The TAU Performance System consists of two toolkits:
the Tuning and Analysis Utilities (TAU) and the Autonomic
Performance Environment for Exascale (APEX). TAU and
APEX are based on different performance observability mod-
els and target different forms of parallel computation. They
are complementary and can be used standalone or together.
Each toolkit is described below. More attention is given to

TAU since it is used more in the Vlasiator experiments and
has a longer heritage.

A. TAU Technology

The TAU model of performance observability is based
on a “worker” (“first-person”) perspective. Essentially, each
thread of execution in a program will make performance
measurements with respect to its operation exclusively. All
performance data obtained will be stored within each thread’s
context during execution and produced at the end. From TAU’s
perspective, the execution of a program is regarded as a
sequence of significant performance events. TAU can observe
these events through probes inserted in the application code.
The combination of a flexible event model and alternative
instrumentation techniques developed in TAU results in a
powerful ability to capture events and their semantics that
might otherwise be intractable.

TAU supports several instrumentation mechanisms based
on the code type (e.g., source, binary/dynamic, interpreter,
and virtual machine) and is distinguished by its support
for combining different instrumentation methods. Over time,
TAU expanded its observation approach to include event-
based sampling (EBS) methods, where the “event” here is an
interrupt to the application’s execution. TAU’s EBS support
extends its observational fidelity to finer-grained code regions.
Both probes and statistical sampling (i.e., EBS) can be used
simultaneously in TAU.

Once “events” are made visible (via probes or sampling)
they can be measured. The TAU event interface allows events
to be defined, their visibility controlled, and their runtime
data structures to be created. Each event has a type (atomic
or interval), a group, and a unique event name. The event
name is a character string and is a powerful way to encode
event information. At runtime, TAU maps the event name to
an efficient event ID for use during measurement. Events are
created dynamically in TAU by providing the event interface
with a unique event name. This makes it possible for runtime
context information to be used in forming an event name
(context-based events), or values of routine parameters to be
used to distinguish call variants, (parameter-based events).
TAU also supports phase and sample events.

The measurement system is the heart and soul of TAU. It
has evolved over time to a highly robust, scalable infrastructure
that is portable to all HPC platforms. The instrumentation layer
defines which events will be measured and the measurement
system selects which performance data metrics to observe.
Performance experiments are created by selecting the key
events of interest and by configuring measurement modules
together to capture desired performance data. TAU’s measure-
ment system provides support for portable timing, integration
with hardware performance counters (e.g., PAPI [19] parallel
profiling, parallel tracing (with OTF-2 [20]), and runtime
monitoring). Given the rise of heterogeneous computing in
HPC, TAU’s measurement infrastructure has been extended
to support performance observation of accelerator devices,
primarily GPUs [21].

TAU’s measurement system has two core capabilities. First,
the event management handles the registration and encoding
of events as they are created. Second, a runtime representation
called the event callstack captures the nesting relationship of
interval performance events on each thread. It is a power-
ful runtime measurement abstraction for managing the TAU
performance state for use in both profiling and tracing. In
particular, the event callstack is key for managing execution
context, allowing TAU to associate this context with the events
being measured.

The final component of TAU is analysis tools. TAU includes
support for parallel profile data management (TAUdb [22]),
analysis (ParaProf [23]), and data mining (PerfExplorer [24]).
It leverages existing trace analysis functionality available in
robust external tools, including Vampir [25], Jumpshot [26],
and Expert/CUBE [27].

TAU’s observation model, measurement technology, and
analysis tools make it highly flexible and configurable, al-
lowing it to be ported to different HPC and systems and
applied in a variety of HPC applications. It takes advantage of
state-of-the-art performance interfaces for accessing hardware
data (e.g., PAPI) and capturing events (e.g., PMPI, OMPT,
Level Zero, ROCprofiler, ROCtracer, OpenCL, CUPTI, and
Kokkos [28]). Furthermore, TAU has been complemented by
additional work by our team to develop technology for a
plugin interface [29], support for MPI Tools interface [30], and
generic performance interfaces that can be utilized by multiple
tools (i.e., PerfStubs [31]).

Mature software engineering practices ensure that the TAU
software remains portable, scalable, compatible, stable, and
ultimately viable for the long term. For instance, the TAU
API is a thin layer implemented as C++ macros that are
inlined and easily integrated in instrumented code. Without
special compilation flags, the API can be expanded to no-ops
and so instrumented code can retain the API. While much
of its implementation has evolved over the past two decades,
its user-facing interface has remained consistent and stable.
The core TAU API is accessible through wrappers for C,
Fortran, and Python and TAU supports other languages such as
Chapel, UPC++, and Java as well. This backward and forward
compatibility of software is one of the features that sets TAU
apart in preserving compatibility between versions and allows
data generated at multiple sites with different versions of TAU
to be analyzed by a user on some other system.

