
Morpheus unleashed: Fast cross-platform
SpMV on emerging architectures

Christodoulos Stylianou
EPCC, The University of Edinburgh

Edinburgh, United Kingdom
c.stylianou@ed.ac.uk

Mark Klaisoongnoen
EPCC, The University of Edinburgh

Edinburgh, United Kingdom
mark.klaisoongnoen@ed.ac.uk

Ricardo Jesus
EPCC, The University of Edinburgh

Edinburgh, United Kingdom
rjj@ed.ac.uk

Nick Brown
EPCC, The University of Edinburgh

Edinburgh, United Kingdom
n.brown@epcc.ed.ac.uk

Michèle Weiland
EPCC, The University of Edinburgh

Edinburgh, United Kingdom
m.weiland@epcc.ed.ac.uk

Abstract—Sparse matrices and linear algebra are at the heart
of scientific simulations. Over the years, more than 70 sparse
matrix storage formats have been developed, targeting a wide
range of hardware architectures and matrix types, each of which
exploit the particular strengths of an architecture, or the specific
sparsity patterns of the matrices.

In this work, we explore the suitability of storage formats
such as COO, CSR and DIA for emerging architectures such as
AArch64 CPUs and Field Programmable Gate Arrays (FPGAs).
In addition, we detail hardware-specific optimisations to these
targets and evaluate the potential of each contribution to be
integrated into Morpheus, a modern library that provides an
abstraction of sparse matrices (currently) across x86 CPUs
and NVIDIA/AMD GPUs. Finally, we validate our work by
comparing the performance of the Morpheus-enabled HPCG
benchmark against vendor-optimised implementations.

Index Terms—sparse matrix storage formats, AArch64, FPGA,
performance portability, productivity

I. INTRODUCTION

Since their inception, sparse matrices have become the
centrepiece of many applications in science and engineering.
Their ability to efficiently store the non-zero values of a matrix
reduces the memory footprint of the matrix and eliminates
redundant computations, allowing for larger problems to be
tackled. More than 70 sparse matrix storage formats (i.e
data structures) have been introduced over the years [1],
each leveraging different properties of the matrix or target
hardware architecture to achieve better performance. Many
iterative methods for solving large-scale linear systems and
eigenvalue problems, which often arise in a variety of scientific
and engineering applications, consist of many Sparse Matrix-
Vector Multiplications (SpMVs) operations that often domi-
nate the applications’ runtime. Literature shows that no single
format can perform optimally across all kinds of matrices or
hardware [1]–[5], with interest on optimising SpMV being
renewed every time new platforms emerge.

Morpheus [6] is a C++ library that provides an abstraction
of sparse matrices, allowing for efficient and transparent
switching of sparse matrix storage formats at runtime across

traditional backends such as x86 CPUs and NVIDIA/AMD
GPUs. By dynamically adapting the underlying sparse matrix
data-structure to optimally suit an operation, target architec-
ture, or sparsity pattern of the matrix, Morpheus enables new
optimisation opportunities and thus increased performance [6].
At the time of writing, Morpheus supports three core formats:
Coordinate (COO), Compressed Sparse Row (CSR) and Di-
agonal (DIA).

In this work, we explore the performance of SpMV on
different formats across two non-traditional High Performance
Computing (HPC) architectures, AArch64 CPUs and FPGAs,
both currently gaining traction in the area of HPC. In addition,
we exploit specific hardware features of each target, such as
the Scalable Vector Extension (SVE) on AArch64, to optimise
the kernels, and investigate the challenges in integrating the
optimisations in Morpheus. In summary, our contributions are:

• We discuss how we incorporated the Arm Performance
Libraries (ArmPL) into Morpheus for AArch64 targets,
thus making the performance of ArmPL available to
Morpheus users “out-of-the-box” for COO and CSR.

• To work around ArmPL’s lack of DIA support and to
enable a better assessment of ArmPL’s performance, we
develop SVE-optimised SpMV routines for COO, CSR
and DIA matrices.

• For over 2100 matrices available in the SuiteSparse [7]
collection, we demonstrate the performance of the SpMV
kernels on an A64FX-based (AArch64) HPE Apollo 80
cluster.

• We evaluate our efforts (i.e. incorporating ArmPL and
our SVE-optimised routines into Morpheus) on HPCG
[8], comparing our Morpheus-based HPCG implementa-
tion [9] against the Arm-optimised version [10] on the
HPE Apollo 80 system.

• We provide implementations of the SpMV kernel on
FPGAs for each of the three formats. Performance is
evaluated on the SuiteSparse set and the challenges in
porting the implementations in Morpheus are described.



II. MOTIVATION

New storage formats are proposed every time new archi-
tectures emerge, aiming to exploit the new characteristics
and features of the new hardware. Even-though more than
70 formats are available, no single format performs best
across different hardware, operations, and sparsity patterns.
As a result, being able to switch formats dynamically offers
new opportunities for optimisation and increased performance.
The adoption of new formats can be a tedious process as
this requires significant changes in the source code. Libraries
such as PETSc [11], GINKGO [12] and Morpheus [6] offer
multiple formats through various abstractions, enabling users
can switch to different formats at runtime. In other words,
users can take advantage of new formats added in the library
with minimal source code changes, thereby easing their devel-
opment effort.

Nevertheless, when it comes to the adoption of new hard-
ware, libraries might require major changes in their interface,
especially when the hardware utilises a new programming
model that the library does not yet integrate. For example,
when GPUs emerged in HPC, libraries had to evolve to man-
age the existence of two mostly independent memory spaces
between the CPU and GPU and to support the accelerator
model, where CPUs offload work to the GPUs. For software
to remain performant throughout the life-cycle of an hardware
architecture (and beyond), we need to ensure that it can adapt
to the requirements that are imposed by the current and future
iterations of hardware.

In this work, we consider AArch64 CPUs and FPGAs, two
very different architectures that are currently gaining traction
in HPC. We investigate their performance in sparse linear
operations, such as SpMV, as well as the challenges involved
in integrating them in Morpheus. The integration of code in
Morpheus for the aforementioned targets presents different
challenges and requires different integration approaches, mak-
ing the candidates representative for the integration of other
architectures.

III. BACKGROUND

A. Emerging Architectures

The two emerging architectures that we propose to integrate
with the Morpheus libraries are AArch64 CPUs and FPGAs.
Through the process of porting the SpMV routines for the
three core Morpheus storage formats (COO, CSR and DIA)
to AArch64 CPUs and to FPGAs, we explore the challenges
around performance optimisation and performance portability
for integration into the Morpheus library.

1) AArch64 CPUs: Despite being somewhat newcomers
on the HPC scene, Arm CPUs have already proved to be
extremely competitive against the more traditional x86 pro-
cessors [13]–[16]. One of the key enablers for the high-
performance of modern-day AArch64 CPUs is SVE [17],
[18], an advanced architecture extension for Single Instruction
Multiple Data (SIMD) processing that features long (scalable)
vectors, gather-load and scatter-store instructions, and per-lane

predication. These features make SVE an excellent architec-
ture to implement fast SpMV computations.

To accelerate the adoption of Arm-based hardware in HPC,
Arm has developed the ArmPL [19], a set of core routines
for high-performance computing applications optimised for
AArch64 processors. ArmPL consists of BLAS, LAPACK,
FFT, Sparse, libamath (subset of libm) and libastring (subset
of libc for strings) routines for both single-threaded and
OpenMP multi-threaded processing. The sparse linear algebra
routines provided by ArmPL support high-performance SpMV
on dense, CSR, CSC, COO and BSR matrices. However, as of
version 23.04 (the most recent at the time of writing), ArmPL
does not support the DIA format.

2) FPGAs: Field Programmable Gate Arrays (FPGAs) pro-
vide a very large number of configurable logic components
sitting within a sea of configurable interconnect. Modern
FPGAs also contain hardened components, such as Block-
RAM (BRAM) which provides fast on-chip memory similar
to a CPU’s level 1 cache and DSP slices for undertaking
floating point arithmetic. Modern FPGAs are also commonly
coupled with external High Bandwidth Memory (HBM2),
DDR, and high performance networking capabilities. A major
challenge with FPGAs has been the historically significant
time investment required in programming the technology
and need for detailed hardware-level knowledge on behalf
of developers. Nevertheless, in recent years FPGA hardware
and software development ecosystems have become far more
capable, and with toolchains such as Intel’s Quartus Prime and
Xilinx’s Vitis software developers can now program FPGAs
and accelerate HPC workloads by writing code in C or C++
using High-Level Synthesis (HLS). Programming FPGAs is
now becoming more a question of software development than
hardware design, and consequently lowering the entry barriers
for programming these devices has enabled numerous com-
munities to investigate and explore FPGAs in their respective
domains [20]–[22].

Being able to tailor hardware to the code at the electronics
level provides the potential to implement custom optimisation
techniques around memory access and data transfer. However,
to obtain best performance the programmer must rework their
algorithm into a dataflow style [23] and this also often delivers
much higher energy-efficiency than traditional architectures
too [24]. AMD Xilinx’s most recent generation, known as
the Versal Adaptive Compute Acceleration Platforms (ACAP)
[25], combines the programmable logic (PL) resources on the
FPGA chip with more than 400 AI Engines (AIE). These
AIE are hardened on the chip and each represent a Very
Long Instruction Word (VLIW) processor capable of executing
seven instructions per cycle and interconnected between AIEs
and to PL on the FPGA with fast Network-on-chip (NoC). This
upgrade in compute capabilities with 8-way vectorisation per
AIE is especially interesting to kernels such as SpMV which
exhibit large potentials in this regard.



