
Monitoring and characterizing GPU Usage
Le Mai Weakley

Research Technologies
Indiana University

Bloomington, IN, USA
llnguyen@iu.edu

Scott Michael
Research Technologies

Indiana University
Bloomington, IN, USA

scamicha@iu.edu

Laura Huber
Research Technologies

Indiana University
Bloomington, IN, USA

lamhuber@iu.edu

Abhinav Thota
Research Technologies

Indiana University
Bloomington, IN, USA

athota@iu.edu

Ben Fulton
Research Technologies

Indiana University
Bloomington, IN, USA

befulton@iu.edu

Matthew Kusz
Research Technologies

Indiana University
Bloomington, IN, USA

mkusz@iu.edu

Abstract—For systems with an accelerator component, it is
important from an operational and planning perspective to un-
derstand how and to what extent the accelerators are being used.
Having a framework for tracking the utilization of accelerator
resources is important both for judging how efficiently used a
system is, and for capacity and configuration planning of future
systems. In addition to tracking total utilization and accelerator
efficiency numbers, some attention should also be paid to the
types of research and workflows that are being executed on
the system. In the past, the demand for accelerator resources
was largely driven by more traditional simulation codes, such as
molecular dynamics. But with the growing popularity of deep
learning and artificial intelligence workflows, accelerators have
become even more highly sought after and are being used in
new ways. Provisioning resources to researchers via an allocation
system allows sites to track a project’s usage and workflow as
well as the scientific impact of the project. With such tools and
data in hand, characterizing the GPU utilization of deep learning
frameworks versus more traditional GPU-enabled applications
becomes possible. In this paper we present a survey of GPU
monitoring tools used in sites and a framework for tracking the
utilization of NVIDIA GPUs on Slurm scheduled HPC systems
used at Indiana University. We also present an analysis of
accelerator utilization on multiple systems, including an HPE
Apollo system targeting AI workflows and a Cray EX system.

Index Terms—High Performance Computing, Monitoring

I. INTRODUCTION

The Research Technologies (RT) division at Indiana Univer-
sity (IU) operates batch-scheduled HPC systems for a wide va-
riety of researchers at the University. For nearly a decade, the
systems operated by RT have had some substantial component
that is equipped with accelerators. To date, the only accelerator
technology that RT has deployed in large-scale production
machines has been NVIDIA GPUs. When IU deployed its first
large-scale GPU-based machine in 2013, the utilization of the
GPUs was tracked to assess their effectiveness in facilitating
research. Big Red II was a hybrid Cray system consisting of
both CPU and GPU nodes, and initially GPU tracking was
done using Cray-provided tools. As GPU accelerators were
deployed in additional systems, and the support and ability to
integrate the GPU tracking tools from Cray was unable to be

extended to other systems, RT developed a system that directly
leveraged APIs supported by NVIDIA GPUs.

Analysis of the data collected via this system has proven
useful for various applications, from guiding users to more ap-
propriate resources, to helping users improve applications and
workflows and make more effective use of GPU accelerators,
to informing decisions on the composition of future systems.
While collecting the data can be a challenge in itself, analyzing
and interpreting these data to provide actionable insights to
end users, application support specialists, and division senior
leadership can be even more of a challenge. By creating the
tools to capture GPU utilization data and processes to analyze
and interpret this data IU has been able to benefit end users
in both the short term and long term.

This paper presents an overview of the framework that
Indiana University has used over the past several years to
collect GPU utilization data. The current process evolved
from using the RUR reporting tool supported by Cray that
provided GPU usage statistics on a per-job basis to a system
that directly queries the GPUs via NVML. A data processing
workflow was developed to aggregate data and match it with
the relevant job logs (initially PBS Torque and later Slurm).
We present the data collection method, which allows for the
tracking of multiple simultaneous jobs running on a node or
the correlation of GPU usage across many nodes in a single
job. In addition to being used on an HPE Apollo system
primarily used for deep learning workflows, we have recently
deployed this system to IU’s flagship Cray EX system, Big
Red 200, and have been collecting data on that system. We
present a comparison of this custom-written solution to other
GPU tracking options, such as NVIDIA’s Data Center GPU
Manager (DCGM). We also discuss the nature of the metrics
provided by NVML, what these numbers mean, and give
context for how to evaluate the efficiency of GPU usage.
We explore the differences between the metrics that can be
provided by a custom solution vs. what DCGM gives out of
the box, and how each approach can be integrated into a larger
data gathering framework that incorporates data from the



scheduler, systems that track application usage (e.g. XALT),
software environments (e.g. Lmod or Modules), and systems
for allocations. We also present an analysis of GPU utilization
across both the Cray EX machine and the HPE Apollo system
investigating the efficiency of different types of workloads.
By combining project description data from our allocations
process and application level data from XALT, we categorize
workflows by the type of application (e.g. deep learning
vs. simulation) and compare the overall efficiencies of GPU
utilization for different types of workflows. We conclude with
a discussion of what a reasonable expectation for accelerator
utilization might be based on our analysis and experience.

