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Introduction

• Goal: Provide a performant alternative MPI
– Helpful to support different user needs
– Aid in diagnosing application issues

• Work by ORNL & LANL to port and optimize Open MPI for 
HPE Cray EX systems
– Frontier @ OLCF
– Aurora @ ALCF

• Highlight key pieces involved in development & testing
– Changes to Open MPI, Libfabric and OpenPMIx
– Brief snapshot of current status

ECP OMPI-X Project
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Open MPI Overview

• Developed & maintained by collaborators from
– Academia, Industry and National Laboratories

• Open-source implementation of MPI-3 standard

• Supports resource manager interoperability via OpenPMIx
• Supports variety of network fabrics via UCX & OFI libfabrics

Open MPI Project

https://Open-MPI.org
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OpenPMIx & PRRTE

• OpenPMIx: A feature complete implementation of PMIx Standard
– Provides libraries and programming models portable and well-defined access to 

commonly available process management services
– Implemented as C library for connecting PMIx-enabled clients (like Open MPI) with PMIx-

enabled Tools (like debuggers) and PMIx-enabled Servers (like PRRTE, SLURM, IBM JSM)

• PRRTE: PMIx Reference RunTime Environment
– Portable and feature-rich runtime environment
– Offers PMIx support even if host environment is not PMIx-enabled

• Open MPI relationship
– Evolved from Open MPI’s ORTE into stand-alone project
– Next stable release of Open MPI requires PMIx-enabled server
– Included as 3rd party packages in Open MPI tarballs

https://OpenPMIx.org
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Runtime Details for Slingshot 11 Systems

• Slingshot with VNI enforcement enabled
– VNI key allows clients to access fabric
– Must launch PRRTE daemons with system resource manager for VNI key

• Example: On SLURM based Frontier, use srun to start prted’s

• Enhancements to the job launch system for Aurora
– PALS launcher support added to PRRTE frameworks

• PLM: Process Launch Mechanism
• ESS: Environment Specific Services

– Note: On Aurora, not plan to support direct launch of Open MPI 
because aprun lacks PMIx interface for launch mechanism.
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Open MPI Background

• Uses Modular Component Architecture (MCA)
– Frameworks provide abstract interfaces
– Frameworks have one or more components
– Multiple ways to assemble/configure via MCA parameters

• Frameworks of interest
– PML: Point-to-Point Messaging Layer
– BTL: Byte Transport Layer

• Allows multiple active components

– MTL: Message Transport Layer
• Allows 1 active component
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Slingshot 11 & Open MPI

• Cray supports Slingshot 11 via a new CXI libfabric provider
– Supports communication with both host & device buffers

• CXI not directly support on-node communication
– Functional but messages egress/ingress node

• Three potential solutions to use CXI provider with Open MPI
1. MTL path − use libfabric tagged message interface
2. BTL path −  use MPI for tag matching & higher level 

logic, libfabric for byte transfer only
3. UCX path − use UCX and integrate libfabric

under the UCX API

This paper focuses on MTL path

UCX

(1) (2) (3)
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Where LINKx fits in Open MPI Architecture Diagram

This paper focuses on MTL path

UCX

(1) (2) (3)
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Libfabric: LINKx provider

• A new OFI libfabric provider to link multiple providers
– Terminology: LINKx links “core” providers

• Enables Open MPI to use single provider for local & remote 
communication
– Reminder: Open MPI’s MTL limited to 1 active component

• Chooses endpoint provider based on peer locality

• Shares both its completion queues and receive queues to 
reduce communication and memory overhead

• Can potentially be expanded to handle multi-rail



10

LINKx Shared Data Structures

• Unified completion & receive queues
– LINKx exports queues
– Core providers in link use exported queues

• Shared queues
– Avoids each provider needing to maintain 

separate queues
– Avoids LINKx needing to search multiple queues

• Matching with LINKx
– Disable hardware assisted tag matching
– Use software matching to avoid ambiguity 

between linked providers 
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Example of Open MPI initialization with LINKx

1. Initialize libfabric to get LINKx provider with SHM+CXI

2. Application does typical libfabric setup for provider

3. LINKx builds structures to track linked providers

4. Open MPI MODEX: Before exchange, LINKx
concatenates all addresses in link and publishes

5. Open MPI MODEX: After exchange, Open MPI reads 
all addresses, LINKx parses & sets up linked providers

6. Open MPI uses libfabric APIs to communicate with 
peers.   At runtime, LINKx examines peer & selects 
best provider based on locality.

Flow: LINKx joining SHM & CXI providers
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Improvements to Libfabric Shared Memory (SHM)

• New features to SHM provider for MPI use cases
– Full support for ROCm HSA APIs
– Add Asynchronous ROCm IPC support
– Add IPC caching mechanism
– Add XPMEM support

• Allows mapping remote process memory space locally; provides efficient method of 
sharing memory

• Optimization for H2D case to leverage XPMEM to directly copy into Device memory
• Support XPMEM export for specific memory regions (instead of entire address space)

– Add ROCm HIP API support (intended as reference implementation)



13

Improvements for Collectives

• Key changes to help bring performance closer to Cray MPI
– Selection of the optimal network interface for a process
– SHM locking improvements

• SHM provider locking was very course, causing serialization between processes
• Moved to more lock free strategy to minimize serialization
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Frontier Supercomputer