4

3

2

1

0

0 1 2 3 4

1 2 11

3 4

5 6 7

8

9 10

(a) Dense

AV 1 2 11 3 4 5 6 7 8 9 10

0 1 3 1 2 1 2 3 3 3 4

0 0 0 1 1 2 2 2 3 4 4

AJ

AI

(b) COO

AV 1 2 11 3 4 5 6 7 8 9 10

0 1 3 1 2 1 2 3 3 3 4

0 3 5 8 9 11

AJ

IRP

(c) CSR

-1 0 1 3

* 1 2 11

0 3 4 0

5 6 7 *

0 8 0 *

9 10 * *

DOFF

AV

(d) DIA

Fig. 1: A 5× 5 dense matrix with 11 non-zero values and its
equivalent representations in 3 sparse matrix storage formats.

B. Sparse Matrix Storage Formats

Sparse matrices exploit the property that the majority of
coefficients in the matrix are zeros by not explicitly storing
those values. In other words, sparse matrix storage formats
only store the non-zero coefficients and the necessary infor-
mation that is required to rebuild the original position of
each coefficient in the dense matrix. Each storage format
rebuilds the original index of each coefficient in a different
way and as a consequence each format can have very different
memory layout as shown in Figure 1. With the underlying
data structure across formats varying significantly, accessing
and manipulating entries in each format can result in different
memory access patterns, costs and interfaces amongst formats.

Figure 1 shows the representation of a 5 × 5 dense matrix
in the three sparse storage formats used throughout this work:
COO, CSR and DIA. The most basic and well-known formats
are COO and CSR. Both are considered general purpose
formats, suitable to a broad range of matrices of arbitrary
sparsity patterns and target architectures. Below we provide a
brief description of these formats. For a more comprehensive
description please refer to Saad, Y. [26].

1) COO (Figure 1b): uses three arrays, whereby each non-
zero element (AV) is explicitly stored together with its column
(AJ) and row indices (AI) with no guarantees imposed in the
ordering of the elements. The SpMV algorithm for COO is
shown in Algorithm 1.

Algorithm 1 COO SpMV

for i=0:NNZ do
y(ai(i)) += av(i)*x(aj(i));

end for

2) CSR (Figure 1c): was implemented as an optimisation
to COO, where the AI array was compressed to generate an
array of row pointers. As a result, CSR explicitly stores the

column indices and non-zero values, and also uses an array of
pointers (IRP) to mark the boundaries of each row, thereby
reducing the memory footprint of the format by essentially
compressing the row indices. As the row pointers are used to
represent the position of the first non-zero element in each
row, and the last entry shows the total number of non-zeros
in the matrix, CSR naturally imposes an ordering across rows,
though not within each row. The SpMV algorithm for CSR is
shown in Algorithm 2.

Algorithm 2 CSR SpMV

for i=0:nrows do
sum = 0;
for j=irp(i):irp(i+1) do

sum += av(j)*x(aj(j));
end for
y(i) = sum;

end for

3) DIA (Figure 1d): is a specific purpose format originally
designed to perform optimally on vector architectures. It
is suitable for regular sparsity patterns. DIA uses a two-
dimensional array, where each column holds the coefficients
of a diagonal of the matrix (AV), and an integer offset array
(DOFF) keeps track of where each diagonal starts. Therefore,
the DIA format is suitable for matrices with structures that
dominate along the diagonals, such as banded matrices that
result from discretisation methods like the Finite Differences
Method (FDM). The SpMV algorithm for DIA is shown in
Algorithm 3.

Algorithm 3 DIA SpMV

for i=0:nrows do
sum = 0;
for j=0:ndiags do

k = i + doff(j)
if k≥0 and k<N then

sum += av(i,j)*x(k);
end if

end for
y(i) = sum;

end for

IV. SPMV IMPLEMENTATIONS ON AARCH64 CPUS

Optimising code for general-purpose processors such as
most AArch64 CPUs typically involves one of two things:
at a higher level, application programmers can choose to
utilise target-specific libraries that implement core algorithms
and routines efficiently for the specific targets; meanwhile,
at a lower level, application programmers can write efficient
code targeting specific CPU (micro-)architectures themselves,
usually either through intrinsics (or built-ins), which are func-
tions treated specially by compilers to make features of the
target architecture directly available to programmers, or via
writing explicit assembly for their target. In this work we



have explored integrating these two forms of optimisations
for AArch64 CPUs into Morpheus, which we describe in this
section.

The Arm Performance Libraries (ArmPL) [19] are a set
of core routines developed by Arm for HPC applications
for AArch64 targets (especially Neoverse-based). It contains
BLAS, LAPACK, FFT, Sparse, libamath (a subset of libm)
and libastring (a subset of libc for strings) routines for
both single- and multi-threaded processing provided via both
C and Fortran interfaces. ArmPL’s sparse routines support
dense, CSR, CSC, COO and BSR matrices. These routines
are provided via an API similar to FFTW, where the de-
scription of the problem is independent from its execution.
In this sense, to set up an SpMV operation with ArmPL
we start by creating a handle to a sparse matrix. This is
achieved with the armpl_spmat_create_* family of
routines. Usually, this matrix is provided in a common
format such as CSR. In our case, however, the handle is
created for the specific format we are using at the time.
Then, hints are provided to the handle in an attempt to
speedup future SpMV calls with armpl_spmat_hint calls.
The handle is then used in an optimisation stage similar
to that found in other libraries such as the aforementioned
FFTW, where the library tries to determine the best al-
gorithms and implementations for the specific matrix and
target. This step is issued with armpl_spmv_optimize.
Once these optimisations have been run, the handle can be
used repeatedly to execute SpMV and other sparse algebra
computations via the armpl_*_exec_* family of routines.
Once the handle is not needed anymore, it can be destroyed
by calling armpl_spmat_destroy. Given ArmPL’s high-
performance for AArch64 targets and ease-of-use, we have
chosen it in this paper to explore how and how well target-
specific libraries (of which ArmPL is an example) can be
integrated into Morpheus, thus offering its high-performance
to Morpheus users transparently.

An alternative way of developing highly-optimised code
for AArch64 CPUs is by leveraging the Arm C Language
Extensions (ACLE) [27]. The ACLE are a set of compiler
intrinsics that expose advanced features of the Arm achitecture
and aim to enable the development of applications and libraries
portable across compilers and across Arm micro-architectures.
One of the most disruptive extensions of the Arm architecture
(in particular AArch64) is the Scalable Vector Extension
(SVE) [17]. Unlike other contemporary single instruction mul-
tiple data (SIMD) extensions such as Neon from Arm and the
AVX extensions from x86, SVE is a “vector-length-agnostic”
(VLA) vector extension. This means that the programmer does
not program to vector registers of specific width; instead, they
program to a slightly different programming model where the
width of the vector registers is not known at compile-time. In
practice, this fact makes SVE highly portable, as the same code
(and, in fact, binary) can run transparently on hardware with
vector registers of different widths. Besides offering this extra
flexibility and portability, SVE is also an extremely complete
instruction set, supporting instructions highly suitable for High

Performance Computing (HPC) and Machine Learning (ML)
applications. Some examples of the high-performance features
of SVE are per-lane predication (i.e. control on a per vector
element basis), gather-loads and scatter-stores, speculative
vectorisation, and horizontal and tree-based reductions. The
gather-loads/scatter-stores of SVE are especially useful for
SpMV computations given the latter’s irregular and indirect
access patterns (as exemplified in Section III-B). Due to
these reasons, in this work we used ACLE to develop SVE-
enabled implementations of SpMV kernels for COO, CSR
and DIA matrices. Our implementations result mostly from a
transliteration of the default C++versions of the SpMV kernels
present in Morpheus to ACLE. Below we highlight two of
the main implementation details of our SVE-enabled SpMV
kernels. We utilise the algorithms presented in Section III-B
throughout to facilitate the discussion.

The indirection in the output vector y through the row index
vector ai in the COO kernel complicates the vectorisation of
the kernel’s loop. This happens because independent elements
of ai might point to the same element of y. In these cases,
the writes to y have either to be serialised or accumulated
before being issued, so that a single write is effected and
no updates to y are lost. In our SVE-enabled COO imple-
mentation we have chosen the second approach, whereby in
each iteration in i we only work with the elements (ai(i),
ai(i+1), ai(i+2), ...) that match (i.e. are equal to)
ai(i). We leverage SVE’s predication features to create
a mask of such elements and only operate on them. This
allows us to accumulate the products (av(i)*x(aj(i)),
av(i+1)*x(aj(i+1)), ...) that correspond to the
same ai(i) before writing them to y, thereby effecting a
single accumulation in y. In C and ACLE pseudocode, this
correspond to:
1 vbool_t pg;
2 for(i = 0; i < NNZ; i += vcntp(pg, pg)) {
3 // Generate mask for the values of i < NNZ
4 pg = vwhilelt(i, NNZ);
5

6 // Load values ai(i, i+1, ...)
7 vidx_t vai = vld1su(pg, ai+i);
8

9 // Generate mask for the elements
10 // (ai(i), ai(i+1), ...) == ai(i)
11 pg = svcmpeq(pg, vai, ai[i]);
12

13 // Load values of aj, av, and x
14 vidx_t vaj = vld1su(pg, aj+i);
15 vtype_t vav = svld1(pg, av+i);
16 vtype_t vx = svld1_gather_index(pg, x, vaj);
17