This paper is structured as follows: in section II we outline
the motivation behind the design of the system we created, and
some of the base-level requirements for the system. Section III
covers the implementation of the system and provides details
on the infrastructure pieces that work together to track GPU
usage. Some pitfalls we encountered and the workarounds for
them are highlighted. In section IV we present some of the data
and findings from the system, and in V, we survey what other
sites are doing in this area. We finally present our conclusions
in section VI.

II. MOTIVATION AND DESIGN CONSIDERATIONS

The first large-scale GPU-based HPC system at IU was
Big Red II, a Cray XE6/XK7 hybrid system, which went into
production in the second half of 2013. Our initial objectives
for tracking GPU usage were to track GPU usage on a per-
job basis, ideally with measures of how much of the GPU
had been utilized during the course of the job, to tie this
data to other job reporting metrics, and be able to report GPU
usage both holistically for the machine and individual users.
To accomplish this, we needed a way to capture data for GPU
usage, a way to store the data so that it could be correlated
to other job data, and some way to analyze and package the
data for reporting purposes. In an ideal situation, each of
these components would be configured and connected together
somewhat independently and would not require large changes
from an existing scheduler configuration or other monitoring
frameworks.

Over time, the tracking of GPU usage at IU has evolved;
this evolution has been driven by several factors: a desire by
center leadership for more precise and accurate accounting
and utilization data, changing availability of monitoring tools,
changing system hardware, and changing modes of GPU
utilization by end users. The largest change came from moving
from a large-scale Cray system with a single job and single
GPU per node to a more commodity cluster with a non-Cray
open-source HPC management stack, and both multiple GPUs
and multiple users per node.

III. IMPLEMENTATION OF GPU TRACKING

The tracking of GPU usage on the Big Red II system was
accomplished by using the Cray-provided RUR data integrated
with the scheduler output from PBS/Torque. The RUR system
was not particularly well documented, making it difficult to

know what each field in the log output represented. These data
were largely used to determine whether or not a job requesting
a GPU used a GPU. Each GPU node had a single K20x
GPU and was scheduled job exclusive. However, a benefit of
the RUR system was that it tied GPU utilization directly to
jobs. Prior efforts to measure GPU utilization [1] had used
periodic polling of GPUs via the nvidia-smi interface
providing point-in-time utilization numbers causing additional
challenges in correlating to specific jobs and workflows.

Big Red II was retired at the end of 2019 with a new Cray
EX system on the horizon. In the interim, RT deployed a
cluster-based GPU resource as part of the existing Carbonate
cluster to support deep learning workflows. By mid-2020 RT
had deployed a set of Lenovo and HPE Apollo nodes with
a combined total of 16 P100 GPUs and 104 V100 GPUs.
The Lenovo nodes were targeted specifically at deep learning
workflows and contained two GPUs per node, and the Apollo
nodes were made available to both deep learning and GPGPU
workflows and had four GPUs per node. Both partitions are
scheduled via Slurm.

Collecting GPU utilization data on these partitions required
shifts on two fronts from how data was collected on Big Red
II. The first being that a different scheduler was being used,
and the second being that the RUR collection mechanism was
not available on non-Cray systems. As all the machines at IU
were moving to Slurm, RT looked into how other sites using
Slurm were collecting their job accounting data. We used the
sacct command from Slurm, which allows one to query job
data from the Slurm accounting database. While NVIDIA’s
DCGM appeared to have many desirable features, on initial
investigation, it appeared to have too intrusive of a footprint
to be viable for deployment on RT’s production systems.

A site report from the Swiss National Supercomputing
Centre (CSCS) at the Slurm User Group Meeting in 2018 [2]
detailed some custom tuning to Slurm to track resource usage
and management. As part of this presentation, CSCS described
how they were populating the AdminComment field in the
Slurm accounting database with RUR data on their Slurm
scheduled hybrid Cray systems. This approach by CSCS was
also detailed in a paper at the Cray User Group meeting in
2018 [3], which provides details on the implementation and
reporting abilities of the system that CSCS had implemented.

