
Open MPI for HPE Cray EX Systems
Howard Pritchard

Los Alamos National Laboratory
Los Alamos, NM, USA

howardp@lanl.gov

Thomas Naughton, Amir Shehata, David Bernholdt
Oak Ridge National Laboratory

Oak Ridge, TN, USA
{naughtont,shehataa,bernholdtde}@ornl.gov

Abstract—Open MPI is an open-source implementation of the
MPI-3 standard that is developed and maintained by collabora-
tors from academia, industry, and national laboratories.

Oak Ridge National Laboratory (ORNL) and Los Alamos
National Laboratory (LANL) are collaborating on porting and
optimizing Open MPI and related components for use on HPE
Cray EX systems, with a focus on the DOE Frontier and Aurora
exa-scale systems.

A key component of this effort involves development of a new
LinkX Open Fabrics Interface (OFI) provider. In this paper,
we describe enhancements to Open MPI, OpenPMIx runtime
components, and the LinkX OFI provider. Performance results
are presented for point to point and collective communication
operations using both the vendor CXI provider and the LinkX
provider, including results obtained using GPU accelerators. Rec-
ommended deployment options for EX systems will be discussed,
along with future work.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

Open MPI is an open-source implementation of the MPI-
3 standard that is developed and maintained by collabora-
tors from academia, industry, and national laboratories [4].
It can make use of both UCX [7] and OFI libfabrics [5]
to effectively utilize a wide variety of underlying network
fabrics. Additionally, Open MPI’s use of OpenPMIx [2] allows
for interoperability with multiple resource managers and can
support both direct launch for systems supporting OpenPMIx
as well as Open MPI’s internal mpirun mechanism.

Oak Ridge National Laboratory (ORNL) and Los Alamos
National Laboratory (LANL) are collaborating on porting and
optimizing Open MPI and related components for use on
HPE Cray EX systems, with a focus on the ECP Frontier
and Aurora exa-scale systems. In this paper, we highlight
the design and development of necessary infrastructure that
enables Open MPI to efficiently support both intra-node and
inter-node communication on these new Slingshot 11 based
systems.

This paper describes the modifications and extensions to
Open MPI and components of the OpenPMIx Reference
Runtime Environment (PRRTE) [1] to enable deployment

Notice: This manuscript has been authored in part by UT-Battelle, LLC under Contract
No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Gov-
ernment retains and the publisher, by accepting the article for publication, acknowledges
that the United States Government retains a non-exclusive, paid-up, irrevocable, world-
wide license to publish or reproduce the published form of this manuscript, or allow
others to do so, for United States Government purposes. The Department of Energy will
provide public access to these results of federally sponsored research in accordance with
the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan

on HPE’s Slingshot 11 (SS11) network. In order to address
significant performance issues encountered using the vendor’s
OFI libfabric provider - CXI - a new libfabric is being
developed as part of the effort, and will also be described.

The rest of this paper is organized as follows. Section II-A
describes the structure of Open MPI, with a focus on the
components that use the OFI libfabric API. Changes made to
the software to make use of the CXI and LINKx providers is
discussed, changes made to improve support for systems with
multiple GPU accelerators per node, and changes to PRRTE
to support the vendor’s PALS application launch system.
The performance issues observed using the CXI provider
directly will also be presented. Section III describes the LINKx
provider being developed to address these performance issues.
Section IV presents performance results using the CXI and
LINKx providers. In Section V future work is discussed. A
description of best practices for deploying Open MPI on HPE
EX systems is provided in an appendix.

II. OPEN MPI
A. Background

Open MPI is structured around a modular component archi-
tecture (MCA), consisting of a set of frameworks that provide
abstract interfaces used by upper layers to implement the
MPI functionality needed by an application [8]. A simplified
depiction of this structure is presented in Figure 1. Each of
these frameworks includes one or more components which
actually implement the abstract interfaces. Some frameworks
allow for multiple components to be active, while others only
allow a single component to be active while an application
is using MPI. The frameworks of particular interest in this
paper are the message transport layer (MTL) and the byte
transport layer (BTL). The MTL framework only allows a
single component to be active, while the BTL allows multiple
components to be active concurrently. The MTL makes use
of network transport layers that support MPI tag matching
semantics, while the OB1 component of the point-to-point
management layer framework (PML) makes use of multiple
BTLs and handles MPI tag matching internally. Open MPI
can also make use of BTLs to support MPI-RMA (one-sided)
operations.

Open MPI has supported use of OFI libfabric via the
OFI MTL and BTL for many years and is widely used on
AWS EC2 instances (EFA provider), Cornelis networks (OPX
provider), and Cisco USNIC networks. MCA parameters may

be used to specify that other providers, in particular layered
providers, are to be used.