TAU’s ability to insert probes in the code and perform
measurement in un-modified binaries using the tau exec tool
has helped its broad adoption. This tool preloads the TAU
dynamic shared object (DSO) in the address space of the
application and allows the tool to intercept runtime system
calls and enable other features of TAU (such as callstack
unwinding, event-based sampling, and tracing). A similar tool,
tau python, supports instrumentation of Python applications
by acting as a drop-in replacement for the Python interpreter.
In both these cases, TAU’s ability to generate performance data
without modifying the application source code, build system,
scripts, or the binary helps users easily generate performance

data by simply modifying the launch command.
TAU’s components are integrated in a modular way where

one module does not impact the other and well defined inter-
faces allow the user to configure and assemble a set of modules
that match the runtime systems, compilers, and languages used
by the application to allow TAU instrumentation to easily
blend into the application and extract the performance data.
The low-level systems skills and mature software engineering
practices developed by the TAU team has also helped in
merging its technology with application development.

B. APEX Technology

APEX [3] is based on a “task” (“third-person”) performance
observability perspective, with event-based (synchronous) and
sample-based (asynchronous) measurements. It was originally
designed to support the specific needs of HPX, an asyn-
chronous manytask runtime system implemented in C++.
HPX exposed difficult observability problems associated with
emerging programming models of this type: untied task ex-
ecution and migration, runtime thread control and execution,
state sampling, and runtime performance tuning. These present
problems for measurement tools that are designed to handle
critical paths with respect to a calling context tree. While
APEX can and does keep track of calling context trees, it
also has the ability to track task dependencies across threads
and devices.

APEX uses an event API and event listeners to observe
when a task is created, started, yielded or stopped, and update
timers for measurement of these actions. (Note, this is with
respect to what constitutes a task, not necessarily its thread of
execution.) Dependencies between tasks are also tracked, using
globally unique identifiers (GUID). APEX periodically and
on-demand interrogates (samples) OS, hardware, or runtime
states (e.g., CPU utilization, resident set size, memory “high
water mark”). APEX measurement includes background buffer
processing to record GPU kernel execution and memory
transfers to and from GPUs. Available runtime counters (e.g.,
idle rate, queue lengths) are also captured on-demand or on a
periodic basis.

With its performance observability model, APEX provides
much of the measurement and programming model coverage
offered by TAU. APEX is integrated with PAPI for both
CPU and GPU hardware counter access. Additionally, it takes
advantage of Linux perf event counters, uncore counters, LM
sensors, power and energy counters. APEX supports GPU
memory tracking for both CUDA and HIP programs. It keeps
track of all GPU memory allocations and records the number
of bytes allocated, the address returned by the allocator, and
the backtrace from when the allocation occurred.

APEX has native support for performance profiling, in
which all tasks scheduled by the runtime are measured and
a report is output to disk and or the screen at the end of
execution. The profile data contains the number of times
each task was executed and the total time spent executing
that type of task. The profile data also contains all of the
sampled counters encountered during execution. Each process

maintains its own profile data, and writes a different output
in various optional formats, including TAU profiles or CSV
files. In addition, APEX provides a concurrency view with the
concurrency listener, which will periodically sample the timer
stack on all known OS threads. The samples are written to a
file at the end of execution. APEX can also capture the task
dependency relationships. The dependencies can be captured
as a graph or a tree, and the data can be stored as a TAU
callpath profile, task dependency trees in ASCII text, and other
forms. APEX is integrated with the OTF2 library for tracing.

Both C++ threads std::thread, std::async, and
POSIX C threads can be measured by APEX. Like TAU, it
incorporates the profiling interfaces for OpenMP, OpenACC,
CUDA, and HIP. In addition to timing events, APEX will
capture how many bytes were transferred to and from events
as well as the asynchronous device activity. APEX also
implements support for Kokkos and RAJA.

III. PROFILING INTERFACES IN VLASIATOR

A. The Phiprof interface

Phiprof [32] is a simple library that can be used to profile
parallel programs using either MPI, OpenMP or both. It can
be used to produce a hierarchical report of time (average, max,
min) spent in different timer regions. It supports C, C++ and
Fortran 2008. It also supports registering phiprof ranges as
NVTX ranges. A key feature is its low overhead (less than
1µs per call), allowing its use in loops. It prints the timings as
a human-readable hierarchical report when user code requests
it and automatically handles cases where groups of processes
execute different codepaths.

Phiprof has been integrated into Vlasiator early during code
development to enclose important sections of execution. These
include, for example, initialization of the run, the main prop-
agation loop, IO operations, as well as important algorithmic
blocks such as spatial propagation and field solving steps.
The instrumentation of the code was guided by estimations
of regions that would be computationally expensive, as well
as a striving to obtain profile reports that did not include
significant fractions of timers not covered by named regions.
Those get collected automatically under the last sub-timer
“Other” in each timer level. However, as it relies on user-
defined timer regions, it is not capable of drawing the user’s
attention to unexpected performance discrepancies. A selection
of hierarchical profiling regions from Vlasiator is shown in
Table I.