18 // Compute products av(i)*x(aj(i))
19 vtype_t vr = svmul_x(pg, vav, vx);
20

21 // Accumulate products
22 yval[ai[i]] += svaddv(pg, vr);
23 }

Though this approach might be inefficient if the mask pg
becomes too “hollow” (i.e. with too few active elements), in
practice in our tests this does not happen frequently. Thus,
as shown in Figure 4-a, this strategy allows us to achieve
significant speedups over default (i.e. compiler generated) and



ArmPL implementations.
Another important subtlety in the way we implement our

SVE-enabled SpMV kernels lies in the way we vectorise the
DIA format. Instead of vectorising the inner loop (in j), as
is more common, we have vectorised the outer loop (in i).
We have done this for two reasons, namely (i) the memory
accesses in av are contiguous (i.e. with stride 1) in j, thus we
get better cache utilisation from loading several (av(i, j),
av(i+1, j), ...) at a time and then looping through
(j, j+1, ...) sequentially, and (ii) this avoids doing a
horizontal reduction to accumulate the values of sum before
writing it to y. Additionally, we once again resort to SVE’s
predication features to mask the valid k indices for each inner
iteration. In pseudocode, we have:

1 vidx_t vidx = vindex(0, ndiags);
2 for(i = 0; i < rows; i += vcnt()) {
3 // Initialise sum
4 vtype_t vsum = vdup(0);
5

6 // Create mask for the values of i < nrows
7 vbool_t pg = vwhilelt(i, nrows);
8

9 for(index_type j = 0; j < ndiags; j++) {
10 index_type k = i + doff[j];
11

12 // Generate mask for the valid k's
13 // p1 = k < 0
14 // p2 = k < N
15 // pm = p2 && !p1
16 vbool_t p1 = vwhilelt(k, 0);
17 vbool_t p2 = vwhilelt(k, N);
18 vbool_t pm = svbic_z(pg, p2, p1);
19

20 // Load av and x
21 vtype_t vav =
22 svld1_gather_index(pm, av+i*ndiags+j, vidx);
23 vtype_t vx = svld1(pm, x+k);
24

25 // Compute the products av(i, j)*x(k) and
26 // accumulate them
27 vsum = svmla_m(pm, vsum, vav, vx);
28 }
29

30 // Store the results in (y(i), y(i+1), ...)
31 svst1(pg, y+i, vsum);
32 }

Once again, it might happen that the predicate pm might
have too few elements active for vectorisation to pay off,
though this does not happen often. Furthermore, in our tests
(Figure 4-c) the choice of performing outer-loop vectorisation
over inner-loop vectorisation leads to significant speedups.
However, we note that the compilers we tested, namely GCC
11.2.0 and LLVM 15.0.7, are not able to perform this outer-
loop vectorisation automatically due to the complex control
flow it entails.

V. SPMV IMPLEMENTATIONS ON FPGAS

FPGAs provide programmable logic that can be configured
at the electronics level to represent the hardware tailored to a
specific algorithm. The way that FPGAs operate fundamen-
tally differs from how Von-Neumann architectures such as
traditional CPUs operate, therefore during porting of CPU-
based algorithms these need to be re-engineered to a dataflow
style of computing suitable for such devices [23]. Dataflow, a

fundamental concept for the quest of performance on FPGAs,
is typically built around concurrently running stages, known
as dataflow stages, that stream data between themselves and
each stage comprises individual pipeline(s) which will start to
process a new iteration each cycle. On AMD-Xilinx FPGAs,
which are the focus of this work, this regularly includes the
definition of dataflow regions which are connected through
HLS streams providing usually lower number of cycles from
reads and writes than accesses to global memory.

Porting the three Morpheus storage formats COO, CSR
and DIA to the FPGA, we implement each of these as
individual kernels and deliver three different bitstreams, which
configure the FPGA, each containing a kernel of the SpMV
of the respective storage format algorithm as presented in
Algorithm 1 for COO, Algorithm 2 for CSR and Algorithm 3
for DIA. Working with AMD-Xilinx’s HLS toolchain Vitis
in C/C++, this means we had to set up the host code on
CPU and the HLS kernels on the AMD-Xilinx Alveo U280
FPGA which is used in this work. AMD-Xilinx’s host-device
model is built upon OpenCL, and as such we (i) initialise
the device in the host code, (ii) create OpenCL buffers for
input and output data, (iii) transfer the required input matrix
and vector data to the device, (iv) execute the kernel on
device once data has been transferred and is available in the
global device memory and lastly (v) transfer the result vector
back to the host. Depending on the matrix dimensions, the
required input and output data size varies and we transfer data
and run the device kernels in single precision floating-point.
While the number of elements and data sizes of input data for
COO and CSR are relatively similar, the DIA format requires
substantially more matrix values depending on the number of
padded rows and the number of diagonals to be stored: for
COO all inputs (AI, AJ, AV) require n=NNZ elements with
data sizes of 32-bit for integers and 32-bit for floats, for CSR
IRP requires n=nrows+1 elements of 32-bit for integers, AJ
and AV both require n=NNZ elements of 32-bit for floats, and
for DIA DOFF requires n=ndiags for 32-bit integers and
AV requires n=padded_rows*ndiags elements of 32-bit
for floats. Compared to the input data requirements of COO
and CSR, the DIA format requires significantly more input
elements and therefore increases the amount of data to be
transferred from host to device.

Under the assumption that the majority of SpMV computa-
tions occur as one out of many routines within a larger kernel
such as in HPCG, it is reasonable to assume the availability of
input data on the device and therefore we only report kernel
execution time on the device (excluding device initialisation
and setup time to download the bitstream and configure the
hardware and excluding data copy on and data copy off time).
Our implementation provides the data copy to device and
data copy back to host each in a single OpenCL buffer and
with the Vitis toolchain this means that we are bound to the
tooling’s single buffer size limit of 4 GB1, inhibiting us from

1https://docs.xilinx.com/r/en-US/ug1393-vitis-application-
acceleration/Buffer-Creation-and-Data-Transfer



running matrices that require individual input buffers larger
than the buffer size limit. For the Alveo U280 FPGA, there
is 8 GB of High-Bandwidth Memory (HBM) and 32 GB of
DDR DRAM available on-card. We utilise the faster HBM for
data transfers to device, which is why we do not run larger
matrix benchmarks than those requiring less than 8 GB of
accumulated input data for the respective SpMV algorithms.

Figure 2 illustrates the structure of our dataflow version
of COO on the FPGA using AMD Xilinx Vitis HLS. Each
green box is a separate dataflow region running concurrently,
with arrows between these illustrating streams of data that
flow from one cycle to the next. The purple boxes in Figure 2
depict connection to external, high bandwidth, memory where
all reads and writes are packed in chunks of 512 bits to best
utilise the memory controllers. Dataflow regions run in parallel
to load the data from HBM2 and then pass individual data
elements to the next stages. The dashed line in Figure 2
represents a ping-pong buffer, which is a common double
buffering technique used in FPGA programming where the
dataflow stage will concurrently write to one buffer whereas
the subsequent stage is served with data from a previous copy
of the buffer and these then switch at a predefined point.

One area of concern is to ensure that pipelines that comprise
the dataflow regions have initiation intervals (II) of one, where
the II refers to the number of clock cycles before the next
iteration in a loop can be started. An initiation interval of
one, commonly written as II=1, means that the dataflow
design can essentially yield a result every cycle. Considering
the much slower clock frequency of FPGAs, typically around
300MHz, compared to CPUs and GPUs, for performance it is
critically important that every cycle counts when it comes to
computation.

The following pseudocode describes our reduce stage in
the dataflow region of Figure 2 which illustrates our approach
in moving to an optimal II of 1:

1 void reduce(const unsigned int A_nrows,
2 const unsigned int A_nnnz,
3 unsigned int A_rind[MAX_NROWS],
4 hls::stream<dtype> &sum_stream,
5 dtype y_val[MAX_NROWS]
6 ) {
7 nrows_loop:
8 for (unsigned int row_index=0; row_index<A_nrows;
9 row_index++) {

10 dtype acc_part[LATENCY]={0,0,0,0,0,0,0,0};
11 nnnz_loop:
12 for (unsigned int i=0; i<A_nnnz;
13 i+=LATENCY) {
14 #pragma HLS pipeline
15 acc_partial_loop:
16 for (unsigned int j=0; j<LATENCY; j++) {
17 #pragma HLS unroll
18 dtype sum = sum_stream.read();
19 unsigned int tmp_A_rind =
20 A_rind[i*LATENCY+j];
21 if(tmp_A_rind == row_index) {
22 acc_part[j] += sum;
23 }
24 }
25 }
26 acc_final_loop:
27 for (unsigned int j=0; j<LATENCY; j++) {
28 #pragma HLS unroll

load_dtype_data load_int_data

get_x_values

compute_spmv

reduce

store

AI

YV

load_int_data

AJAV

load_dtype_data

XV

HLS Stream

Ping-pong buffer

Dataflow stage

Ports to HBM

Fig. 2: Dataflow region of the COO algorithm implemen-
tation on FPGA with dataflow stages operating in parallel
and connected through HLS streams and ping-pong buffers
implemented in UltraRAM.