B. Modifications for CXI and LINKx Providers
Relatively few modifications were needed to the Open MPI

OFI components to function over SS11.
For the OFI MTL, corrections were made to the way

fi_getname was being invoked in order to support the
longer libfabric endpoint(EP) names used by the LINKx
provider, as well as modifications to the way registration of
GPU memory was being done, as the CXI provider handles
GPU memory registration internally. An optimization was also
added to improve selection of SS11 devices to use based on
node-level locality information.

More extensive changes were required to the OFI BTL.
In addition to the aforementioned change to the use of fi_
getname, changes were made in the BTL’s memory regis-
tration path to handle the CXI provider’s FI_MR_ENDPOINT
memory registration mode requirement. Support was added to
use the fi_inject method for short messages.

Note that all of these changes are present in the Open
MPI main and v5.0.x branches. The community does not
plan to support older releases of Open MPI for use with
the CXI provider. In addition, almost all changes to the OFI
layers of Open MPI to support GPU direct transfers for AMD
accelerators are only present in these two branches of Open
MPI.

In addition to changes in Open MPI, enhancements to the
PRRTE job launch system were required for the ALCF Aurora
systems. In particular, a PALS aware launcher (PLM) and
environment specific services (ESS) were implemented to use
the PALS launch mechanism for starting the PRRTE daemons
on the nodes used by an application. Without this, Open MPI
would not be able to use the CXI provider if the system has
VNI enforcement enabled because the VNI key that allows
clients to access the fabric must be setup by the privileged
system resource manager. Note on Aurora, support for native
launch of Open MPI applications using aprun is not planned
as this launch mechanism lacks support for PMIx.

C. Performance problems using the CXI Provider
Performance testing following these modifications revealed

significant issues owing to the design of the CXI provider.
Unlike other OFI providers used by the OFI MTL, the CXI
provider lacks any special pathway for intra-node messaging.
Consequently, when using the CXI provider alone, intra-node
latency and bandwidth realized by Open MPI was poor, partic-
ularly when using many MPI processes per node. Reworking
the MTL framework to enable use of multiple components
concurrently would require extensive redesign and buy-in from
multiple stake-holders. In principle, the OB1 path through
the OFI and shared memory BTL’s could provide a way to
work around this issue with the CXI provider. However, a
performance analysis of this pathway indicated that, even with
the addition of fi_inject support to the OFI BTL, it would
require extensive refactoring to approach the performance of
the OFI MTL for inter-node messaging.

Fig. 1: Simplified depiction of Open MPI modular component
architecture. Shown are the frameworks relevant to MPI mes-
sage passing. Only components interfacing to OFI libfabric or
shared memory are presented.

III. LINKX

A. Slingshot 11 Driver

The CXI provider supports the following paths for commu-
nication over the SS11 network hardware:

• Host to Host memory over SS11,
• GPU Device to Device memory over SS11,
• GPU Device to Host memory over SS11,
• Host to GPU Device memory over SS11.
The CXI provider does not provide a solution for on-node

communication. On-node communication can be done via the
libfabric CXI provider, however, messages will egress the
node and ingress again. This will be subject to bottlenecks
on performance that would not be there if the proper shared
memory mechanism is used; xpmem, cma, or GPU IPC
mechanisms.

The libfabric LINKx provider was created to allow both
inter- and intra-node communication via a single libfabric
provider. This design allows for the Open MPI OFI MTL
to achieve good performance for both inter and intra-node
messages II-A.

B. Design Overview

Libfabric provides a list of available interfaces to the
application to select from. For example if there are both
Ethernet and CXI interfaces available, libfabric via the fi_
getinfo() API will provide a list of all possible methods
that can be used for inter-process communication. These are
represented as an ordered list of fi_info structures. More-
over, libfabric orders this list such that the most performant
methods are listed first.

The application has the ability to then select one or more of
these communication methods. Open MPI, and other applica-
tions, typically only select one of these methods per process.

This presents a problem when wanting to use libfabric for
both inter- and intra-node communication. Each application
will then need to implement logic to use libfabric’s shared
memory provider for intra-node communication, and another
device for inter-node communication. In fact, Open MPI, does
this very thing when using the OFI PML and its associated

BTLS, where the best method between each communicating
peer is selected. On-node peers use the BTL shared memory
(sm) module and off-node peers will use a different BTL
component.

However, each application that wants to do both inter- and
intra-process communication will need to implement the same
logic. Therefore, it can be helpful to push this logic into the
libfabric layer to avoid duplication of code by all applications
needing this functionality.