• HPE Cray EX system
– 74 cabinets
– 9,472 AMD EPYC CPUs
– 37,888 MI250x GPUs

• Each MI250x GPU has 2 GCDs
(Presents as 8 devices/node)

– Slingshot 11 interconnect
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Frontier Supercomputer - Node Specifications

8 GCDs:
4 GPUs x 2 GCD each

4 NICs :
1 per GPU
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Experiment Setup

• Data gathered on Crusher (smaller, but same HW as Frontier)

• System software
– SUSE Linux 15 SP4 / Linux 5.14.31 (cray-shasta environment)
– SLURM 22.05.7 with core specialization enabled
– ROCm v5.3.0, CCE 15.0.0, xpmem v2.5.2

• MPI versions
– Cray MPI version 8.1.23 with Cray PMI v6.1.8

• Libfabric: v1.15.2.0
– Open MPI v5.0.0rc11 with 1 patch*

• Libfabric: ‘ornl-main’ branch with LINKx & shared memory provider enhancements
* PR #11565 “ofi: NIC selection”

https://github.com/open-mpi/ompi/pull/11565
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Experiment Setup

• Testing tool sets  HIP_VISIBLE_DEVICES to best setting for 
Crusher

• 8 MPI processes per node (one per GCD)
– Mapping: 1 process per L3cache (--map-by ppr:1:l3cache)

• Except for P2P inter-node tests, map 1 process per node (--map-by ppr:1:node)
– Bind processes to core



18

Example run lines

mpirun \
-x FI_USE_XPMEM -x LD_LIBRARY_PATH \
--mca btl ˆtcp,ofi,vader,openib \
--mca pml ˆucx --mca mtl ofi \
--mca opal_common_ofi_provider_include "shm+cxi:linkx" \
--map-by ppr:1:l3cache --bind-to core \

--display mapping,bindings --np 512 \
<osu-exe> H H 
# -- or --
<osu-exe> -d rocm D D 

srun \
--cpu-bind=v,cores \
--ntasks 512 \
--ntasks-per-node 8 \
-N 64 \
-t 10000 \
<osu-exe> H H
# --or--

<osu-exe> -d rocm D D 

Open MPI with LINKx
enhanced libfabric

CrayMPICH with 
system libfabric

* Note: Most of these parameters  set via modulefile
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Point-to-Point Bi-directional Bandwidth (osu_bibw)

• Take-away: Trend is following CrayMPICH
(Unexplained problem w/ CrayMPICH H2H)

(a) H2H intra-node (b) D2D intra-node (c) H2H inter-node (d) D2D inter-node

Fig. 4: Point-to-Point Bidirectional Bandwidth osu_bibw

(a) H2H intra-node (b) D2D intra-node (c) H2H inter-node (d) D2D inter-node

Fig. 5: Point-to-Point Latency osu_latency

(a) H2H intra-node (b) D2D intra-node (c) H2H inter-node (d) D2D inter-node

Fig. 6: Point-to-Point Message Rate & Bandwidth osu_mbw_mr

Key:
Open MPI no LINKx (cxi or shm)
Open MPI with LINKx
CrayMPICH
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Point-to-Point Latency (osu_latency)

Key:
Open MPI no LINKx (cxi or shm)
Open MPI with LINKx
CrayMPICH

(a) H2H intra-node (b) D2D intra-node (c) H2H inter-node (d) D2D inter-node

Fig. 4: Point-to-Point Bidirectional Bandwidth osu_bibw

(a) H2H intra-node (b) D2D intra-node (c) H2H inter-node (d) D2D inter-node

Fig. 5: Point-to-Point Latency osu_latency

(a) H2H intra-node (b) D2D intra-node (c) H2H inter-node (d) D2D inter-node

Fig. 6: Point-to-Point Message Rate & Bandwidth osu_mbw_mr

• Take-away: Trend is following CrayMPICH
(Unexplained problem w/ CrayMPICH H2H)
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Collective Alltoall (osu_alltoall)

Key:
Open MPI no LINKx (cxi or shm)
Open MPI with LINKx
CrayMPICH

(a) H2H (b) D2D

Fig. 7: Collective Alltoall osu_alltoall

(a) H2H (b) D2D

Fig. 8: Collective Broadcast osu_bcast

• Take-away: Trend is following CrayMPICH
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Collective Allgather (osu_allgather)

Key:
Open MPI no LINKx (cxi or shm)
Open MPI with LINKx
CrayMPICH

(a) H2H (b) D2D

Fig. 9: Collective Allgather osu_allgather

(a) H2H (b) D2D

Fig. 10: Collective Gather osu_gather

• Take-away: D2D needs work as size grows
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Future Work

• MPI
– Performance improvements (small messages, collectives)
– Finalize open issue for MPI one-sided support

• Libfabric
– Complete LINKx support for all libfabric APIs
– Productize LINKx and test linking multiple providers
– Upstream changes
– Multi-rail support via LINKx

• Other
– Support Intel GPUs on Aurora



24

Summary

• Outlined key challenges addressed to bring Open MPI up on 
Frontier with good performance
– Still improvements to be made, function and performance shows good 

trends compared to vendor’s well tuned CrayMPICH
– Experiments highlight importance of process affinity to GPU/Network

• Presented status of Open MPI with Slingshot 11
– Summary of new LINKx provider (joins SHM & CXI provider)
– LINKx used for Open MPI’s MTL/OFI framework
– Highlighted improvements (SHM provider, ROCm & XPMEM support)
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Questions?
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