With this template in mind, we set out to design a system
that leveraged the Slurm AdminComment field in a similar
manner, but did not rely on the RUR system to track GPU
usage. With Slurm, one can set a prolog or epilog script to
run at the beginning or end, respectively, of a job. CSCS
used this functionality to run RUR with the GPU accounting
plugin. They then used a modified plugin for RUR to send the
information to the SlurmDB to place the RUR data in JSON
format in the AdminComment field in the Slurm accounting
database. For the Carbonate GPU partitions, RT decided to
use an epilog script to launch a Python script that utilizes
the Python bindings to the NVIDIA Management Library
(pynvml) [4] to acquire GPU utilization data from the GPUs
reserved by a job and store the data in JSON format in the



AdminComment field in the Slurm database. Python scripts
are then run on a daily cadence to get job accounting data and
process the GPU accounting data using the sacct command
and store the processed data in a MySQL database.

In 2022, Big Red 200, an HPE Cray EX system, was
made available to IU researchers. Big Red 200 includes a
Slurm scheduled partition of 64 GPU accelerated nodes, each
with 4 NVIDIA A100 GPUs. The framework developed on
Carbonate for collecting GPU utilization via nvml and storing
the information in the Slurm accounting database was also
implemented on Big Red 200 at the end of 2022.

The nvml functions provide access to accounting data
stored on each GPU card and provide a variety of different
types of data, which are well documented on NVIDIA’s
documentation pages for nvml [5]. The basic idea is that
statistics are gathered for each process that is executed on a
card, including the amount of time the GPU was active for that
process, the memory utilized, the memory high water mark,
and some other identifying data such as the GPU process
ID and the GPU serial number. These data are stored in a
ring buffer that can hold a given number of records (4,000
by default for the P100 and V100 cards in Carbonate), and
once the buffer is full, the oldest records are replaced. The
epilog script reads the records for each GPU process id from
the buffer for each card in the Slurm job, adds these records
to the AdminComment field, and then clears the records from
the cards’ buffers. An example of the record stored in the
AdminComment field is provided in listing 1. A given job can
have several hundred GPU processes recorded, though we only
give a small example here. This approach has the advantage
that it is already embedded in the Slurm record so correlating
the GPU usage with the job is straightforward.

Listing 1: Sample AdminComment Field
[{ ” p i d ” : 99868 , ” s t a r t T i m e ” :
1626116546415972 , ” t ime ” : 11318 ,
” g p u U t i l i z a t i o n ” : 0 , ” s e r i a l ” :
” 0322418035782 ” , ” maxMemoryUsage ” :
4 5 5 1 . 0 , ” m e m o r y U t i l i z a t i o n ” : 0} ,
{” p i d ” : 99868 , ” s t a r t T i m e ” : . . . } ]

One challenge with this approach is determining a single
number for GPU utilization for a given job. We have taken
the approach of time-weighting each utilization measure for
all the processes, summing these, and dividing by the total
allocated GPU time for the job. For the memory utilization,
we take the max of the maxMemoryUsage value. For a job
using N GPUs that executes for T seconds of wall time, with
p processes, per process utilization Up and process time Tp

the job utilization Uj is computed as:

Uj =

∑
p UpTp

NT
(1)

While this may not be entirely precise depending on how
the GPU processes are being spawned, it seems to give a
good indication overall. It is also important to note that
the per process utilization number provided by nvml as

gpuUtilization provides a measure of the percentage
of time that the GPU was active in any way throughout the
duration of the GPU process. In this sense, it does not fully
represent the utilization percentage of the GPU in terms of
the percentage of GPU cores that are utilized throughout the
process lifetime. With potentially multiple overlapping GPU
processes, it is difficult enough to determine the percentage of
time the GPUs were active in a given job, much less to what
extent the computational power of the GPUs were being used
throughout the job.