LINKx is a new libfabric provider being developed that
allows the application to link multiple libfabric providers
together. For the purposes of this paper we will focus on
one particular use case: linking SHM & CXI providers. This
allows an application seamless access to both on and off node
communication via a single libfabric provider. Instead, the
LINKx layer is responsible for determining how best to access
a given target and uses the correct provider for communication.

1) LINKx Flow: Figure 2 illustrates use of LINKx within
Open MPI. The actions associated with this diagram are
outlined below and show the basic steps for an application
(e.g., Open MPI) when using LINKx.

Fig. 2: Illustration of OFI libfabric LINKx provider joining
SHM and CXI core providers for use by Open MPI library,
which uses new shared queue capability managed by LinkX.

i. Initialization calls fi_getinfo() to get list of fi_
info structures ordered from most to least performant;
each structure describes one interface that can be used for
communication. The LINKx fi_info structure returned
in the list joins SHM with CXI as single provider

ii. Application selects the LINKx fi_info structure &
fully initializes provider via typical procedures: fi_
fabric(), fi_domain(), fi_endpoint(), etc.

iii. During setup, LINKx internally builds structures to track
different SHM & CXI core providers included in the link.

iv. Before MODEX exchange, Open MPI requests the ad-
dress of the provider, LINKx concatenates the addresses
of all core providers in the link and Open MPI then
publishes the data to MODEX.

v. After MODEX exchange, Open MPI reads all peer ad-
dresses that should also be using LINKx from MODEX
and passes data to LINKx. LINKx parses the addresses
and inserts them into the corresponding core providers
within the link.

vi. Open MPI can then proceed to use the libfabric memory
operation APIs, e.g, fi_tsenddata() to communicate
with peers; LINKx examines the peer and based on
locality decides which provider to use.

C. LINKx Shared Data Structures

With multiple core providers abstracted under one single
LINKx provider, it becomes necessary to unify both the
completion and receive queues.

1) Shared Completion Queues: When an operation com-
pletes a provider pushes it on the completion queue. libfabric
provides APIs that can then be used to pull events off the com-
pletion queues. In essence, LINKx becomes the application to
the core providers in the link. Instead of each core provider
having its own completion queue, and then LINKx reading
the completions off each core provider and inserting it into
its own completion queue, which the application can query,
on initialization the LINKx provider exports its completion
queue to be used by the core providers. The owner of the
shared completion queue, LINKx in this example, initializes
callbacks on completion queue creation.

struct fi_ops_cq_owner {
size_t size;
ssize_t (*write)(struct fid_peer_cq *cq, void *context,

uint64_t flags,
size_t len, void *buf, uint64_t data, uint64_t tag,

fi_addr_t src);
ssize_t (*writeerr)(struct fid_peer_cq *cq,

const struct fi_cq_err_entry *err_entry);
};

Listing 1: LINKx completion queue callbacks

The core providers use these callbacks to insert directly into
LINKx’s completion queue. This method is efficient as it adds
no overhead to access the shared completion queue.

2) Shared Receive Queues: When an application wants
to receive a message, it posts a receive request with the
buffer(s) to add the requested data into the libfabric provider,
in this case LINKx. The receive request can identify a specific
peer to receive from or it can be a receive request for data
arriving from any peer. The receive request can also have a
tag associated with it, if it’s targeting a tagged message. The
receive request is inserted on the receive request queue via the
libfabric receive APIs. Since LINKx manages multiple core

providers, it is more efficient to tell the core providers to use
the LINKx receive queue for matching incoming messages.
This requires the use of a new data structure; the shared
receive queue. When LINKx initializes the core providers it
registers a shared receive queue with each core provider. The
shared receive queue has two sets of callbacks associated with
it. Callbacks which belong to the owner of the queue and
callbacks which the core provider, dubbed peer provider, fills
in.

struct fi_ops_srx_owner {
size_t size;
int (*get_msg)(struct fid_peer_srx *srx, fi_addr_t addr,

size_t size, struct fi_peer_rx_entry

**entry);
int (*get_tag)(struct fid_peer_srx *srx, fi_addr_t addr,

uint64_t tag, struct fi_peer_rx_entry

**entry);
int (*queue_msg)(struct fi_peer_rx_entry *entry);
int (*queue_tag)(struct fi_peer_rx_entry *entry);
void (*free_entry)(struct fi_peer_rx_entry *entry);

};

struct fi_ops_srx_peer {
size_t size;
int (*start_msg)(struct fi_peer_rx_entry *entry);
int (*start_tag)(struct fi_peer_rx_entry *entry);
int (*discard_msg)(struct fi_peer_rx_entry *entry);
int (*discard_tag)(struct fi_peer_rx_entry *entry);

};

Listing 2: LINKx shared receive queue callbacks

The owner of the shared receive queue provides callback to
get and queue receive requests, tagged or otherwise, off the
shared receive queue. The core provider registers callbacks
to start message processing or discard messages, tagged or
otherwise.