29 y_val[row_index] = acc_part[j];
30 }
31 }}

Implementing the naive reduction to YV, as part of the
COO Algorithm 1, based on the row index of each non-
zero element on FPGA as fadd required eight clock cycles.
The HLS tooling detected a spatial dependency and therefore
avoided pipelining our reduce function at lower II than eight.
Splitting the reduction into LATENCY=8 partial accumulations
in the inner loop acc_partial_loop on Line 15 in the
pseudocode above, which the tooling can fully unroll, the
outer nnnz_loop will still be pipelined with II=8 by the
HLS tooling but through the full inner unroll essentially yields
a result every cycle. As in the COO algorithm we only
reduce across the same row index, on Line 21 we introduce
a conditional to only accumulate the partial sum for the same
row index. On Line 26, we then perform the final accumulation
across the previously computed partial accumulations and
write the reduced value to YV (here y_val) based on the
corresponding row index. The presented reduction builds on a
LATENCY of eight for the fadd which required eight cycles,
and to ensure that none of the HLS streams contain leftover
data at the end of the SpMV kernel, on the host before creating
OpenCL buffers and transferring data to the FPGA’s global
memory, we apply padding to all input data structures to be
multiples of LATENCY (here eight). With our approach, the
optimised SpMV kernel is not bound to any specific matrix
dimensions, for instance does also run on matrices with row
and column numbers which are not multiples of eight but is
still limited by individual buffer size and accumulated input
buffer sizes.



VI. INTEGRATION WITH MORPHEUS

Morpheus is a C++header-only library that heavily re-
lies on templates and meta-programming to enable certain
polymorphic capabilities. It follows a functional design that
separates the data structures (containers) from the functions
(algorithms), with algorithms acting on containers. In order to
provide support for the various hardware platforms and mem-
ory hierarchies, Morpheus adopts two notions of abstraction:
1) the Execution Space, which specifies where the code will
be executed; and 2) the Memory Space, specifying where the
data will reside in memory. Morpheus currently supports four
executions spaces: 1) Serial (Sequential), 2) OpenMP (Multi-
threaded), 3) CUDA (NVIDIA GPUs) and 4) HIP (AMD
GPUs), with each execution space also acting as a separate
backend. As a result, it is possible to use a single interface for
each supported algorithm. By specifying the backend we want
to run in, we also target a different execution space. In addi-
tion, Morpheus offers data management routines to effectively
managing data transfers between the available memory spaces.
To provide support for heterogeneous hardware, Morpheus
adopts the Host-Device model, enabling data management
functionality between different memory spaces.

The integration of specific optimisations, such as the ones
proposed in Section IV in a pre-existing backend presents
different challenges that needed to be overcome from the
integration of a new backend as proposed in Section V. Below
we provide a description of the challenges for each of the two
approaches.

A. Optimisations

Morpheus performs compile-time introspection on the al-
gorithm and by examining the backend, provided by the user
as a parameter, identifies which algorithm implementation
to dispatch every time. This means it is only possible to
dispatch one and only implementation of the algorithm for
every backend. Multiple implementations in a single backend
can be chosen only by re-compiling the code.

The optimisations proposed at Section IV effectively con-
stitute alternative algorithm implementations of the SpMV
routine in the Serial backend. With the current state of Mor-
pheus, the integration is only possible by specifying which
version should be enabled using a compile-time flag. Of
course future developments could move this decision at run-
time, such that it will be possible to enable all versions,
although this will introduce runtime overheads every time the
algorithm is executed. However, this would only be possible if
the performance improvements of selecting the most optimal
version (given the sparsity pattern of the matrix) justify this
trade-off.

The integration of the SpMV implementations for COO
and CSR offered by ArmPL inside each of the equiva-
lent Morpheus routines requires the data of the CooMatrix
and CsrMatrix containers in Morpheus to be converted in
armpl spmat t so that they will be passed to the ArmPL
specific routines. Since the data layout of the CooMatrix
and CsrMatrix follows the same requirements as the ones

internally in ArmPL, the armpl spmat t handle is created
in ARMPL_SPARSE_CREATE_NOCOPY mode, meaning that
only the pointers to the data are passed instead of any actual
copies. To avoid creating a new handle for the same matrix ev-
ery time the SpMV multiplication is performed one workspace
is created for each format acting as a Singleton [28]. In
other words, every time the SpMV multiplication is executed
with a new matrix the workspace is responsible to register
the newly created handle and in future calls use that one
instead of creating a new one. Another challenge that had
to be resolved is the adaptation of the polymorphic behaviour
of Morpheus containers to explicit ArmPL function calls that
have the format and value type information embedded in the
function name. An example of the adaptor call that had to be
implemented that maps the polymorphic containers available
in Morpheus to the explicit function call for creating the
ArmPL handler of either a COO or CSR matrix using ArmPL
is shown in Table I.

TABLE I: Adaptation of the polymorphic Morpheus behavior
to explicit calls required by ArmPL.

Morpheus Format Adaptor call ArmPL call
CooMatrix<double>

create_coo<T>
armpl_spmat_create_coo_d

CooMatrix<float> armpl_spmat_create_coo_s
CsrMatrix<double>

create_csr<T>
armpl_spmat_create_csr_d

CsrMatrix<float> armpl_spmat_create_csr_s

After a successful porting of the ArmPL implementations
in Morpheus, the port of the individual SVE implementations
for each format as described in Section IV followed the
same principles as described for ArmPL. In other words,
since no handles were used in the SVE implementations, no
workspaces were required. However, the SVE intrinsics used
in the implementations had to be adapted in a similar way
described for ArmPL.

B. New Backends

The integration of a new backend in any code is a very
challenging task as each new backend poses unique chal-
lenges that might require significant development efforts. In
this work, we seek to understand the challenges involved in
enabling support for FPGAs in Morpheus for future releases.
The motivation behind this choice is that FPGAs share many
similarities with GPUs because, from the developers perspec-
tive, both are regarded as accelerators with distinct memory
spaces from the host (CPU) in a host-device model. Hence,
since Morpheus already provides supports for GPUs, the high-
level interface for managing heterogeneous hardware could
potentially remain unchanged.

The proposed process of support for FPGA in Morpheus is
as follows:

1) Develop the execution space: In order to maintain
portability of Morpheus, the ExecutionSpace concept
available in Kokkos [29] can be followed in order to
implement a common set of functionality that remains in
line with the interface of the existing execution spaces.



Upon completion, Morpheus will be able to discover,
acquire and synchronise with an FPGA that is available
in the runtime and dispatch any algorithms implemented
for the FPGA backend. Note that housekeeping routines
from OpenCL might be required for querying the un-
derlying FPGA runtime.

2) Develop the memory space: In a similar manner to the
creation of the execution space, the memory space for
the global memories that are available on FPGAs has
to be developed. Following the MemorySpace concept
available in Kokkos, two memory spaces can be created
representing the DDR and High Bandwidth Memory
(HBM2), memories that are commonly available in
many FPGAs. Upon creation, using the two memory
spaces users will be able to allocate/deallocate memory
on the target FPGAs effectively creating any of the
available containers on the FPGA.

3) Data Management: Following the development of mem-
ory spaces that can obtain memory on the FPGA, the
data management routines for each of the new memory
space must be implemented. These routines include copy
and mirroring operations responsible for transferring
data between the supported memory spaces and cre-
ating new containers with the same characteristics and
memory allocation size in a specified memory space. In
addition, this will allow for data to be offloaded from
the Host (CPU) to the Device (FPGA) and vice-versa.

4) Low-level Implementation: The last step will be to im-
plement the algorithms available in Morpheus (including
SpMV multiplication) for the FPGA. The implementa-
tions at this level will be the ones launched when the
FPGA execution space is selected. Note that both the
housekeeping done with OpenCL as well as the kernel
launch are implemented at this level.

The first three steps described above share many similarities
with the existing backends in Morpheus. However, the most
challenging stage to implement is the low-level implemen-
tation as this is where the unique properties of FPGAs are
manifested. One major challenge is the vast difference in the
build process of the device code. Generally, the code written
for FPGAs is compiled to generate a bitstream containing the
hardware configuration, which even for small kernels such
as SpMV can take several hours, especially with increasing
solution spaces for optimisations such as the partitioning of
large arrays. Compared to other architectures, this reconfigura-
bility comes at the expense of relatively long build processes
including routing and placing on the die for FPGAs leading to
longer time-to-solution. While building the host code on CPU
for managing the interaction with the device is relatively fast
compared to the overall bitstream generation, this means that
on-the-fly compilation and linking is not possible. In addition,
Morpheus is a header-only library that is effectively compiled
at the application level. Consequently, all the algorithms
are written in the form of templates that the compiler is
responsible for generating at the application level i.e. in user’s

code. As a result, the type of the inputs is generic until last
minute meaning we wouldn’t been able to generate the FPGA
bitsream until that point. To circumvent this issue, a set of
potential types could be used to explicitly instantiate these
implementations during the build and installation of Morpheus,
such that it will be possible to generate the bitstreams apriori.

Another important challenge is portability across differ-
ent FPGA devices both of the same or different vendors.
Klaisoongnoen et al. [30] explored the porting of HLS kernels
between AMD-Xilinx and Intel FPGAs and described the chal-
lenges encountered when moving from one FPGA architecture
to another and suitability of optimisation techniques between
vendor tool chains. For the SpMV kernels in HLS presented
in this work, moving from one FPGA architecture to another
requires that connectivity configurations, for instance mapping
kernel arguments to memory spaces, are adapted. An important
consideration is whether the target FPGA card provides HBM2
memory or whether alternatively on-card DDR has to be
targeted and how this is integrated in the specific build process
of the available HLS tooling. While the HLS code tends
to be portable between FPGA architectures, vendor specific
pragmas, host code implementations and support for fea-
tures such as direct host-kernel streaming2 vary. One possible
solution to this issue is the creation of different backends
for each vendor as well as implementing the algorithms and
optimisations with backward compatibility in mind. Note that
by explicitly instantiating the FPGA implementations as well
as having information about the range of the supported FPGA
devices can allow us to generate a set of bitstreams in advance
and distribute them as part of the Morpheus release and each
time load the appropriate pre-built implementation depending
on the respective runtime.