There have been other minor issues with this approach, and
we are continuing to refine and improve it over time. One
of the issues encountered was caused by duplicate records
of GPU processes appearing in multiple jobs. It was first
noted that, in some cases, for two jobs requesting a single
GPU apiece and being scheduled simultaneously on the same
node to run at the same time, both jobs would have GPU
utilization from both GPU cards attributed to them and have
duplicate processes in their records. To solve this, the epilog
script was updated to use the CUDA_VISIBLE_DEVICES
environment variable to ensure that only data from the GPUs
that were available to the job is being collected. During this
investigation, it was conjectured that perhaps the duplication of
the process records was happening across different jobs from
different users and on different nodes, which was indeed the
case, as process ids were determined by the node, not the GPU
card. While a small fraction of jobs fit this pathology, it was
important to track the frequency at which this was occurring
and to diagnose the possible causes. To track the recycling of
process ids and cross-reference it to the users running jobs and
nodes they were running on, the startTime field was collected
into the AdminComment as well. Additionally, recording the
serial number of the GPU card on which the GPU process is
running can help to disambiguate process IDs.

Another issue encountered is the character limit of the
AdminComment field in the Slurm database. In the MariaDB
Slurm database, the AdminComment field is defined to be a
TEXT field, which has a 65,535 character limit. For jobs with
AdminComments that exceeded this number of characters,
the data entry would be truncated and not all of the GPU
utilization data will be stored in the Slurm database. This is a
potential issue for long-running multinode jobs using several
GPUs that could have a lot of utilization data, though the
number of jobs so far that are impacted by this has been very
small. We are currently tracking the number of jobs affected
by this limit and exploring various solutions to trim the data
being recorded. Potential solutions are moving from a JSON
format to a CSV format, shrinking the names of the keys in
the JSON format, and reducing the number of nvml fields to
place in the AdminComment.

A more interesting issue arose with the implementation of
this tracking system on Big Red 200 where Slurm appeared
to be handing out the GPUs in the opposite order of their
device nodes resulting in a mismatch between what GPU
card in use with what CUDA_VISIBLE_DEVICES. Reversing
the order of the NVIDIA devices in Slurm’s gres.conf



was the workaround proposed by SchedMD which solved the
mismatch issue.

Fig. 1: Job and User Counts for GPU Utilization of Carbonate
and Big Red 200

IV. ANALYSIS OF UTILIZATION

Measuring GPU utilization in an HPC center is important
for optimizing resource allocation, reducing costs, planning for
future capacity needs, and monitoring performance, making
it a critical metric for data center administrators. For the
nvml and Slurm-based data collection framework described
in section III, we have been able to track multi-GPU usage
on the hardware added to the Carbonate cluster in mid-2019
and again in mid-2020 as well as on Big Red 200 since the
end of 2022. There are many uses for this data, including
providing post-job reports to users, detecting highly inefficient
usage patterns, and investigating system GPU utilization as a
whole. In section IV-A, we present data collected from both
the Carbonate Apollo nodes and from the Big Red 200 GPU-
enabled nodes, then in section IV-B, we present data collected
via the XALT application tracking framework [6] for the
applications that were run in those GPU-enabled workflows.

A. Job-level utilization

We analyzed job data from July 2020 through March of
2023 for the Carbonate system and from December 2022
through March of 2023 for the Big Red 200 system. In all
this encompassed 295,470 jobs that users ran where GPU’s
were requested. Overall we found that the mean GPU uti-
lization as calculated via equation 1 was 11%. Of these jobs,
approximately 156,785 jobs, or 53%, did not use GPUs at all.
If we discount these jobs, the mean utilization increases to
26%. Mean memory utilization across all jobs was 9%, rising
to 16% when excluding jobs that did not use a GPU. There
was no correlation between the length of a job and the GPU
utilization, nor between the number of jobs run by a particular
user and their average utilization. Figure 1 shows the number
of jobs run in the GPU partitions and number of users running
those jobs on a monthly basis. The subset of jobs that used
GPUs are shown as a separate line. These data contain counts

of users utilizing GPUs for the Big Red 200 GPU queue from
December 2022 through March 2023.

From figure 1, one may note periods where the number of
users and jobs requesting GPUs and are utilizing them are
closer together, followed by periods where those numbers are
very far apart, with many jobs and users requesting GPUs but
not using them in their work. Of note is the overall increase
of users requesting GPUs in their jobs as time goes by, which
can be attributed to the growing popularity and interest in
AI workflows as well as to the increase in the availability of
GPU-enabled nodes with the introduction of Big Red 200. The
large gaps between the line of users and jobs requesting GPUs
and those that actually use them could be due to new users
familiarizing themselves with the system and how to run GPU-
enabled workflows. Several of the spikes in job submission
and in users submitting jobs align in time with the start of
a new semester, so this may be a reflection of new students
attempting to use GPUs for research. Further reasoning for this
possible new user behavior is that while the number of users
increases for some of these stretches of time, the baseline for
the number of users and jobs using the GPUs remains quite
steady, which may be evidence that the base level of users
utilizing the GPUs have continued to utilize the GPUs for
their ongoing projects while new users are getting started.