For example, when using shared receive queues the work-
flow for expected messages is as follows:

i. Application posts a receive request to LINKx queue
ii. The core provider receives a message on the wire and

queries the shared receive queue for a receive request
which matches the message. It uses the get_msg() or
get_tag() callbacks for that.

iii. Since a matching receive request has been posted already,
a match is successful and is returned to the core provider.

iv. The core provider can then receive the message data into
the buffers identified in the shared receive queue.

v. Once it completes copying the data into the application
provided buffers, it will post a completion event on the
shared completion queue.

When using shared receive queues the workflow for unex-
pected messages is as follows:

i. The core provider receives a message on the wire and
queries the shared receive queue for a receive request
which matches the message. It uses the get_msg() or
get_tag() callbacks for that.

ii. Since no receive request has been posted by the applica-
tion, no match is returned.

iii. The core provider uses the queue_msg() or queue_
tag() callbacks to create a temporary receive request
entry which gets added to the shared receive queue.

iv. The application then attempts to post a receive request
on the shared receive queue

v. LINKx will attempt to find if there is an unexpected
message which matches this receive request.

vi. LINKx will match the unexpected message and will use
the core provider registered start_msg() or start_
tag() callbacks to tell the core provider to receive the
message data into the associated buffers

vii. When the core provider finishes copying the data into the
application provided buffers it posts a completion event
into the shared completion queue.

3) Hardware Assisted tag matching: The shared receive
queue precludes the core providers from using any hardware
assisted tag matching. LINKx will need to perform software
tag matching because it needs to maintain the integrity of the
shared receive queue.

Unspecified receive requests present a potential race condi-
tion that must be explicitly managed by LINKx. For example,
a receive request using MPI_ANY_SOURCE could be fulfilled
by either the SHM or CXI provider in the link. This ambiguity
is resolved by having both the CXI and SHM providers call
into the shared receive request queue to get a matching request.
The first provider that gets that request is able to operate on
it. Only after this request is returned is it safe to copy the data
into the associated buffers. The tag matching is done in the
get_tag() owner callback. By necessity this logic has to
be done by the LINKx provider. Otherwise, it is possible for
the CXI provider to use HW assisted tag matching and then
copies the data into the buffers, while the SHM provider does
the same, leading to data corruption.

IV. EXPERIMENTS

A set of experiments were run using the early-access Cray
XE system Crusher at OLCF (Figure 3) [3]. The nodes in
Crusher contain 1 64-core AMD EPYC CPU with 512 GB
of memory. There are 4 AMD MI250X GPUs per node, with
each GPU having 2 graphic compute dies (GCDs) that present
as 8 distinct GPUs. The GPUs have 64 GB of high-bandwidth
memory. The CPU to GPU peak bandwidth is 36+36 GB/s
over the Infinity Fabric. The bandwidth between 2 GCDs on
the same GPU have a peak bandwidth of 200 GB/s, and
peak bandwidth between 2 GPUs ranges from 50-100 GB/s
depending on the number of connections over the the Infinity
Fabric between the two GPUs. There are 4 Slingshot 11
network interfaces (hsn0-3) that are attached to the GPUs.
The CPUs have greater affinity to specific GPUs and network
interfaces as shown in Figure 3. This plays a crucial role in
achieving proper performance and is often the first place to
look when seeing unexpected communication performance.

At the time of our experiments, Crusher was running SUSE
Linux Enterprise Server 15 SP4 and Linux kernel 5.14.21
for the cray-shasta environment. SLURM was version 22.05.7
with core specialization enabled, with the defaults used so that
8 core per node (1 per l3cache) is reserved for system services.
The software configuration used ROCm v5.3.0, CCE 15.0.0,
xpmem v2.5.2-2.4 3.30 gd0f7936.shasta. CrayMPICH was

Fig. 3: Crusher compute node topology [3].

version 8.1.23 with Cray-PMI v6.1.8. Open MPI was based
on v5.0.0rc11 with one additional patch for setting nearest
network device 1. The CrayMPICH runs used the default
Libfabric v1.15.2.0. The Open MPI tests used the development
Libfabric that includes LINKx and shared memory provider
enhancements, which was from ornl-branch at SHA 38df9f668
(12 Apr 2023). All tests were taken from the OSU micro-
benchmark suite version 7.0.1 [6].