B. Support in TAU and APEX

We integrated the Phiprof interface in TAU and APEX to
make it possible to take advantage of their infrastructure while
using the Phiprof interface. Among these features, we can
mention hierarchical performance profiling, and its visualiza-
tion using TAU’s tool paraprof. In the screenshot presented
Figure 4, we can see that the Vlasiator programmers defined
high-level timers that have a meaning in the lifetime of the
execution: initialization, simulation, finalization, and report. In
the simulation itself, they defined timers for operations related

Level Label Brief description
1 main Program main() function
2 Initialization Grid and solver setup
2 report-memory-consumption Function reporting node memory usage
2 Simulation Main loop
3 IO Data and bookkeeping IO operations
3 Propagate Actual plasma and electromagnetic field propagation
4 Spatial-space Position space advection
4 Update system boundaries (Vlasov post-translation) Post-advection update of boundary cells
4 Compute interp moments Interpolation of density/velocity/pressure between advection and acceleration
4 Propagate Fields Electric and magnetic field update
4 Velocity-space Velocity space advection a.k.a. acceleration
4 Update system boundaries (Vlasov post-acceleration) Post-acceleration update of boundary cells
4 ionosphere-solve Ionospheric potential update
4 Other Remaining, non-instrumented sections in level 3 region “Propagate”
3 compute-timestep Determination of time step limits, update of time step if necessary
3 Balancing load Rebalancing of the computational load across MPI domains
3 Other Remaining, non-instrumented sections in level 2 region “Simulation”
1 Other Remaining, non-instrumented sections in level 1 region “main”

TABLE I
SELECTION OF HIGH-LEVEL CODE REGIONS INSTRUMENTED WITH PHIPROF IN VLASIATOR, ILLUSTRATING THE MAJOR PHASES OF CODE EXECUTION.

THE CURRENT VLASIATOR CODE INSTRUMENTS SOME REGIONS DOWN TO A LEVEL OF 9.

to load balancing, IO, and operations that correspond to parts
of the physics simulation: propagate, shrink to fit, compute
timestamp...

These timers need to be nested to be hierarchical. Moreover,
they can use strings or integer labels, as presented by listing 1.

int label;
phiprof::initialize();
label = phiprof::initializeTimer("Propagate");
/* ... */
phiprof::start("Simulation");
/* ... */
phiprof::start(label);
/* ... */
phiprof::stop(label);
/* ... */
phiprof::stop("Simulation");
/* ... */

Listing 1. Phiprof timers example

Fig. 4. Hierarchical performance profiling and visualization with TAU.

While performance profiling provides how much time is
spent in given operations, tracing puts these events on a
timeline. Such traces can be visualized using a tool such as

Vampir [33] (commercial) or Perfetto (open source)1. Figure
5 shows a screenshot of the trace of an execution of Vlasiator,
obtained using Apex and displayed using Perfetto.

IV. EXPERIMENTS

Integration of TAU with Vlasiator allowed new insights into
the runtime behaviour of the simulation. During a three-day
workshop hosted by CSC–IT Center for Science in Espoo,
Finland, the Vlasiator and TAU teams worked together to
obtain high-fidelity profile and trace data of Vlasiator runs
on EuroHPC’s LUMI-C HPE Cray system at different scales.

Since Vlasiator’s scientific focus is the simulation of near-
Earth plasma flows, the chosen run test cases were global
setups encompassing Earth’s magnetosphere. The basic setup
corresponded to the global runs described in [11], with the run
resolution adapted to fit on different node counts (concretely,
runs on 1, 16, 80 and 250 nodes were conducted).

Compared to the plain-text phiprof output summary, that
had been Vlasiator’s main source of performance information
before, it became immediately apparent that TAU’s profiling
output as presented by the ParaProf tool provided a much
more comprehensive and versatile view. In particular, TAU’s
ability to show sample-based performance events alongside
the counters defined by phiprof groups provides a significant
gain in fidelity at performance hotspots of the code. Before,
a question like “what in this region is it that actually takes
most of the time” had to be answered by informed guesswork
and/or more detailed instrumentation with more profiling calls;
now it is readily presented in the hierarchical view of ParaProf
(compare Figure 6).

Another useful addition was the concurrent gathering of
both user-defined range measurements and probes associated
with the MPI subsystem. Efficient exascale performance of
HPC codes is extremely reliant on efficient exploitation of
high-bandwidth communication between compute nodes, so it

1https://github.com/google/perfetto

Fig. 5. Visualization of a trace using Perfetto.

Fig. 6. TAU hierarchical profile view output of a magnetospheric sim-
ulation on 250 nodes of LUMI. The three main solvers of Vlasiator
(Spatial-space, Velocity-space and Propagate fields) are
taking up the majority of the simulation loop’s time, but their relative
contributions at this scale came as a surprise.

becomes imperative to pinpoint any sources of node-seconds
wasted in waiting for MPI communication to complete.