Fig. 2: Monthly distribution of GPU utilization percentages
for jobs on Carbonate that used the GPUs

While the mean values can be informative, we decided
to look a bit closer at the distribution of utilization across
a number of jobs. Figure 2 shows the monthly breakdown
of Carbonate jobs that utilized GPUs and the distribution
of their utilization percentages throughout 2022. This time
period encompasses 156,439 jobs in the GPU queues on
the Carbonate machine. The boxplots are equally weighted
for each job, and there is no consideration of resources
allocated (i.e. there is no weighting by walltime or GPUs
requested). It is interesting to note how not only the median
percentage utilization goes up but also how the distribution
of the GPU utilization spreads out between the months of
July and December of 2022. There are a number of possible
causes for this shift. It could perhaps be due to a confluence
of changing workloads on the system that coincide with the
mid-year boundary and required GPUs, or it could suggest



that over time users have improved their workflows due to a
combination of learning from testing and education on the part
of center staff. Another consideration is that a large number of
jobs may have been short-lived jobs with low utilization, which
would skew these distributions toward lower utilization, while
the system utilization could be dominated by a small number
of long-running, highly efficient, multi-GPU jobs. In figure
3, we re-plot the distributions from the boxplots as density
distributions (aka violin plots) for the first and last halves of
the year. Clearly, these distributions are changing over time,
likely due to different user populations, types of workloads,
and the overall mix of jobs, but it appears that over the course
of the year, the distribution of utilization has improved. The
improvement is perhaps more striking than one might assume
based on the average values or even the boxplots. Clearly,
in the latter half of 2022, jobs with much higher utilization
percentages have been added to the distribution. There appears
to be an elongation of the distribution at lower utilization
percentages, with jobs rising to utilization numbers as high
as 30% followed by a desert of utilization until 65-70%. This
bifurcated distribution could be explained by the difference
between novice and experienced users, experimental versus
more highly optimized codebases, or fundamental limitations
on a class of workflows or algorithms. There are other di-
mensions to the utilization data to explore, such as utilization
weighted by GPU hours, by user, or by project. This initial
investigation provides a baseline understanding of what range
of utilization a typical job mix has with IU’s users on the
Carbonate machine. Further discussion of future investigations
is provided in section VI.

Although the Big Red 200 machine entered production in
the middle of 2022, we first started fully capturing utilization
data in December of 2022. Big Red 200 is managed by HPCM
and scheduled via Slurm, and some modest effort was required
to deploy the implementation of the data-gathering framework.
With Big Red 200 being a Cray EX machine, having newer
A100 GPUs, and fewer users with larger resource needs
overall, we decided to compare the utilization distributions
between the two machines. The user population does have
some overlap, but is generally quite different with Carbonate
seeing much more use for AI workloads, high throughput
workloads, genomic and bioinformatic workloads, and student
use, and Big Red 200 seeing larger scale simulation work-
loads like climate, materials, and astrophysical simulations.
Figure 4 compares the percentage of GPU utilization for jobs
on Carbonate and Big Red 200 that used the GPUs from
December 2022 to March 2023. Of note is that while the
median utilization for both Carbonate and Big Red 200 are
both fairly low, for the upper half of the distributions, the
percent of GPU utilization for Big Red 200 spreads out further
into higher utilization percentages. The part of the distribution
at higher utilization is much more substantial and spreads over
a larger range. The higher end of the utilization distribution
could be attributed to the size of the GPU partitions on each
cluster, with Carbonate having significantly fewer GPU cards
as well as older GPU cards compared to Big Red 200. Having

Fig. 3: Comparison of GPU percentage utilization over time

(a) Monthly distribution of GPU utilization percentages for jobs
on Carbonate that used the GPU in the first half of 2022. The
red dot indicates the median value of the distribution.

(b) Monthly distribution of GPU utilization percentages for jobs
on Carbonate that used the GPU in the second half of 2022. The
red dot indicates the median value of the distribution.

more GPU-enabled nodes on Big Red 200 could also lead
to having a wider variety of workflows that could explain
the larger variance in utilization. It is also possible that users
running GPU-enabled jobs on Big Red 200 may have already
tuned their workflows on Carbonate and then made a move
to Big Red 200 where the larger number of GPU-enabled
nodes allows them to submit more jobs running with higher
utilization numbers on Big Red 200. In March 2023 we
announced that the Carbonate cluster would be retired at the
end of 2023. This announcement may have encouraged users
to move their GPU jobs to Big Red 200, which could explain
the distribution seen in March 2023 in Carbonate.