In our tests we used 8 MPI processes per node to mirror
the suggested usage (i.e., one for each GCD), which under
Open MPI was 1 process per l3cache and process bound to
core. The only exception to this mapping setting was when
running inter-node point-to-point tests, which used 1 process
per node (--map-by ppr:1:node). All tests were run
using a custom testing harness that loads/unloads software
modules, runs the benchmark parses results and generates the
graphs. The test harness sets the HIP_VISIBLE_DEVICES
environment variable to the best setting for Crusher during the
benchmark runs.

mpirun \
-x FI_USE_XPMEM -x LD_LIBRARY_PATH \
--mca btl ˆtcp,ofi,vader,openib \
--mca pml ˆucx --mca mtl ofi \
--mca opal_common_ofi_provider_include "shm+cxi:linkx" \
--map-by ppr:1:l3cache --bind-to core \
--display mapping,bindings --np 512 \
<osu-exe> H H
-- or --
<osu-exe> -d rocm D D

Listing 3: Example mpirun for Open MPI tests

srun \
--cpu-bind=v,cores \
--ntasks 512 \
--ntasks-per-node 8 \
-N 64 \
-t 10000 \
<osu-exe> H H
--or--
<osu-exe> -d rocm D D

Listing 4: Example srun for CrayMPICH tests

1We plan to include the nearest network patch in the v5.0.x branch before
the Open MPI v5.0.0 release.

The command-lines for the tests were similar to those shown
in Listings 3-4. The settings for LINKx indicate what Libfabric
providers are to be included in the link, which in Listing 3 are
the shared memory (shm) and SS11 (cxi) providers2.

A. Point-to-point

We measured bandwidth and latency for point-to-point oper-
ations using four options: H2H (host-to-host), D2D (device-to-
device), Inter-node (2 nodes), and Intra-node (1 node). These
provide a baseline for the transfers within and across nodes for
MPI data buffers residing in host memory and device memory.
We the vendor provided CrayMPICH as a baseline measure for
our performance. The graphs show three lines corresponding
to CrayMPICH, Open MPI with LINKx (shm+cxi) and Open-
MPI without LINKx (a single provider). The last configuration
provides a functional configuration that will suffer poorer
performance due to the lack of LINKx and only having access
to the SS11 driver (cxi) and no sharded memory. As mentioned
previously, when using the MTL framework in Open MPI,
only one provider can be selected and in the non-LINKx
configuration that will either be the SS11 or SHM provider,
but not both.

The bi-directional bandwidth (Figure 4) shows Open MPI
tracking CrayMPICH. The graphs also indicate that the LINKx
layer is not degrading bandwidth when comparing the two
”ompi” lines. The device-to-device performance for intra-node
is very good for Open MPI as messages get larger in size,
which shows the benefit of using the LINKx provider for
shared memory. This also highlights the recent improvements
to optimize shared memory handle caching for the Libfabric
SHM provider. We found unusual results in the CrayMPICH
bandwidth data for inter-node H2H, which were far lower than
expected (Figure 7(a)) and needs further investigation.

The Open MPI latency (Figure 5) numbers are reasonable
and generally track CrayMPICH. Open MPI with LINKx
has roughly the same latency as message size gets larger,
with CrayMPICH doing much better at smaller message. The
CrayMPICH intra-node H2H test show much higher latency
at the larger message sizes that needs further investigation.

The last point-to-point measurements show that work is
needed for small message bandwidth and message rate (Fig-
ure 6). CrayMPICH has much better message rates at small
messages on H2H & D2D intra-node tests. We see some
difference in the Open MPI curves (with and without LINKx)
for inter-node H2H & D2D that need further attention.

B. Collectives

We measured the performance of several collective op-
erations for both H2H (host-to-host) and D2D (device-to-
device) transfers. All tests were run using 8 MPI processes
per node, which were mapped by l3cache and bound to core.
The graphs show results from runs on Crusher using 64 nodes
(nprocs = 512). The collective tests exercise the LINKx layer,
allowing efficient on-node exchanges via SHM and efficient

2Note: Many of the command-line options for Open MPI are typically set
via an environment file but are listed here for accuracy.

remote node communication using the CXI provider. The tests
used default settings for all the collectives.

Overall we find that CrayMPICH has much better small
message support than the current Open MPI with LINKx.
However, the overall trends are promising when compared to
CrayMPICH in Figures 7-11.