Focusing on automatic code generation for multiple back-
ends, a key challenge with FPGAs is the fundamental differ-
ence in how such devices operate compared to traditional Von-
Neumann based CPU architectures. Whilst HLS toolchains
such as AMD-Xilinx’s Vitis HLS and Intel’s Quartus Prime
Pro typically generate working bitstreams for FPGAs from
CPU-based codes, these bitstreams tend to be significantly
slower in performance compared to manually tuned HLS
code which has been adapted to suit a dataflow style of
computing optimal for FPGAs. For instance, differences in
runtime performance between naive CPU-based HLS kernels
and dataflow-optimised implementations have been shown to
range significantly (over 1000 times is common) [31]. Whilst
available HLS tools provide portability within limitations,
performance portability between CPU and FPGA architectures
remains an open challenge. Our approach, as described above,
is not based on automatic code generation but instead allows
developers to write custom code for FPGAs with explicit
optimisations. In addition, users can exploit additional optimi-
sations through the dynamic format switching capabilities of
Morpheus that would also be available for the FPGA backend.

2Intel FPGA Programming Guide, Direct Communication with Kernels via
Host Pipes: https://www.intel.com/content/www/us/en/docs/programmable/
683846/22-1/direct-communication-with-kernels-via.html



VII. RESULTS AND EVALUATION

A. Setup

All experiments targeting AArch64 CPUs were carried out
on the Bristol-based HPE Apollo 80 partition of Isambard [32].
Each of the 72 nodes on the cabinet has a Fujitsu A64FX
Processor with 48 ARMv8.2 cores and 512-bit SVE, running
at the clock frequency of 1.8GHz, and 32GB HBM2 memory
arranged in 4 core memory groups.

Each experiment was compiled with GNU 10.2.0 using -O3
-ffast-math -ftree-vectorize -funroll-loops
-mcpu=native compiler flags. For the distributed experi-
ments OpenMPI 4.1.0 was also used.

For the FPGA runs reported in this paper we use a Xil-
inx Alveo U280, running at the default clock frequency of
300MHz, which contains an FPGA chip with 1.08 million
LUTs, 4.5MB of on-chip BRAM, 30MB of on-chip Ultra-
RAM, and 9024 DSP slices. This PCIe card also contains
8GB of HBM2 and 32GB of DDR DRAM on the board.

The FPGA card is hosted in the ExCALIBUR H&ES FPGA
testbed3 system with a 32-core AMD EPYC 7502 CPU with
256GB DRAM . All bitstreams are built for the U280 using
Xilinx’s Vitis framework version 2021.2.All reported results
are averaged over ten runs and FPGA run-time includes
on-device execution time exclusive device setup time and
excluding data transfer times.

B. Evaluation of SpMV on AArch64 CPUs

In order to evaluate the performance of the newly added
SpMV implementations for AArch64 CPUs in Morpheus,
for each implementation we perform 100 iterations of the
SpMV multiplication over 2106 sparse matrices available in
SuiteSparse [7] collection. Each run is executed in Serial on
a Fujitsu A64FX Processor, as described in Section VII-A.
The implementations are divided in three versions as shown
in Table II, along with a short description and the supported
formats for each.

TABLE II: Versions of each CPU-based SpMV implementa-
tion available in Morpheus along with the formats each version
supports.

Version Description COO CSR DIA

Plain Original implementations
✓ ✓ ✓without any Arm Optimisations

ARMPL Implementations using ArmPL ✓ ✓ ×

SVE Implementations using
✓ ✓ ✓SVE Extensions

The optimal format distribution per version differs signifi-
cantly, as shown in Figure 3. For most of the matrices in the
SuiteSparse collection the optimal format is CSR, validating
its role as the most commonly used storage format. However,
almost 20% and 40% of the matrices are better with COO
in the Plain and SVE versions respectively. Interestingly,

3ExCALIBUR H&ES FPGA testbed, Field Programmable Gate Arrays
(FPGAs) for accelerating scientific and data-science codes: https://fpga.epcc.
ed.ac.uk/

PLAIN ARMPL SVE
Version

0

20

40

60

80

Fo
rm

at
 D

ist
rib

ut
io

n 
(%

)

COO
CSR
DIA

Fig. 3: Distribution of the optimal format for the SpMV multi-
plication operation in serial for over 2100 sparse matrices from
SuiteSparse collection on A64FX. Distributions are shown for
each version of the algorithm.

although DIA format is almost of no use for Plain version, the
vectorization performed by SVE version makes DIA format
optimal for 10% of the matrices. This indicates that the
vectorization performed by the compiler for DIA in Plain
version might not be as effective as the use of custom SVE
extensions in the SVE version. The main takeaway here is
that for the same hardware, operation and set of matrices in
the majority of times the optimal performance is given by
CSR, although the distribution of the optimal format can vary
significantly given a different implementation or by applying
different optimisations.

Figure 4 shows the single-core performance of the SpMV
multiplication for over 2100 sparse matrices from SuiteSparse
collection on the A64FX processor. For each format, the
runtime of the Plain version SpMV is compared against the
runtime of each optimized SpMV version (ARMPL and SVE)
using the same format. For COO (Figure 4a), ARMPL SpMV
implementation performs at par with the Plain COO SpMV
implementation whilst SVE implementation consistently out-
performs it, obtaining average speedups of 1× and 3.6×
respectively. The increase in performance achieved by the
SVE version can be attributed in assumptions made during
the implementation of the SpMV algorithm that allowed us to
take advantage of different intrinsic commands. For example,
by assuming that the matrix is sorted (which Morpheus ensures
prior to applying any SpMV operation) a tree-based reduction
was used instead of the traditional left-to-right reduction
in order to accumulate the results in the output vector y.
It is worth highlighting that even-though the SVE version
significantly outperforms the Plain version for most of the
matrices in COO, there is still a noticeable number of matrices
for which it significantly under-performs. For very sparse and
unstructured matrices, SVE version seems to introduce more
overheads from the vectorization process effectively hindering
the performance of SpMV. For CSR (Figure 4b), the average
runtime performance for both ARMPL and SVE versions is at
par with Plain. Interestingly, for a large number of matrices



0 500 1000 1500 2000
Matrix ID

0

1

2

3

4

5

6

7
Ru

nt
im

e 
Ra

tio
 T

FM
T

/T
O

PT
FM

T (
Ti

m
es

))
ARMPL
ARMPLavg

SVE
SVEavg

(a) COO

0 500 1000 1500 2000
Matrix ID

1

2

3

4

5

6

7

Ru
nt

im
e 

Ra
tio

 T
FM

T
/T

O
PT

FM
T (

Ti
m

es
))

ARMPL
ARMPLavg

SVE
SVEavg

(b) CSR

0 500 1000 1500 2000
Matrix ID

1

2

3

4

5

6

7

Ru
nt

im
e 

Ra
tio

 T
FM

T
/T

O
PT

FM
T (

Ti
m

es
))

SVE
SVEavg

(c) DIA

Fig. 4: Serial performance of the SpMV multiplication over 2100 sparse matrices from SuiteSparse collection on A64FX. For
each format, the original performance (Plain) of the Morpheus SpMV is measured against the optimized (ARM) SpMV.

Optimized versions include the ArmPL and SVE implementations and the formats considered are COO, CSR, DIA. A ratio
above 1 indicates a speedup over the performance achieved when using the original implementation with the same format.

The straight lines represent the average speedup over all matrices for each version.

0 500 1000 1500 2000
Matrix ID

10 3

10 2

10 1

100

101

Ru
nt

im
e 

Ra
tio

 T
CS

R
/T

O
PT

FM
T (

Ti
m

es
)

PLAIN
PLAINavg

ARMPL
ARMPLavg

SVE
SVEavg

(a) COO

0 500 1000 1500 2000
Matrix ID

10 3

10 2

10 1

100

101

Ru
nt

im
e 

Ra
tio

 T
CS

R
/T

O
PT

FM
T (

Ti
m

es
)

PLAIN
PLAINavg

SVE
SVEavg

(b) DIA

Fig. 5: Serial performance of the SpMV multiplication over 2100 sparse matrices from SuiteSparse collection on A64FX. For
each format, the original performance (Plain) of the Morpheus CSR SpMV is measured against the optimized (ARM)

SpMV. Optimized versions include the ArmPL and SVE implementations and the formats considered are COO, DIA. A ratio
above 1 indicates a speedup over the performance achieved when using the original CSR implementation. The straight lines

represent the average speedup over all matrices for each version.

the ARMPL version achieves speedups above 1× compared
to Plain, with max speedup up to 3×. At the same time, for
a large number of matrices it seems to significantly under-
perform, whilst SVE version offers a more stable performance
profile. The largest benefit from exploiting the SVE intrinsics
is reaped by DIA (Figure 4c) where the SVE version obtains
an average speedup of ≈ 5× compared to the Plain implemen-
tation. The fact that the SVE implementation beats the Plain
implementation for all matrices in the set suggests that the
compiler has a tough time performing effecting vectorization
in Plain version.

Since for most of the matrices the optimal format for
performing the SpMV operation is CSR, in Figure 5 we
compare the runtime performance of COO and DIA for all
three versions (Plain, ARMPL and SVE) against the runtime
of the CSR for the Plain version, with the same configuration

as before. For COO (Figure 5a), on average both Plain and
ARMPL versions perform approximately the same and do
worse compared to the Plain CSR implementation. On the
other hand, the optimisations performed in the SVE version
achieve an average performance at par compared to the Plain
CSR implementation. Note that for most of the matrices, COO
will result in significant slowdowns compared to CSR irre-
spective of the version used. However, for a small number of
matrices, all three versions offer noticeable speedups reaching
up to max speedups of 10×. Similar observations can be made
about DIA (Figure 5b). It is obvious that DIA format finds use
in a small number of matrices with specific characteristics.
However, for those matrices the performance optimisations
from the adoption of SVE intrinsics can offer a significant
boost in performance with max speedups of ≈ 20× compared
to CSR.