A. Insights gained

During a focused investigation of Vlasiator trace data thus
obtained, it became quickly apparent that some parts of
the code (specifically, the mapping stage of the acceleration
solver) were slower than expected, and spending lots of
time waiting for completion of individual threads’ OpenMP
workloads. As it turns out, the particular OpenMP parallel
loop at this point in the code was using the guided schedule
[34]. In this schedule, half of the loop’s work is distributed
over the available threads, and the remaining work is given
to threads as they finish their work batches. Vlasiator’s sparse
velocity space structure [5] adapts the velocity mesh resolution
to the local physical requirements in every point in real
space. In the velocity space grid, physical cells size can
vary up to three orders of magnitude in typical production

Fig. 7. Perfetto renderings of TAU traces showing the OpenMP thread
imbalance that had been identified in Vlasiator’s translation solver. Top panel:
The original code scheduled work groups to all OpenMP threads according to
the guided strategy with no batch limit, occasionally causing single threads
to recieve a disproportionate amount of work. Bottom panel: By limiting the
batch size to 8 elements, the imbalance was alleviated.

runs of magnetospheric conditions. Due to this inhomogeneity,
computational cost of the individual simulation cells, and thus
the time requirement of OpenMP work units, likewise differs
by multiple orders of magnitude. In some cases, single threads
were assigned an initial workload that was far exceeding that
of others, such that even after redistribution of the second half
of work, they were still ongoing. The straightforward patch
for this behavior was to limit the maximum batch size that the
OpenMP loop was to distribute (see Fig. 7), but without the
TAU tracing insight, this issue would not have been possible
to identify (and indeed, had before probably been present and
undiagnosed for years).

A second performance bottleneck that was noticed when
investigating outputs from event-based sampling was the un-
usually large amount of time spent in searching for spatial
neighbors of simulation cells (through the adaptive grid’s
get_face_neighbors_of function [10]). The function
was implemented in such a way that it iterated over nearby
cells in a three-cell-wide stencil multiple times, leading to a
worst case of thousands of iterations. As the list of neighbors
is static as long as the grid doesn’t change it was decided to
cache the neighbors, updating the list only when necessary.
This promptly provided a performance benefit of up to five
percent in test runs (Figure 8). Pinpointing this performance
bottleneck would have been extremely unlikely were it not for
the event-based sampling provided by TAU, which enabled
honing in on time spent within too loosely or not-instrumented
ranges.

Fig. 8. Tau comparison view of mean time taken per thread without (blue)
and with (red) cached neighbors.

B. Future improvements

A major insight gained from instrumenting Vlasiator with
TAU was how much time was spent in MPI_Waitall func-
tions due to computational imbalances in the code, despite the
fact that dynamic load balancing is already employed exten-
sively in the simulation. A number of potential improvements
to reduce communication overhead have been identified, where
in some cases MPI communication can be avoided outright
by performing some extra redundant computation for ghost
domain cells (See Fig. 9 for an example). Implementation and
re-profiling of these is on the Vlasiator development roadmap.
However, most of these identified improvements require sig-
nificant algorithmic refactoring. As illustrated by Figure 3, the
trend of Moore’s law supports the performance improvement
of the code, and continual performance evaluation and pro-
filing allow for gradual performance improvements that have
been omitted from the figure for simplicity, yet the decisive
progress is achieved by targeted major algorithmic changes.
TAU and APEX promise great help in focusing the attention
to the relevant parts of the code when drawing the roadmap
of the next generations of performance improvements.

The positive experience of using TAU to profile Vlasi-
ator in a pre-Exascale Cray HPC environment has made
it crystal clear how thorough comparison of thread-parallel
performance, hardware counters, and time spent in MPI com-
munication is crucial to properly utilizing next-generation
computational resources. TAU offers unique perspectives for
exascale machines as it combines all of the aforementioned
with the awareness of heterogeneous memory systems and the
capability to profile GPU kernels.

V. RELATED WORK

There is a rich history of performance technology research
and development that has been driven by rapid advances in
HPC hardware, software, and systems architecture. Indeed, the

Fig. 9. Zoom-in of a TAU trace of a Vlasiator magnetospheric simulation, visualized using Perfetto (compare Fig. 5). In this view, a single simulation timestep
on one MPI task is shown on the width of the figure, allowing the individual contributions of physics solvers to be seen. The two regions highlighted by
red arrow ranges have been identified as MPI neighbour communication that could potentially be removed, thus offering a path to significant speedup of the
spatial transport solver.

performance tools community is replete with robust perfor-
mance measurement and analysis tools, several of which have
been developed for HPC systems and applications for many
years. A significant number come from academic research,
national laboratories, and HPC research centers, including
HPCToolkit [35], Score-P [36], Scalasca [27], Extrae/Par-
aver [37], Caliper [38], and more. The HPC industry has also
contributed productive tools such as Intel’s VTune [39], HPE’s
CrayPat [40], and NVIDIA’s Nsight Systems [41]. All of these
tools, like TAU and APEX, face the challenges of keeping up
with the aggressive innovations in the HPC field that make the
problem of performance observability difficult.

While each tool has its own set of relevant capabilities
that make it worthwhile when well-matched to the perfor-
mance analysis circumstances, no tool is created entirely from
scratch. There are important technologies that are key building
blocks for creating comprehensive performance systems. The
PAPI [42] library for accessing CPU and GPU hardware
counters is ubiquitous in performance tools and provides a
production-level solution to a complex problem. In general,
interfaces to retrieve performance data, either in hardware
components, network interfaces, accelerator devices, or the
operating system, become invaluable to the performance tool
developer. A relevant example for heterogeneous computing
are the performance tool interfaces for GPUs, such as provided
by NVIDIA CUPTI [43] and AMD GPUPerfAPI [44].