A few observations in the figures include very similar
Allgather H2H data for CrayMPICH and Open MPI (Fig-
ure 9(a)). We see that Open MPI does much much better in
Allgather D2D when using LINKx vs. just using CXI alone,
but that at the largest messages the latency is much higher
than CrayMPICH. There is an unusual spike in Alltoall D2D
(Figure7(b)) with CrayMPICH that needs review. There is also
a spike at the largest message size in Gather (Figure 10) for
Open MPI.

V. FUTURE WORK

Support for Intel’s Ponte Vecchio (PV) accelerator is
planned for the near future. This will be done by adding a
PV component to Open MPI’s accelerator framework for use
by the BTL path in Open MPI. For the MTL path, which uses
the LINKx provider, the PV support in the Libfabric SHM
provider will need to be evaluated.

We are currently looking into the the small message perfor-
mance with Open MPI and LINKx. The LINKx capabilities
are currently being reviewed, with portions being upstreamed
to the public Libfabric repository. The current tests were the
first to move from the Open MPI main branch to the v5.0.x
branch. These v5.0.x tests have identified areas where per-
formance drops occurred from previous measurements, and
further review is needed to identify the causes for regression.
We are starting to perform scale-up tests on Frontier and will
work on performance improvements to collectives when using
Open MPI and LINKx. The MPI one-sided support when using
LINKx has a few open-issues that will be resolved in the
coming months.

Lastly, we are interested to explore the use of LINKx
for multi-rail support, which may be more beneficial on
SS11 systems like Aurora that have more uniform on-node
bandwidth between compute and network devices.

VI. CONCLUSION

The use of Open MPI on Slingshot 11 systems like Fron-
tier requires care be taken to leverage shared memory and
off-node communication. A new LINKx provider has been
described that enables Open MPI to use both the shared
memory (SHM) and Slingshot 11 (CXI) providers via the MTL
framework. The LINKx provider supports joining of two or
more Libfabric providers that are presented to the application
as a single “linked” provider. This linking layer manages
shared receive/completion queues for the linked items. The
LINKx implementation has tagged message support, non-
tagged and atomic Libfabric capabilities are in-progress. The
shared memory provider in Librabric has also been improved,
including: ROCm support, asynchronous IPC, and locking
improvements.

We have outlined the key challenges address thus far to
bring Open MPI up on Frontier with good performance. While
there are still improvements to be made, the work is functional
and performance is showing good trends compared to that
of the vendor’s well tuned CrayMPICH. The experiments
highlight the importance of process binding to ensure good
affinity to GPU and network interfaces from MPI processes,
which is especially important on the Frontier system.

ACKNOWLEDGMENTS

This research used resources of the Oak Ridge Leadership Computing
Facility at the Oak Ridge National Laboratory, which is supported by the
Office of Science of the U.S. Department of Energy under Contract No. DE-
AC05-00OR22725. Howard Pritchard acknowledges support by the National
Nuclear Security Administration. Los Alamos National Laboratory is operated
by Triad National Security, LLC for the U.S. Department of Energy under
contract 89233218CNA000001. This research was partially supported by the
Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National Nuclear Security
Administration.

REFERENCES

[1] PMIx Reference Runtime Environment. https://docs.prrte.org/en/latest/,
2023.

[2] Ralph H. Castain, David Solt, Joshua Hursey, and Aurelien Bouteiller.
Pmix: Process management for exascale environments. In Proceedings of
the 24th European MPI Users’ Group Meeting, EuroMPI ’17, New York,
NY, USA, 2017. Association for Computing Machinery.

[3] Crusher User Guide. https://docs.olcf.ornl.gov/systems/
crusher quick start guide.html.

[4] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J.
Dongarra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur,
Brian Barrett, Andrew Lumsdaine, Ralph H. Castain, David J. Daniel,
Richard L. Graham, and Timothy S. Woodall. Open MPI: Goals,
concept, and design of a next generation MPI implementation. In
Proceedings, 11th European PVM/MPI Users’ Group Meeting, pages 97–
104, Budapest, Hungary, September 2004.

[5] Paul Grun, Sean Hefty, Sayantan Sur, David Goodell, Robert Russell,
Howard Pritchard, and Jeffrey Squyres. A Brief Introduction to the
OpenFabrics Interfaces–A New Network API for Maximizing High
Performance Application Efficiency. In Proceedings of the 23rd Annual
Symposium on High-Performance Interconnects, August 2015.

[6] Ohio State University Microbenchmarks. https://mvapich.cse.ohio-
state.edu/benchmarks/.