To further investigate the differences in the utilization
distributions between the two machines, we looked at how
many cards were being requested per job on each machine.
On both Big Red 200 and Carbonate, the distribution of card
hours by number of cards skews heavily in favor of jobs
requesting four or fewer cards, with a large portion of those
card hours being devoted to jobs requesting a single card.
Figure 5 shows the GPU card hours requested by jobs for the



Fig. 4: Comparison of GPU percentage utilization on Carbonate and Big Red 200

(a) Monthly distribution of GPU utilization percentages for jobs
on Carbonate that used the GPU in the first quarter of 2023.
The red dot indicates the median value of the distribution.

(b) Monthly distribution of GPU utilization percentages for jobs
on Big Red 200 that used the GPU in the first quarter of 2023.
The red dot indicates the median value of the distribution.

same time period as the distributions in Figure 4, categorized
by the number of cards requested. On Carbonate there is a
limit imposed on the GPU queues such that jobs can not
request more than 16 GPUs. For Big Red 200 there is no
limit on the number of GPUs a job can request so the full
256 GPUs could be used in a single job. The peaks in GPU
card hours requested are for a single card and 3-4 cards. With
each node in Carbonate and Big Red 200 having 4 GPUs, the
3-4 card peak aligns with a full node request. There is also a
peak on Big Red 200 for jobs requesting 32 cards or more.
Although the amount of resources requested beyond a single
node is not massive, we wanted to investigate the differences
in utilization based on the number of GPUs requested. Figure
6 shows the distributions of the percentage of GPU utilization
broken out by the number of GPU cards requested for the
job. We divided the groups into jobs that requested a single
node’s worth of GPUs, jobs requesting more than 4 GPUs, but
fewer than the limit on Carbonate, and jobs requesting more
than the maximum on Carbonate. Somewhat unsurprisingly,
the largest utilization numbers are for the single-node jobs
with the median being somewhat higher, and the upper quartile
and upper bounds being much higher than for multi-node jobs.
What is a bit surprising is that there is little difference in the
utilization numbers for the 5-16 and 17+ distributions. This
suggests that the differences seen in the monthly distributions
between Carbonate and Big Red 200 in figure 4 is largely due
to a difference in the utilization for single-node jobs.

B. Characterization of workflows

In addition to investigating the GPU utilization of jobs on
the GPU-enabled partitions, we wanted to understand how jobs
are utilizing the GPUs in these partitions. We sought to find
answers to questions such as the size of the jobs and types
of applications being run in the GPU partitions; whether there
were differences in utilization between software that was user-
installed or installed by RT staff; and whether the workflows
utilizing the GPUs were involved in Machine Learning or

Fig. 5: Distribution of GPU card hours requested by number
of cards requested per job.

Fig. 6: Percent GPU Utilization distribution by number of
cards requested



Artificial Intelligence, or were being used in more general
purpose modeling and simulation.

Classification Total Runtime (Hours) Total Runs
AI Applications 1,162,885 289,154
Non-AI Applications 694,475 251,788
System Applications 496,857 182,760
User Applications 1,360,504 358,182

TABLE I

Fig. 7: Average Application GPU Utilization by Software
Installation Type

To address the question of what kinds of GPU-enabled
workflows are being run on Carbonate and Big Red 200,
we looked at XALT data. XALT is a tool that instruments
individual jobs to generate a picture of the compilers, libraries,
and other software that users need to run their jobs successfully
[6]. Since XALT data includes the executable and path of
a subset of all applications that run in a job, we examined
the applications that ran in jobs that utilized the GPUs on
Carbonate and Big Red 200 from 2022-2023 to understand
which applications are being run as part of GPU-enabled
workflows. We identified 645 unique applications pulled from
Carbonate and Big Red 200 XALT data and determined if
each application had been installed by a user or by RT staff
for general use. We did this by examining the location of the
application to see whether it was located in one of the staff-
managed application areas for common use, or in a user-owned
location. Figure 7 expresses a higher median utilization in
staff-installed software and an elongated distribution towards
both ends of utilization percentages. In addition, a panel of
applications experts examined the applications used along
with the project descriptions in our allocations system and
attempted to identify those that belonged to an AI workflow.
From this data, it was determined that 53% of the 645
applications that were run in jobs that utilized the GPUs were
part of AI workflows, and 34% were installed by RT staff.
Though the number of unique applications is an interesting
metric, examining the resources used by different classes of
applications is more instructive. Table I gives the values for
the total runtimes for this application classification. This metric
comes from the XALT data and is the total walltime where

AI Applications Total Runtime (Hours) Total Runs
Python Applications 1,156,424 286,335
Other Applications 6,461 2819

TABLE II

these applications were running. To determine the prevalence
of popular programming languages in AI research, we divided
the AI applications into those that were Python-based, and
others. Less than 1% of the applications run in AI workflows
were not Python scripts (Table II).