The importance of interfaces for performance observability
extends to the general problem of how to make parallel soft-
ware events visible to the performance measurement system.
The profiling interface for MPI (PMPI) [45] is the classic
example of a portable technology that has enabled practically
every performance tool to observe MPI operation. It uses
a library interposition approach that enables “instrumented”
versions of MPI routines to be called. Similarly, the OpenMP
performance tool interface (OMPT) [34] provides a portable
solution to capture thread operations, examine OpenMP inter-
nal state, map calling contexts to source, and more. It uses
a callback interface that enables a tool to receive notification
of OpenMP events. Equivalent functionality is provided in the
OpenACC profiling interface (ACCPI) [46]. Both OMPT and
ACCPI are part of the standards and able to be supported
in OpenMP and OpenACC implementations, as was done in

LLVM [47].
Two key features provided by performance interfaces gener-

ally are the semantic context associated with events (i.e., what
do the event mean) and access to internal performance state.
The interest in parallel programmming abstractions for het-
erogeneity and performance portability will necessarily result
in further separation of low-level performance measurements
from their association with high-level context and its execution
semantics. To address this concern, performance interfaces
are being designed into high-level programming systems such
as Kokkos [48], RAJA [49], and StarPU [50]. This makes
it possible for performance tools to organize performance
information with respect to computational context known only
to the high-level software.

The approach is applied as well in motif-based libraries
and frameworks. The PETSc [51] profiling interface is a good
example. In fact, such work is motivated by the need for
better performance analysis of applications using libraries and
frameworks. Here, it is certainly reasonable to use interposition
techniques and callback methods found in other cases to make
sure performance interfaces accessible by tools. For instance,
the PerfStubs library [31] is a thin, stubbed-out, “adapter”
interface for instrumenting library or application code. The
PerfStubs library itself does not do any measurement, it
merely provides access to an API that performance tools can
implement. The instrumentation function calls are “stubs” in
the form of function pointers, initialized to nullptr. Our
approach with re-implementing the original Phiprof work [32]
is along these lines.

VI. CONCLUSION AND FUTURE WORK

A common, yet frustrating conundrum facing HPC applica-
tion developers concerns the need for performance measure-
ment and analysis to characterize execution inefficiencies and
inform tuning decisions for better outcomes, versus the choice
of which performance tool(s) and their associated technologies
to use for that purpose. In many cases, a default solution
is adopted, which all too often amounts to just measuring
total execution time. In other cases, homegrown measurement
support might be developed specific to the application, for
instance, to measure time in specific code regions, but will lack
significant support for observing anything else. The challenge

to maintain, support, and port such one-off solutions will
ultimately isolate them from more modern techniques and
make them unsustainable. Our simple objective with this paper
is to show that it does not have to be this way.

There are compelling reasons for application teams to try
to understand what state-of-the-art HPC performance tools
have to offer and to take the time to integrate those technolo-
gies in their code development and performance engineering
processes. Vlasiator is a perfect case study to demonstrate
the potential benefits of such efforts. It is an advance next-
generation simulation software for modeling space plasma
physics in near-Earth space. The MPI+OpenMP code has been
developed over several generations and involves complex data
structures and algorithms for 6-dimensional hybrid-Vlasov
calculations. We successfully integrated the TAU Performance
System with the Vlasiator code and demonstrated the advanced
capabilities offered beyond its earlier Phiprof support. Indeed,
the enlightened design of the original Phiprof interface made
it possible to realize a compatible backend implementation for
connecting to the TAU and APEX measurement libraries. The
effect was to significantly expand Vlasiator performance ob-
servability and scope of analysis. We present several examples
attesting to this fact.

Looking to the future, Vlasiator now has access to a ro-
bust, portable, and configurable environment for performance
analysis and engineering. The TAU and APEX tools work
on heterogeneous HPC platforms, across different processor
architectures, and at scale. Importantly, it helps to address
the challenges that come with measurement of leading-edge
CPU and GPU technologies present in supercomputer systems
like LUMI. This will be particularly important as Vlasiator
transitions to GPU operation and AMD GPU technology.

Beyond the current outcomes, our continuing integration
strategy will include tighter support in Vlasiator’s build system
and development of more substantial performance engineering
features built around the TAU Performance System ecosystem,
including parametric performance studies, cross-architecture
performance characterization, performance regression testing,
and continuous integration. The TAUdb performance database
and other performance analysis support are relevant to this ob-
jective. They provide a performance experimentation platform
that can be easily used for testing with new code versions.

The Vlasiator team has an aggressive plan that includes
algorithm updates (e.g., dynamic adaptive mesh refinement),
GPU development, and porting to new architectures (e.g.,
AMD CPU and GPU in LUMI), as well as extensions and
improvements to the science enabled by the model and the
solvers. The robust features of the integrated performance
tools should cover every aspect of investigation. We will work
closely on defining experiments that coincide with Vlasiator
code developments, testing, and performance studies. The
measurement setup will be captured for each experiment as
well as the performance data generated. We will use the
TAU performance database (TAUdb) to store the results from
performance studies.