[7] Pavel Shamis, Manjunath Gorentla Venkata, M. Graham Lopez,
Matthew B. Baker, Oscar Hernandez, Yossi Itigin, Mike Dubman, Gilad
Shainer, Richard L. Graham, Liran Liss, Yiftah Shahar, Sreeram Potluri,
Davide Rossetti, Donald Becker, Duncan Poole, Christopher Lamb,
Sameer Kumar, Craig Stunkel, George Bosilca, and Aurelien Bouteiller.
Ucx: An open source framework for hpc network apis and beyond. In
2015 IEEE 23rd Annual Symposium on High-Performance Interconnects,
pages 40–43, 2015.

[8] Jeffrey M Squyres and Andrew Lumsdaine. The component architecture
of open mpi: Enabling third-party collective algorithms. In Proceedings,
18th ACM International Conference on Supercomputing, Workshop on
Component Models and Systems for Grid Applications, pages 167–185.
Springer, 2004.

https://docs.prrte.org/en/latest/

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8
65

53
6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

Size

0

10000

20000

30000

40000

50000

60000

70000

80000

Ba
nd

w
id

th
 (

M
B/

s)

ompi-h2h-nolinkx-shm
ompi-h2h
cray-h2h

beaker.ornl.gov osu_bibw.csv beaker

(a) H2H intra-node

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8
65

53
6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

Size

0

20000

40000

60000

80000

100000

Ba
nd

w
id

th
 (

M
B/

s)

ompi-d2d-nolinkx-shm
ompi-d2d
cray-d2d

beaker.ornl.gov osu_bibw.csv beaker

(b) D2D intra-node

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8
65

53
6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

Size

0

5000

10000

15000

20000

25000

30000

35000

Ba
nd

w
id

th
 (

M
B/

s)

ompi-h2h-nolinkx-cxi
ompi-h2h
cray-h2h

beaker.ornl.gov osu_bibw.csv beaker

(c) H2H inter-node

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8
65

53
6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

Size

0

10000

20000

30000

40000

Ba
nd

w
id

th
 (

M
B/

s)

ompi-d2d-nolinkx-cxi
ompi-d2d
cray-d2d

beaker.ornl.gov osu_bibw.csv beaker

(d) D2D inter-node

Fig. 4: Point-to-Point Bidirectional Bandwidth osu_bibw

0 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8
65

53
6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

Size

0

25

50

75

100

125

150

175

La
te

nc
y

(u
s)

ompi-h2h-nolinkx-shm
ompi-h2h
cray-h2h

beaker.ornl.gov osu_latency.csv beaker

(a) H2H intra-node

0 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8
65

53
6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

Size

0

20

40

60

80

La
te

nc
y

(u
s)

ompi-d2d-nolinkx-shm
ompi-d2d
cray-d2d

beaker.ornl.gov osu_latency.csv beaker

(b) D2D intra-node

0 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8
65

53
6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

Size

0

25

50

75

100

125

150

175

200
La

te
nc

y
(u

s)
ompi-h2h-nolinkx-cxi
ompi-h2h
cray-h2h

beaker.ornl.gov osu_latency.csv beaker

(c) H2H inter-node

0 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8
65

53
6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

Size

0

25

50

75

100

125

150

175

La
te

nc
y

(u
s)

ompi-d2d-nolinkx-cxi
ompi-d2d
cray-d2d

beaker.ornl.gov osu_latency.csv beaker

(d) D2D inter-node

Fig. 5: Point-to-Point Latency osu_latency

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8
65

53
6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

Size

0

10000

20000

30000

40000

M
B/

s

ompi-h2h-nolinkx-shm
ompi-h2h
cray-h2h

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8
65

53
6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

Size

0

1

2

3

4

M
es

sa
ge

s/
s

1e6

ompi-h2h-nolinkx-shm
ompi-h2h
cray-h2h

beaker.ornl.gov osu_mbw_mr.csv beaker

(a) H2H intra-node

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8
65

53
6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

Size

0

10000

20000

30000

40000

50000

M
B/

s

ompi-d2d-nolinkx-shm
ompi-d2d
cray-d2d

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8
65

53
6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

Size

0

1

2

3

4

M
es

sa
ge

s/
s

1e6

ompi-d2d-nolinkx-shm
ompi-d2d
cray-d2d

beaker.ornl.gov osu_mbw_mr.csv beaker

(b) D2D intra-node

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8
65

53
6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

Size

0

5000

10000

15000

20000

M
B/

s

ompi-h2h-nolinkx-cxi
ompi-h2h
cray-h2h

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8
65

53
6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

Size

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
es

sa
ge

s/
s

1e6

ompi-h2h-nolinkx-cxi
ompi-h2h
cray-h2h

beaker.ornl.gov osu_mbw_mr.csv beaker

(c) H2H inter-node

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8
65

53
6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

Size

0

5000

10000

15000

20000

25000

M
B/

s

ompi-d2d-nolinkx-cxi
ompi-d2d
cray-d2d

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8
65

53
6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

Size

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
es

sa
ge

s/
s

1e6

ompi-d2d-nolinkx-cxi
ompi-d2d
cray-d2d

beaker.ornl.gov osu_mbw_mr.csv beaker

(d) D2D inter-node

Fig. 6: Point-to-Point Message Rate & Bandwidth osu_mbw_mr

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8
65

53
6

13
10

72

26
21

44

52
42

88

10
48

57
6

Size

0

20000

40000

60000

80000

100000

Av
g

La
te

nc
y(

us
)