It is worth pointing out, that even-though it was expected
for the ARMPL versions to perform optimally for COO and
CSR, on average they were at par with their Plain equivalents.
However, for a large number of matrices, the CSR ARMPL
implementation was optimal. Furthermore, the adoption of
SVE intrinsics had a noticeable impact on DIA, increasing
the number of matrices it was optimal for by an order of
magnitude and offering consistently noticeable speedups com-
pared to it’s equivalent Plain implementation. This experiment
makes it clear that in the same way no single format can
perform best across the different sparsity patterns, no single
implementation can do the same either. As a result, these
findings motivate the extension of Morpheus to also support an
efficient mechanism for selecting the optimal implementation
at runtime.

C. Evaluation of SpMV on FPGAs

When evaluating our FPGA implementations of SpMV, we
performed 10 iterations of each of the three SpMV kernels
over the SuiteSparse collection, with Section VII-A providing
more details on the experimental setup. Figure 7 shows the
distribution of optimal formats for the SpMV operation in Se-
rial for over 2100 sparse matrices. The CSR format dominates
in terms of performance or shortest runtime, since for more
than 80% of the matrices performs optimally when compared
against the COO and DIA format. The second most optimal
format across the SuiteSparse matrices is COO with more
than 10% and DIA is optimal still for more than 5% of the
matrices. It is worth highlighting that on the A64FX processor,
similar distribution was obtained for the Plain SpMV Version
as shown in Figure 3.

The serial performance of our FPGA prototypes for COO
and DIA against CSR is presented in Figures 6a and 6b, con-
firming the conclusions from the optimal format comparison
where the SpMV algorithm for CSR outperforms both the
COO and DIA implementations on FPGA for the majority
of matrices. Note that even-though the average speedup for
both COO and DIA is well below 1 when compared against
CSR, for a very few matrices we do observe some increase
in performance (for instance, in one case with COO we
observe a 2× speedup). Optimising the kernels further such
that they are exploiting optimally the characteristics of the
hardware can have the potential of a more diverse distribution
of optimal formats. However, at this point with COO and DIA
both yielding no speedup over CSR, we can report that the
compressed sparse row advantage on traditional architectures
also holds true for our baseline versions on FPGA.

In Figure 6c the optimisations of the COO SpMV kernel
described in Section V are compared against the naive version.
We observed that the use of HBM2 provided a small boost in
performance for most of the matrices, but combining HBM
with on-chip BRAM had no further noticeable effect. The
reduce operation, shown in Figure 2, is sub-optimal for FPGAs
because the floating point accumulation between iterations,
which requires more than one cycle, adds a spatial dependency
between loop iterations and thus pushes the initiation interval

higher than one, meaning that cycles are wasted. It is common
practice on FPGAs to optimise this by reducing in chunks of
independent iterations, and performance numbers for this are
reported in Figure 6c by REDUCE. However it can be seen
that, in this case, this is not beneficial and that is because the
conditional on row index means that the cycles which do not
match the conditional are doing nothing anyway, and-so this
offsets the added complexity of the reduction optimisation.
However, it is worth highlighting that it achieved the highest
maximum speedups out of all three optimisations for one of
the matricies, where we observe that the reduce optimisation
works better for small matrices as the overhead increases
with larger nrows and NNZ. This result demonstrates once
more, this time on FPGAs, the importance of having multiple
implementations of the same SpMV operation and the ability
to dynamically switch to the optimal format given the sparsity
pattern of the input.

D. HPCG experiments

The HPCG benchmark solves the Poisson differential equa-
tion on a regular 3D grid, discretized with a 27-point stencil. It
uses the Preconditioned Conjugate Gradient (PCG) algorithm
with a symmetric Gauss-Seidel [26] as a preconditioner, and
includes the following computations: sparse matrix-vector
multiplications (SpMVs); vector updates; global dot products;
a local symmetric Gauss-Seidel smoother (including a sparse
triangular solve); and multi-grid (MG) preconditioned solvers.
The performance bottleneck in HPCG is due to to the sparse
operations that are carried out at every step of the iterative
solver, i.e the SpMV and the Gauss-Seidel smoother.

HPCG is a widely accepted and well-understood benchmark
used to measure the performance of HPC systems. For this
reason, multiple vendor specific implementations exist ( [10],
[33], [34]). In previous work, we have also implemented a
Morpheus-enabled HPCG [9]. The benchmark progresses in
the following phases:

1) Problem setup: Constructs the synthetic problem by
creating the geometry and linear system.

2) Reference timing: Measures the time taken to run the
SpMV and MG reference implementations and the time
to solution for the reference Conjugate Gradient (CG)
solver.

3) Problem Optimisation setup: Configures the user defined
data structures to be used in the optimised problem.

4) Validation and Verification: Checks that the optimised
problem has returned the expected results.

5) Optimised problem timing: Measures the time to solution
for the optimised CG solver.

In the following experiment, we benchmark the performance
of: 1) the Morpheus-enabled HPCG with the newly added
ARMPL and SVE versions of SpMV and 2) The vendor (Arm)
implementation of HPCG against the original HPCG. We are
focusing on Phase 5, although for the purposes of this work,
since we are interested in the SpMV multiplication, we are dis-
abling the use of the preconditioner from all implementations.



0 250 500 750 1000 1250 1500 1750 2000
Matrix ID

10 3

10 2

10 1

100

101

Sp
ee

du
p 

(T
CS

R
/T

O
PT

FM
T)

NAIVE
NAIVEavg

(a) Plain COO SpMV performance against
CSR implementation.

0 250 500 750 1000 1250 1500 1750 2000
Matrix ID

10 3

10 2

10 1

100

101

Sp
ee

du
p 

(T
CS

R
/T

O
PT

FM
T)

NAIVE
NAIVEavg

(b) Plain DIA SpMV performance against
CSR implementation

0 250 500 750 1000 1250 1500 1750 2000
Matrix ID

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ru
nt

im
e 

Ra
tio

 T
FM

T
/T

O
PT

FM
T (

Ti
m

es
))

HBM
HBMavg

BRAM
BRAMavg

REDUCE
REDUCEavg

(c) Optimised versions of COO SpMV
against plain COO version.

Fig. 6: Serial performance of the SpMV multiplication over 2100 sparse matrices from SuiteSparse collection on Alveo U280.
A ratio above 1 indicates a speedup over the performance achieved against a reference implementation. The straight lines
represent the average speedup over all matrices for each version.

FPGA
Version

0

10

20

30

40

50

60

70

80

Fo
rm

at
 D

ist
rib

ut
io

n 
(%

)

COO
CSR
DIA

Fig. 7: Distribution of the optimal format for the SpMV
multiplication operation in serial for over 2100 sparse matrices
from SuiteSparse collection on Alveo U280. Distributions are
shown for each version of the algorithm.

The experiment is configured as described in Section VII-A
on the A64FX processors.

In Figure 8a, the single-core SpMV runtime performance
of the two HPCG implementations (Morpheus and Arm) is
measured against the original HPCG over a set of different
problem sizes. For each format in the Morpheus-enabled im-
plementation, we measure the runtime for the Plain, ARMPL
and SVE versions of the SpMV multiplication routines. In
a similar way, the runtime of the SpMV with (SVE) and
without (Plain) SVE intrinsics is measured for the Arm
implementation.

The system matrix in HPCG is generated using the FDM.
As a result, the matrix is highly regular with non-zeros around
the diagonals. It is expected therefore that the DIA format
would perform optimally compared to the rest of the formats,
a hypothesis which is confirmed by Figure 8a. The optimal
performance difference between the two versions of the DIA
SpMV i.e Plain and SVE, follows the average performance
observed in Figure 5b, with a max speedup of 5× compared

to the reference HPCG. Note that for smaller problem sizes,
the performance of both is impacted by the extra operations
due to zero-padding. The SVE version for the Arm HPCG
closely follows the performance of the Morpheus-enabled
HPCG that uses CSR. However, the performance of the Arm
HPCG version without SVE support diminishes at the problem
size of 643. This can be attributed to the fact the matrix in
Arm HPCG is reordered and to the lack of SVE extensions.
Interestingly, for a problem size of 2563 every implementation
that was performing better, compared to the reference, now
either sees a drop in performance or stays at par. However,
implementations such as all versions of the Morpheus-enabled
HPCG using COO and the Plain version that uses DIA now
see a boost in performance, with the SVE version of COO
achieving the optimal –but marginal– performance out of all.
This result further motivates the need for runtime switching
of different SpMV implementations for the same format.

The performance of the distributed HPCG for both
Morpheus- and Arm-enabled HPCG is measured against the
original HPCG implementation. For the strong scaling exper-
iment the global problem size chosen is 192 × 256 × 192
and for the weak scaling experiment the local problem size is
48× 64× 64. For the distributed implementations the sparsity
pattern of the matrix on each process differs from the one
in the Serial case, due to the remote elements of the matrix
added to the right. Whilst the matrix is initially structured, the
remote part of it is highly unstructured. As a result, in the
Morpheus-enabled HPCG we physically split this matrix into
local and remote part in order to potentially select different
storage formats for each. This is achieved by utilising a run-
first auto-tuner where it finds the optimal format to use on
every process. The formats selected on each process for each
version of our implementation are shown in Table III. Notice
that for the SVE version, the optimal formats chosen were DIA
and COO, for both strong and weak scaling experiments.