VII. ACKNOWLEDGMENTS

The authors gratefully also acknowledge the Academy of
Finland (grant numbers 1347795 “HISSA”, 1335554 “ICT-
SUNVAC” and 339756 “KIMCHI”).

This work has received funding from the European High
Performance Computing Joint Undertaking (JU) under grant
agreement No 101083261 “Plasma-PEPSC”. The Finnish Cen-
tre of Excellence in Research of Sustainable Space, funded
through the Academy of Finland grants 312351 and 1336805,
supports Vlasiator development and science as well.

This research was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of two U.S.
Department of Energy organizations (Office of Science and
the National Nuclear Security Administration) responsible for
the planning and preparation of a capable exascale ecosystem,
including software, applications, hardware, advanced system
engineering, and early testbed platforms, in support of the na-
tion’s exascale computing imperative, as well as the Scientific
Discovery through Advanced Computing (SciDAC) program
funded by DOE, Office of Science, Advanced Scientific Com-
puting Research (ASCR) under contract DE-SC0021299.

The simulations for this publication were run on the Eu-
roHPC “LUMI” supercomputer in Kajaani, Finland and the
“Mahti” supercomputer at CSC Centre for Scientific Com-
puting. The authors wish to thank the Finnish Grid and
Cloud Infrastructure (FGCI) for supporting this project with
additional computational and data storage resources.

CODE AVAILABILITY

The Vlasiator simulation code is distributed under the GPL-
2 open source license at https://github.com/fmihpc/vlasiator
[6]. TAU and APEX are open source under a BSD-style license
and available at https://tau.uoregon.edu and https://uo-oaciss.
github.io/apex.

REFERENCES

[1] E. Strohmaier, J. Dongarra, H. Simon, and M. Meuer, “November 2022
top500 list of the world’s fastest supercomputers.” [Online]. Available:
https://www.top500.org/lists/top500/2022/11/

[2] S. Shende and A. Malony, “The TAU Parallel Performance System,”
International Journal of High Performance Computing Applications,
vol. 20, no. 2, pp. 287–331, 2006.

[3] K. Huck, “Broad performance measurement support for asynchronous
multi-tasking with apex,” in IEEE/ACM 7th International Workshop on
Extreme Scale Programming Models and Middleware (ESPM2), 2022.

[4] M. Palmroth, U. Ganse, Y. Pfau-Kempf, M. Battarbee, L. Turc,
T. Brito, M. Grandin, S. Hoilijoki, A. Sandroos, and S. von Alfthan,
“Vlasov methods in space physics and astrophysics,” Living Reviews
in Computational Astrophysics, vol. 4, 2018. [Online]. Available:
https://doi.org/10.1007/s41115-018-0003-2

[5] S. von Alfthan, D. Pokhotelov, Y. Kempf, S. Hoilijoki, I. Honkonen,
A. Sandroos, and M. Palmroth, “Vlasiator: First global hybrid-Vlasov
simulations of Earth’s foreshock and magnetosheath,” Journal of Atmo-
spheric and Solar-Terrestrial Physics, vol. 120, pp. 24–35, 2014.

[6] Y. Pfau-Kempf, S. von Alfthan, U. Ganse, A. Sandroos, M. Battarbee,
T. Koskela, O. Hannuksela, I. Honkonen, K. Papadakis, L. Kotipalo,
H. Zhou, M. Grandin, D. Pokhotelov, and M. Alho, “fmihpc/vlasiator:
Vlasiator 5.2.1,” Jun. 2022. [Online]. Available: https://doi.org/10.5281/
zenodo.6782211

[7] G. Strang, “On the construction and comparison of difference schemes,”
SIAM Journal on Numerical Analysis, vol. 5, no. 3, pp. 506––517, 1968.

[8] F. Valentini, P. Trávnı́ček, F. Califano, P. Hellinger, and A. Mangeney, “A
hybrid-vlasov model based on the current advance method for the sim-
ulation of collisionless magnetized plasma,” Journal of Computational
Physics, vol. 225, no. 1, pp. 753–770, 2007.

[9] M. Zerroukat and T. Allen, “A three-dimensional monotone and con-
servative semi-lagrangian scheme (slice-3d) for transport problems,”
Quarterly Journal of the Royal Meteorological Society, vol. 138, no.
667, pp. 1640–1651, 2012.

[10] I. Honkonen and Vlasiator Team, “Dccrg – a distributed cartesian
cell-refinable grid.” [Online]. Available: https://github.com/fmihpc/dccrg

[11] U. Ganse, T. Koskela, M. Battarbee, Y. Pfau-Kempf, K. Papadakis,
M. Alho, M. Bussov, G. Cozzani, M. Dubart, H. George, E. Gordeev,
M. Grandin, K. Horaites, J. Suni, V. Tarvus, F. Kebede, L. Turc, H. Zhou,
and M. Palmroth, “Enabling technology for global 3d + 3v hybrid-vlasov
simulations of near-earth space,” Physics of Plasmas, vol. 30, 2023.