V. SURVEY OF TRACKING TOOLS

In order to have a more complete picture of the landscape
of GPU monitoring in HPC centers, a survey was conducted to
build a list of the various tools sites have been using and how
these tools are being used. The survey was shared with the
HPC community via multiple channels, including the Campus
Champions mailing list, HPC Social Slack organization, and
other venues. Overall, we estimate that the survey reached
over 300 institutions with varying levels of HPC resources
on-site, but we only received 11 total responses. Based on the
responses we received, it appears that it is standard practice
to measure and bill for GPU time that is consumed by jobs,
but that does not confirm whether the jobs utilized the GPUs
or how much the GPUs were utilized during the job.

Out of the eleven responses we received, eight respondents
said that they are tracking GPU utilization in some manner,
and three said they are not tracking this at the moment (two
of these three respondents said that they were tracking the job
accounting via XDMoD [7], without tracking GPU utilization).
The majority of the respondents tracking GPU utilization are
doing it using in-house scripts that depend on nvml [5]
and the nvidia-smi utility. Only one respondent is using
DCGM [8]. One respondent mentioned using NVTOP [9],
which is a top like task monitor and has support for AMD,
Intel, and NVIDIA GPUs.

We briefly explored DCGM but found it hard to fit it into a
traditional HPC system monitoring model. At the time of writ-
ing this paper, unlike nvidia-smi, DCGM is unable to write
output in a machine-readable format. NVIDIA is providing a
tool to read the DCGM output called DCGM-Exporter [10],
but according to NVIDIA, “dcgm-exporter can only be
run as a standalone container or be deployed as a daemonset
on GPU nodes in a Kubernetes cluster” [10].

In February 2023, SchedMD released Slurm 23.02. The
release notes state that they have “added usage gathering for
gpu/nvml (NVIDIA) and gpu/rsmi (AMD) plugins” [11]. We
are still working on gathering more information about what
this entails at the time of writing.

We should note that while we only focused on NVIDIA
GPUs in our discussion, overall, we have observed limited
adoption of GPU utilization monitoring at HPC sites. The
sites deploying AMD GPUs are still in the early stages of
their deployments, but we expect to see their efforts on GPU
monitoring in the coming days.



VI. CONCLUSIONS AND FUTURE WORK

Using the tools described here has given us a preliminary
understanding of how GPUs are being used and how well
they are utilized by researchers at IU. This is important
for both individual research groups to make the most of
the HPC resources they are allocated and for operators of
HPC resources to help guide researchers so that a system is
optimally utilized.

As the landscape of research computing continues to evolve
with an enhanced focus on machine learning and continues
to grow in terms of diversity of fields and data size, the
importance of tracking how GPU acceleration is utilized in
these fields and how that can be supported and improved
also continues to grow. With deep learning workflows and
frameworks becoming more prevalent in HPC, teams that
support GPU-based HPC systems must adapt to a new kind
of user and use case that may be less focused on optimally
leveraging the available hardware. Works cited in section III
and results from the survey outlined in section V provide
evidence that sites with such resources have an interest in
gathering GPU utilization data of this nature but perhaps have
not had the time to devote to collecting these metrics and
publishing in-depth analysis of what these data tell us about
the actual utilization on the systems we support.

A key question in this analysis is, “What is the expected
or desired level of GPU utilization for a job?” Over the
past several decades, the research computing community has
developed a very good intuition and expectation for utilization
in CPU-based workloads, but that intuition is not necessarily
directly transferrable to GPU workloads. In addition, as our
analysis has shown, there is a broad spectrum of GPU uti-
lization when looking at large number of jobs. How much
of this is due to inefficient deployment or unoptimized code
versus being inherent to the workload and data structures
themselves is very hard to say without further study. One
thing to remember is that applications with very low GPU
utilization can still be many times faster in execution time than
their CPU-only counterpart. Whether an application with 20%
GPU utilization that runs three times faster than its CPU-only
counterpart justifies the “low” utilization is a question open for
debate. Ultimately, it is probably best to give as much data to
the research teams using the resources and let them decide.
Something that we did not find in the survey or a search of
the literature available to us is a standard definition of job-
level GPU utilization at different sites, how these data are
collected, and how best to interpret these metrics to understand
and address the needs of our user base.