Figures 8b and 8c shows the scaling SpMV performance
for each version of Morpheus- and Arm-enabled HPCG im-
plementations against the reference HPCG. Note that for both



16-16-16 32-32-32 64-64-64 128-128-128 256-256-256
Local Problem Size

0

1

2

3

4

5

Ru
nt

im
e 

Ra
tio

 T
H

PC
G

/T
O

pt
H

PC
G
 (t

im
es

)
HPCG Impl:

Arm
Morpheus

Version:
Plain
SVE
ArmPL

Format:
CSR
COO
DIA

Format:
CSR
COO
DIA

(a) Serial Performance

111111 222222 333333 444444
Number of Nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ru
nt

im
e 

Ra
tio

 T
H

PC
G

/T
O

pt
H

PC
G
 (t

im
es

)

HPCG Impl:
Arm
Morpheus

Version:
Plain
SVE
ArmPL

Version:
Plain
SVE
ArmPL

(b) Strong Scaling
0 5 10 15 20 25 30

Number of Nodes

0.95

1.00

1.05

1.10

1.15

Ru
nt

im
e 

Ra
tio

 T
H

PC
G

/T
O

pt
H

PC
G
 (t

im
es

)

HPCG Impl:
Arm
Morpheus

Version:
Plain
SVE
ArmPL

Version:
Plain
SVE
ArmPL

(c) Weak Scaling

Fig. 8: Performance of the Morpheus- and Arm-enabled HPCG implementations. The performance is measured as the SpMV
runtime ratio of the reference HPCG w.r.t each optimal HPCG implementation and version on A64FX. For the serial version,
High Performance Conjugate Gradients (HPCG) runs for a set of problem sizes. For the distributed Morpheus-enabled HPCG
a run-first auto-tuner is used in order to determine the optimal format to use at each process. A ratio above 1 indicates a
speedup over the performance achieved when using the original HPCG.

TABLE III: Optimal format used for each version of the
Morpheus-enabled HPCG across the different processes for
both strong and weak scaling.

Version Local Format Remote Format
Plain CSR CSR

ARMPL CSR CSR
SVE DIA COO

strong and weak scaling, the Morpheus-enabled HPCG closely
tracks the performance of the optimal SVE version of Arm-
enabled HPCG. In Figure 8b, the boost in performance on
3 nodes happens due to the fact the size of the system
matrix strikes a balance between the benefits achieved from
vectorisation and the overheads that are associated with it.
Furthermore, the weak scaling results in Figure 8c, even-
though they show marginal improvement over the original
HPCG, still show that our contributions match the performance
of the optimal Arm implementation. Note however, with a
local problem size somewhere closer to the region we have
previously noticed performance improvements (i.e between
643 and 1283 as shown in Figure 8a) more noticeable speedups
would have been expected, although due to memory limitations
such runs weren’t feasible at the distributed level.

VIII. RELATED WORK

The research efforts into optimising sparse computations
largely fall in two categories, namely (i) in the creation of
novel storage formats that better capture the characteristics of
particular architectures or sparsity patterns, such as CSR5 [3]
and Sell-C-σ [5], and (ii) in the use of auto-tuners such
as Morpheus-Oracle [35] and SMAT [36] to automatically
determine the optimal format to use for a computation.

A few recent works have examined the performance of
different sparse formats on AArch64 targets. In particular on
A64FX processors, the SELL-C-σ matrix storage has been
shown to achieve performance and memory-bandwidth satu-
ration superior to the standard CSR format, reaching perfor-

mance on par with NVIDIA’s V100 GPUs for large, memory-
bound SpMV datasets [37]. An optimised variation of the CSR
format—“Bitmap-based CSR (BCSR)”—that extracts edge in-
formation more efficiently and has a smaller memory footprint
than the classical CSR format has also been proposed for
the A64FX-based Fugaku supercomputer, enabling it to reach
rank 1 in the Graph500 benchmark in November 2020 [14].
Other variations of the CSR and ELLPACK (ELL) formats,
namely aligned CSR (ACSR) and aligned ELL (AELL),
respectively, have also been proposed and implemented with
Neon instructions for AArch64 targets [38].

For sparse matrix multiplications, FPGA vendors such as
Intel implemented, among others, the COO, CSR and DIA
formats in their Sparse BLAS libraries as part of the Intel
oneAPI Math Kernel Library [39], whereas Xilinx have de-
veloped an implementation of the CSC format in their Vitis
Sparse libraries [40] and the COO format in their General
Matrix Operation (GEMX) [41] engine library which provides
building blocks for constructing matrix operation accelerators
on FPGA. Other work focused on implementing a modified
CSR (MCSR) format for SpMV multiplication in HLS [42],
or customised sparse matrix formats to leverage the available
HBM2 on recent generation FPGAs [43].

IX. CONCLUSIONS AND FURTHER WORK

In this paper, we have shed light on the challenges imple-
menting prototypes of the SpMV kernels for the three sparse
storage formats COO, CSR and DIA on the two emerging
architectures AArch64 CPUs and FPGAs. Optimising the three
kernels on the respective architectures, we highlight the per-
formance advantages of individual approaches and show that
our Morpheus implementations are competitive. Moreover, we
describe potential integration targets of our prototypes to be
implemented in the Morpheus library. While our results prove
performant implementations especially on AArch64 CPUs
with SVE and compared to ARMPL, accelerators such as



FPGAs exhibit larger performance portability gaps compared
to architectures that do not build on a host-device model.

In terms of future work, a full integration of the FPGA
prototype as novel backend to Morpheus is of interest but will
require further engineering around abstractions for memory
management, build process integration, smart container/layer
translations due to restricted availability of dynamic memory
and data type support. As vendors such as Intel and AMD-
Xilinx have come up with architecture specific implementa-
tions of HPCG, an evaluation of these against the Morpheus-
HPCG version will be possible, especially with AMD-Xilinx’s
closely to the HPCG problem size generation tied CSR im-
plentation on FPGA. Moreover, the FPGA prototypes of the
storage formats could benefit from implementation on the
newest generation of AMD-Xilinx FPGAs, the Versal ACAP.

While our focus in this paper is on the three core sparse
matrix storage formats supported by Morpheus i.e. COO, CSR
and DIA, there exist a plenitude of other storage formats such
as ELL, HYB or HDC that are widely used and from which
the Morpheus extensions on AArch64 CPUs and FPGAs could
provide further benefit to HPC users.

In terms of theoretical evaluation, future work includes the
application of a roofline model to understand and validate the
performance of our implementations and compare theoretical
performance on our target systems to achieved performance.

Of interest is also the multi-threaded (OpenMP) implemen-
tation of the current formats with SVE intrinsics and bench-
mark on other Arm systems. Finally, extending Morpheus
to support a dynamic selection and dispatch mechanism that
adapts to the optimal algorithm given a sparsity pattern could
be beneficial.

ACKNOWLEDGMENT

This research is part of the EPSRC project ASiMoV
(EP/S005072/1). We used the Isambard 2 UK National
Tier-2 HPC Service (http://gw4.ac.uk/isambard) operated by
GW4 and the UK Met Office, and funded by EPSRC
(EP/T022078/1). We also acknowledge the ExCALIBUR
H&ES FPGA testbed and AMD Xilinx HACC program for
access to compute resource used in this work.

REFERENCES

[1] S. Filippone, V. Cardellini, D. Barbieri, and A. Fanfarillo, “Sparse
Matrix-Vector Multiplication on GPGPUs,” ACM Trans. Math.
Softw., vol. 43, no. 4, Jan. 2017. [Online]. Available: https:
//doi.org/10.1145/3017994

[2] Y. Zhao, J. Li, C. Liao, and X. Shen, “Bridging the gap between
deep learning and sparse matrix format selection,” in Proceedings
of the 23rd ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, ser. PPoPP ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 94–108. [Online].
Available: https://doi.org/10.1145/3178487.3178495

[3] W. Liu and B. Vinter, “Csr5: An efficient storage format for cross-
platform sparse matrix-vector multiplication,” in Proceedings of the 29th
ACM on International Conference on Supercomputing, ser. ICS ’15.
New York, NY, USA: Association for Computing Machinery, 2015, p.
339–350. [Online]. Available: https://doi.org/10.1145/2751205.2751209

[4] E. Coronado-Barrientos, M. Antonioletti, and A. Garcia-Loureiro,
“A new axt format for an efficient spmv product using avx-512
instructions and cuda,” Advances in Engineering Software, vol. 156,
p. 102997, 2021. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0965997821000260

[5] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. Bishop, “A
unified sparse matrix data format for efficient general sparse matrix-
vector multiplication on modern processors with wide simd units,” SIAM
Journal on Scientific Computing, vol. 36, 07 2013.