[12] L. Kotipalo, “Adaptive mesh refinement in vlasiator,” Master’s
thesis, Helsingin yliopisto, 2023. [Online]. Available: URN:NBN:fi:
hulib-202303031442;http://hdl.handle.net/10138/355463

[13] P. Londrillo and L. Del Zanna, “On the divergence-free condition in
Godunov-type schemes for ideal magnetohydrodynamics: the upwind
constrained transport method,” Journal of Computational Physics, vol.
195, no. 1, pp. 17–48, 2004.

[14] K. Papadakis, Y. Pfau-Kempf, U. Ganse, M. Battarbee, M. Alho,
M. Grandin, M. Dubart, L. Turc, H. Zhou, K. Horaites, I. Zaitsev,
G. Cozzani, M. Bussov, E. Gordeev, F. Tesema, H. George, J. Suni,
V. Tarvus, and M. Palmroth, “Spatial filtering in a 6D hybrid-Vlasov
scheme to alleviate adaptive mesh refinement artifacts: a case study
with Vlasiator (versions 5.0, 5.1, and 5.2.1),” Geoscientific Model
Development, vol. 15, no. 20, pp. 7903–7912, 2022. [Online]. Available:
https://gmd.copernicus.org/articles/15/7903/2022/

[15] Vlasiator Team, “fsgrid – a lightweight, static, cartesian grid for field
solvers.” [Online]. Available: https://github.com/fmihpc/fsgrid

[16] Y. Pfau-Kempf, “Vlasiator – from local to global magnetospheric hybrid-
vlasov simulations,” Ph.D. dissertation, University of Helsinki, 2016.

[17] E. G. Boman, U. V. Catalyurek, C. Chevalier, and K. D. Devine, “The
Zoltan and Isorropia parallel toolkits for combinatorial scientific com-
puting: Partitioning, ordering, and coloring,” Scientific Programming,
vol. 20, no. 2, pp. 129–150, 2012.

[18] K. Nishikawa, I. Duţan, C. Köhn, and Y. Mizuno, “PIC methods
in astrophysics: simulations of relativistic jets and kinetic physics in
astrophysical systems,” Living Reviews in Computational Astrophysics,
vol. 7, no. 1, Jul. 2021. [Online]. Available: https://doi.org/10.1007\
%2fs41115-021-00012-0

[19] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting perfor-
mance data with papi-c,” in Tools for High Performance Computing
2009. Springer, 2010, pp. 157–173.

[20] D. Eschweiler, M. Wagner, M. Geimer, A. Knüpfer, W. Nagel, and
F. Wolf, “Open trace format 2: The next generation of scalable trace
formats and support libraries,” in International Conference on Parallel
Computing, 2011, pp. 481–490.

[21] A. Malony, S. Biersdorff, S. Shende, H. Jagode, S. Tomov, G. Juckeland,
R. Dietrich, D. Poole, and C. Lamb, “Parallel performance measurement
of heterogeneous parallel systems with GPUs,” in Parallel Processing
(ICPP), 2011 International Conference on, 9 2011, pp. 176–185.

[22] K. Huck, A. Malony, R. Bell, and A. Morris, “Design and Imple-
mentation of a Parallel Performance Data Management Framework,” in
International Conference on Parallel Processing (ICPP 2005). IEEE
Computer Society, Aug. 2005, (Chuan-lin Wu Best paper award).
(Acceptance rate 28.6% (69/241).

[23] R. Bell, A. Malony, and S. Shende, “ParaProf: a portable, extensible,
and scalable tool for parallel performance profile analysis,” in Proc.
EUROPAR 2003 Conference, 2003.

[24] K. A. Huck, A. D. Malony, S. Shende, and A. Morris, “Knowledge
support and automation for performance analysis with perfexplorer 2.0,”
Scientific Programming, vol. 16, no. 2–3, pp. 123–134, 2008.

[25] M. S. Müller, A. Knüpfer, M. Jurenz, M. Lieber, H. Brunst, H. Mix,
and W. E. Nagel, “Developing scalable applications with vampir, vam-
pirserver and vampirtrace,” Advances in Parallel Computing, vol. 15,
pp. 637–644, 2008.

[26] O. Zaki, E. Lusk, W. Gropp, and D. Swider, “Toward scalable perfor-
mance visualization with jumpshot,” The International Journal of High
Performance Computing Applications, vol. 13, no. 3, pp. 277–288, 1999.

[27] F. Wolf, B. Wylie, E. Ábrahám, D. Becker, W. Frings, K. Fürlinger,
M. Geimer, M. Hermanns, B. Mohr, S. Moore, M. Pfeifer, and

Z. Szebenyi, “Usage of the SCALASCA toolset for scalable performance
analysis of large-scale parallel applications,” in Proc. of the 2nd HLRS
Parallel Tools Workshop. Stuttgart, Germany: Springer, July 2008, pp.
157–167.

[28] S. Shende, N. Chaimov, A. Malony, and N. Imam, “Multi-level per-
formance instrumentation for kokkos applications using tau,” in 2019
IEEE/ACM International Workshop on Programming and Performance
Visualization Tools (ProTools), 2019, pp. 48–54.