ompi-h2h-nolinkx-cxi
ompi-h2h
cray-h2h

beaker.ornl.gov osu_alltoall.csv beaker

(a) H2H

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8
65

53
6

13
10

72

26
21

44

52
42

88

10
48

57
6

Size

0

100000

200000

300000

400000

Av
g

La
te

nc
y(

us
)

ompi-d2d-nolinkx-cxi
ompi-d2d
cray-d2d

beaker.ornl.gov osu_alltoall.csv beaker

(b) D2D

Fig. 7: Collective Alltoall osu_alltoall

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8
65

53
6

13
10

72

26
21

44

52
42

88

10
48

57
6

Size

0

200

400

600

800

Av
g

La
te

nc
y(

us
)

ompi-h2h-nolinkx-cxi
ompi-h2h
cray-h2h

beaker.ornl.gov osu_bcast.csv beaker

(a) H2H

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8
65

53
6

13
10

72

26
21

44

52
42

88

10
48

57
6

Size

0

100

200

300

400

500

600

700

Av
g

La
te

nc
y(

us
)

ompi-d2d-nolinkx-cxi
ompi-d2d
cray-d2d

beaker.ornl.gov osu_bcast.csv beaker

(b) D2D

Fig. 8: Collective Broadcast osu_bcast

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8
65

53
6

13
10

72

26
21

44

52
42

88

10
48

57
6

Size

0

25000

50000

75000

100000

125000

150000

Av
g

La
te

nc
y(

us
)

ompi-h2h-nolinkx-cxi
ompi-h2h
cray-h2h

beaker.ornl.gov osu_allgather.csv beaker

(a) H2H

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8
65

53
6

13
10

72

26
21

44

52
42

88

10
48

57
6

Size

0

20000

40000

60000

80000

100000

120000

140000

Av
g

La
te

nc
y(

us
)

ompi-d2d-nolinkx-cxi
ompi-d2d
cray-d2d

beaker.ornl.gov osu_allgather.csv beaker

(b) D2D

Fig. 9: Collective Allgather osu_allgather

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8
65

53
6

13
10

72

26
21

44

52
42

88

10
48

57
6

Size

0

2000

4000

6000

8000

10000

12000

14000

Av
g

La
te

nc
y(

us
)

ompi-h2h-nolinkx-cxi
ompi-h2h
cray-h2h

beaker.ornl.gov osu_gather.csv beaker

(a) H2H

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8
65

53
6

13
10

72

26
21

44

52
42

88

10
48

57
6

Size

0

2000

4000

6000

8000

10000

12000

14000

Av
g

La
te

nc
y(

us
)

ompi-d2d-nolinkx-cxi
ompi-d2d
cray-d2d

beaker.ornl.gov osu_gather.csv beaker

(b) D2D

Fig. 10: Collective Gather osu_gather

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8
65

53
6

13
10

72

26
21

44

52
42

88

10
48

57
6

Size

0

5000

10000

15000

20000

25000

30000

35000

40000

Av
g

La
te

nc
y(

us
)

ompi-h2h-nolinkx-cxi
ompi-h2h
cray-h2h

beaker.ornl.gov osu_scatter.csv beaker

(a) H2H

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8
65

53
6

13
10

72

26
21

44

52
42

88

10
48

57
6

Size

0

5000

10000

15000

20000

25000

30000

35000

Av
g

La
te

nc
y(

us
)

ompi-d2d-nolinkx-cxi
ompi-d2d
cray-d2d

beaker.ornl.gov osu_scatter.csv beaker

(b) D2D

Fig. 11: Collective Scatter osu_scatter

	Introduction
	Open MPI
	Background
	Modifications for CXI and LINKx Providers
	Performance problems using the CXI Provider

	LINKx
	Slingshot 11 Driver
	Design Overview
	LINKx Flow

	LINKx Shared Data Structures
	Shared Completion Queues
	Shared Receive Queues
	Hardware Assisted tag matching

	Experiments
	Point-to-point
	Collectives

	Future Work
	Conclusion
	References