[6] C. Stylianou and M. Weiland, “Exploiting dynamic sparse matrices for
performance portable linear algebra operations,” in 2022 IEEE/ACM
International Workshop on Performance, Portability and Productivity in
HPC (P3HPC). Los Alamitos, CA, USA: IEEE Computer Society, Nov
2022, pp. 47–57. [Online]. Available: https://doi.ieeecomputersociety.
org/10.1109/P3HPC56579.2022.00010

[7] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, dec 2011.
[Online]. Available: https://doi.org/10.1145/2049662.2049663

[8] J. Dongarra, M. A. Heroux, and P. Luszczek, “High-performance
conjugate-gradient benchmark: A new metric for ranking high-
performance computing systems,” The International Journal of High
Performance Computing Applications, vol. 30, no. 1, pp. 3–10, 2016.
[Online]. Available: https://doi.org/10.1177/1094342015593158

[9] “Morpheus-HPCG Benchmark,” Morpheus, Nov. 2022. [Online].
Available: https://github.com/morpheus-org/morpheus-hpcg

[10] “HPCG for Arm,” Arm Software, Nov. 2022. [Online]. Available:
https://github.com/ARM-software/HPCG for Arm

[11] S. Balay, S. Abhyankar, M. F. Adams, S. Benson, J. Brown,
P. Brune, K. Buschelman, E. M. Constantinescu, L. Dalcin, A. Dener,
V. Eijkhout, J. Faibussowitsch, W. D. Gropp, V. Hapla, T. Isaac,
P. Jolivet, D. Karpeev, D. Kaushik, M. G. Knepley, F. Kong,
S. Kruger, D. A. May, L. C. McInnes, R. T. Mills, L. Mitchell,
T. Munson, J. E. Roman, K. Rupp, P. Sanan, J. Sarich, B. F. Smith,
S. Zampini, H. Zhang, H. Zhang, and J. Zhang, “PETSc Web page,”
https://petsc.org/, 2023. [Online]. Available: https://petsc.org/

[12] H. Anzt, T. Cojean, G. Flegar, F. Göbel, T. Grützmacher, P. Nayak,
T. Ribizel, Y. M. Tsai, and E. S. Quintana-Ortı́, “Ginkgo: A Modern
Linear Operator Algebra Framework for High Performance Computing,”
ACM Transactions on Mathematical Software, vol. 48, no. 1, pp. 2:1–
2:33, Feb. 2022. [Online]. Available: https://doi.org/10.1145/3480935

[13] A. Jackson, M. Weiland, N. Brown, A. Turner, and M. Parsons, “In-
vestigating Applications on the A64FX,” in 2020 IEEE International
Conference on Cluster Computing (CLUSTER). Kobe, Japan: IEEE,
Sep. 2020, pp. 549–558.

[14] M. Nakao, K. Ueno, K. Fujisawa, Y. Kodama, and M. Sato, “Per-
formance of the Supercomputer Fugaku for Breadth-First Search in
Graph500 Benchmark,” in High Performance Computing, B. L. Cham-
berlain, A.-L. Varbanescu, H. Ltaief, and P. Luszczek, Eds. Cham:
Springer International Publishing, 2021, vol. 12728, pp. 372–390.

[15] R. Jesus, T. Oliveira e Silva, and M. Weiland, “Vectorising and distribut-
ing NTTs to count Goldbach partitions on Arm-based supercomputers,”
May 2021, Cray User Group (CUG) 2021.

[16] Masoud Koleini, “Graviton3 outperforms x86
on Machine Learning,” Oct. 2022. [Online].
Available: https://community.arm.com/arm-community-blogs/b/
infrastructure-solutions-blog/posts/xgboost-lightgbm-aws-graviton3

[17] “Arm Architecture Reference Manual Supplement, The Scalable Vector
Extension,” Arm Limited, DDI 0584B.a, May 2021.

[18] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli,
M. Horsnell, G. Magklis, A. Martinez, N. Premillieu, A. Reid, A. Rico,
and P. Walker, “The arm scalable vector extension,” IEEE Micro, vol. 37,
no. 2, pp. 26–39, 2017.

[19] “Arm Performance Libraries Reference Guide,” Arm Limited, Issue
2210-00, Sep. 2022.

[20] N. Brown, “Porting incompressible flow matrix assembly to FPGAs for
accelerating HPC engineering simulations,” in 2021 IEEE/ACM Inter-
national Workshop on Heterogeneous High-performance Reconfigurable
Computing (H2RC). IEEE, 2021, pp. 9–20.

[21] N. Brown, “Accelerating advection for atmospheric modelling on Xilinx
and Intel FPGAs,” in 2021 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE, 2021, pp. 767–774.

[22] N. Brown, M. Klaisoongnoen, and O. Brown, “Optimisation of an FPGA
Credit Default Swap engine by embracing dataflow techniques,” in
2021 IEEE International Conference on Cluster Computing (CLUSTER).



United States: Institute of Electrical and Electronics Engineers (IEEE),
Oct. 2021.

[23] M. Klaisoongnoen, N. Brown, and O. Brown, “I Feel the Need for Speed:
Exploiting Latest Generation FPGAs in Providing New Capabilities
for High Frequency Trading,” in Proceedings of the 11th International
Symposium on Highly Efficient Accelerators and Reconfigurable Tech-
nologies, ser. HEART ’21. New York, NY, USA: Association for
Computing Machinery (ACM), 2021.

[24] M. Klaisoongnoen, B. Nick, and O. Brown, “Low-power option Greeks:
Efficiency-driven market risk analysis using FPGAs,” in HEART2022:
International Symposium on Highly-Efficient Accelerators and Recon-
figurable Technologies. United States: Association for Computing
Machinery (ACM), Jun. 2022.

[25] N. Brown, “Exploring the Versal AI engines for accelerating stencil-
based atmospheric advection simulation,” in 31st ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays (FPGA), 2023.

[26] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., ser.
Other Titles in Applied Mathematics. Society for Industrial and
Applied Mathematics, 2003. [Online]. Available: https://www-users.cs.
umn.edu/∼saad/IterMethBook\ 2ndEd.pdf

[27] “Arm C Language Extensions,” Arm Limited, Version 2022Q4, Nov.
2022.

[28] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. USA: Addison-Wesley
Longman Publishing Co., Inc., 1995.

[29] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling
manycore performance portability through polymorphic memory access
patterns,” Journal of Parallel and Distributed Computing, vol. 74, no. 12,
pp. 3202 – 3216, 2014, domain-Specific Languages and High-Level
Frameworks for High-Performance Computing. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0743731514001257

[30] M. Klaisoongnoen, N. Brown, and O. Brown, “Fast and energy-efficient
derivatives risk analysis: Streaming option Greeks on Xilinx and Intel
FPGAs,” IEEE/ACM International Workshop on Heterogeneous High-
performance Reconfigurable Computing (H2RC), Dec. 2022.

[31] N. Brown and D. Dolman, “It’s All About Data Movement: Optimising
FPGA Data Access to Boost Performance,” in 2019 IEEE/ACM Inter-
national Workshop on Heterogeneous High-performance Reconfigurable
Computing (H2RC), 2019, pp. 1–10.

[32] GW4 and UK Met Office, “Isambard 2 UK National Tier-2 HPC
Service,” 2022. [Online]. Available: http://gw4.ac.uk/isambard/

[33] E. Phillips and M. Fatica, “A cuda implementation of the high perfor-
mance conjugate gradient benchmark,” in High Performance Computing
Systems. Performance Modeling, Benchmarking, and Simulation, S. A.
Jarvis, S. A. Wright, and S. D. Hammond, Eds. Cham: Springer
International Publishing, 2015, pp. 68–84.

[34] A. Zeni, K. O’Brien, M. Blott, and M. D. Santambrogio, “Optimized
implementation of the hpcg benchmark on reconfigurable hardware,”
in European Conference on Parallel Processing. Springer, 2021, pp.
616–630.

[35] C. Stylianou and M. Weiland, “Optimizing Sparse Linear Algebra
Through Automatic Format Selection and Machine Learning,” in
Eighteenth International Workshop on Automatic Performance Tuning
(iWAPT2023). St. Petersburg, FL, USA: IEEE Computer Society, (to
appear).

[36] J. Li, G. Tan, M. Chen, and N. Sun, “Smat: An input adaptive
auto-tuner for sparse matrix-vector multiplication,” in Proceedings
of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 117–126. [Online].
Available: https://doi.org/10.1145/2491956.2462181

[37] C. Alappat, N. Meyer, J. Laukemann, T. Gruber, G. Hager, G. Wellein,
and T. Wettig, “Execution-Cache-Memory modeling and performance
tuning of sparse matrix-vector multiplication and Lattice quantum chro-
modynamics on A64FX,” Concurrency and Computation: Practice and
Experience, vol. 34, no. 20, Sep. 2022.

[38] Y. Zhang, W. Yang, K. Li, D. Tang, and K. Li, “Performance analysis
and optimization for SpMV based on aligned storage formats on an
ARM processor,” Journal of Parallel and Distributed Computing, vol.
158, pp. 126–137, Dec. 2021.

[39] Intel. Sparse Matrix Storage Formats. [Online]. Available:
https://www.intel.com/content/www/us/en/develop/documentation/
onemkl-developer-reference-c/top/appendix-a-linear-solvers-basics/
sparse-matrix-storage-formats.html

[40] Xilinx. (2019) Sparse Libraries, Vitis Accelerated Libraries. [Online].
Available: https://github.com/Xilinx/Vitis Libraries/tree/main/sparse

[41] Xilinx. General Matrix Operation (GEMX). [Online]. Available:
https://github.com/Xilinx/gemx

[42] M. Hosseinabady and J. L. Nunez-Yanez, “A Streaming Dataflow Engine
for Sparse Matrix-Vector Multiplication Using High-Level Synthesis,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 39, no. 6, pp. 1272–1285, 2020.

[43] Y. Du, Y. Hu, Z. Zhou, and Z. Zhang, “High-Performance Sparse
Linear Algebra on HBM-Equipped FPGAs Using HLS: A Case Study
on SpMV,” in Proceedings of the 2022 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA ’22. New
York, NY, USA: Association for Computing Machinery (ACM), 2022,
p. 54–64. [Online]. Available: https://doi.org/10.1145/3490422.3502368