To that end, along with current plans to tune and continue to
improve the current implementation of the GPU data collection
framework, IU plans to conduct further individualized analysis
on the data coming out of these tools. The analysis made
in section IV offers some examples of what insights can be
garnered from such data collection frameworks. In addition to
trying to correlate job-level data in IV-A and with application-
level data IV-B and furthering the analysis of the observations

made in those sections, a future goal is to provide individual
researchers and/or research teams a comprehensive view into
their overall usage and efficiency to help them make the best
choices for optimal deployment of their workflows. The data
that have been collected to date will continue to inform our
planning for GPU capacity and deployments of future systems.
It would also be informative to have finer-grained application-
level utilization metrics and to be able to untangle or detect
that from other applications that are run as part of these GPU-
enabled workflows.

As we look toward future GPU platforms, the framework
that has been built may need to be adapted to accommodate
new features arriving on current or next-generation GPU cards
(e.g. MIG modes on the NVIDIA GPUs). To date, IU has only
ever deployed large-scale GPU systems based on NVIDIA
accelerators; however, in the future other accelerators may
be used, which would require additional adaptation of the
framework to accommodate data collection from different
architectures.

ACKNOWLEDGMENT

We would like to thank Bret Hammond, Adrian Hosey,
Matthew Allen, and David Hancock for their contribution
in implementing this data collection framework Carbonate
and Big Red 200. This research was supported in part by
Lilly Endowment, Inc., through its support for the Indiana
University Pervasive Technology Institute.

REFERENCES

[1] T. K. Samuel, S. McNally, and J. Wynkoop, “An analysis of
gpu utilization trends on the keeneland initial delivery system,” in
Proceedings of the 1st Conference of the Extreme Science and
Engineering Discovery Environment: Bridging from the EXtreme to
the Campus and Beyond, ser. XSEDE ’12. New York, NY, USA:
Association for Computing Machinery, 2012. [Online]. Available:
https://doi.org/10.1145/2335755.2335793

[2] M. Gila. (2018, Sep.) Tuning slurm the cscs
way. [Online]. Available: https://pdfs.semanticscholar.org/e07a/
be7f0a3a05514f72cd238af693836536ad80.pdf

[3] N. P. Cardo, M. Gila, and M. Klein, “Gpu usage reporting,” presented
at the Cray User Group, 2018. [Online]. Available: https://cug.org/
proceedings/cug2018 proceedings/includes/files/pap152s2-file1.pdf

[4] NVIDIA. (2021, Jul.) Python bindings to the nvidia management library.
[Online]. Available: https://github.com/gpuopenanalytics/pynvml

[5] ——. (2021, Jul.) Nvml api reference guide. [Online]. Available:
https://docs.nvidia.com/deploy/nvml-api/index.html

[6] K. Agrawal, M. R. Fahey, R. McLay, and D. James, “User environment
tracking and problem detection with xalt,” in 2014 First International
Workshop on HPC User Support Tools, 2014, pp. 32–40.

[7] J. T. Palmer, S. M. Gallo, T. R. Furlani, M. D. Jones, R. L. DeLeon,
J. P. White, N. Simakov, A. K. Patra, J. Sperhac, T. Yearke, R. Rathsam,
M. Innus, C. D. Cornelius, J. C. Browne, W. L. Barth, and R. T. Evans,
“Open xdmod: A tool for the comprehensive management of high-
performance computing resources,” Computing in Science Engineering,
vol. 17, no. 4, pp. 52–62, 2015.

[8] NVIDIA. (2023, Apr.) Nvidia dcgm. [Online]. Available: https:
//developer.nvidia.com/dcgm

[9] NVTOP. (2023, Apr.) Nvtop. [Online]. Available: https://github.com/
Syllo/nvtop

[10] NVIDIA. (2023, Apr.) Nvidia dcgm-exporter. [Online].
Available: https://docs.nvidia.com/datacenter/dcgm/latest/gpu-telemetry/
dcgm-exporter.html

[11] SchedMD. (2023, Apr.) Slurm 23.02. [Online]. Available: https:
//www.schedmd.com/news.php