[29] A. Malony, S. Ramesh, K. Huck, N. Chaimov, and S. Shende, “A plugin
architecture for the tau performance system,” in 48th International
Conference on Parallel Processing, Aug. 2019, pp. 1–11.

[30] S. Ramesh, A. Mahéo, S. Shende, A. D. Malony, H. Subramoni,
A. Ruhela, and D. K. D. Panda, “MPI Performance Engineering with
the MPI Tool Interface: The integration of MVAPICH and TAU,”
Parallel Computing, vol. 77, pp. 19–37, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167819118301479

[31] D. Boehme, K. Huck, J. Madsen, and J. Weidendorfer, “The case for a
common instrumentation interface for hpc codes,” in 2019 IEEE/ACM
International Workshop on Programming and Performance Visualization
Tools (ProTools), 2019, pp. 33–39.

[32] S. von Alfthan, “Phiprof – parallel hierarchical profiler,” https://github.
com/fmihpc/phiprof, 2019.

[33] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler,
M. S. Müller, and W. E. Nagel, “The Vampir performance analysis tool-
set,” in Tools for High Performance Computing. Springer, 2008, pp.
139–155.

[34] OpenMP Architecture Review Board, OpenMP Specification, Nov.
2023. [Online]. Available: https://www.openmp.org/specifications

[35] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent, “HPCToolkit: Tools for Performance Anal-
ysis of Optimized Parallel Programs,” Concurrency and Computation:
Practice and Experience, 2010, to appear.

[36] A. Knüpfer, C. Rössel, S. Biersdorff, K. Diethelm, D. Eschweiler,
M. Geimer, M. Gerndt, D. Lorenz, A. Malony, W. E. Nagel et al.,
“Score-p: A joint performance measurement run-time infrastructure for
periscope, scalasca, tau, and vampir,” in Tools for High Performance
Computing 2011. Springer, 2012, pp. 79–91.

[37] V. Pillet, J. Labarta, T. Cortes, and S. Girona, “Paraver: A tool to
visualize and analyze parallel code,” in Proceedings of WoTUG-18:
Transputer and occam Developments, vol. 44. mar, 1995, pp. 17–31.

[38] D. Boehme, T. Gamblin, D. Beckingsale, P.-T. Bremer, A. Gimenez,
M. LeGendre, O. Pearce, and M. Schulz, “Caliper: performance in-
trospection for HPC software stacks,” in SC’16: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2016, pp. 550–560.

[39] Intel, “Vtune profile,” 2023, https://www.intel.com/content/www/us/en/
developer/tools/oneapi/vtune-profiler.html.

[40] H.-P. Enterprise, “Cray performance measurement and
analysis tools user guide,” 2023. [Online]. Available:
https://support.hpe.com/hpesc/public/docDisplay?docLocale=en
US&docId=a00113914en us&page=About the Cray Performance
Measurement and Analysis Tools User Guide.html

[41] NVIDIA, “Nsight systems,” 2023. [Online]. Available: https://developer.
nvidia.com/nsight-systems

[42] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A Portable
Programming Interface for Performance Evaluation on Modern Proces-
sors,” International Journal of High Performance Computing Applica-
tions, vol. 14, no. 3, pp. 189–204, 2000.

[43] “CUDA Profiling Tools Interface,” August 2020. [Online]. Available:
https://docs.nvidia.com/cupti/Cupti/index.html

[44] “ROCm System Management Interface,” August 2022. [Online].
Available: https://github.com/RadeonOpenCompute/rocm smi lib

[45] Message Passing Interface Forum, MPI: A Message-Passing Interface
Standard, Jun. 2021. [Online]. Available: https://www.mpi-forum.org/
docs/

[46] OpenACC Community, OpenACC Application Programming Interface
Version 3.3, Nov. 2022. [Online]. Available: https://www.openacc.org/
specification

[47] C. Coti, J. Denny, K. Huck, S. Lee, A. Malony, S. Shende, and J. Vetter,
“OpenACC Profiling Support for Clang and LLVM using Clacc and
TAU,” in Workshop on Programming and Performance Visualization
Tools (ProTools), 2020, pp. 38–48.

[48] S. D. Hammond, C. R. Trott, D. Ibanez, and D. Sunderland, “Profiling
and debugging support for the kokkos programming model,” in ISC
Workshops, 2018.

[49] D. A. Beckingsale, J. Burmark, R. Hornung, H. Jones, W. Killian, A. J.
Kunen, O. Pearce, P. Robinson, B. S. Ryujin, and T. R. Scogland,
“RAJA: Portable performance for large-scale scientific applications,” in
2019 ieee/acm international workshop on performance, portability and
productivity in hpc (p3hpc). IEEE, 2019, pp. 71–81.

[50] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU:
A Unified Platform for Task Scheduling on Heterogeneous Multicore
Architectures,” CCPE - Concurrency and Computation: Practice and
Experience, Special Issue: Euro-Par 2009, vol. 23, pp. 187–198, Feb.
2011. [Online]. Available: http://hal.inria.fr/inria-00550877

[51] PETSc, Portable, Extensible Toolkit for Scientific Computation, 2022.
[Online]. Available: https://petsc.org/release

