
Assessing Memory Bandwidth on
ARCHER2 and LUMI Using CAMP

Wenqing Peng
EPCC

The University of Edinburgh, UK
W.Peng-12@sms.ed.ac.uk

Adrian Jackson
EPCC

The University of Edinburgh, UK
A.Jackson@epcc.ed.ac.uk

Evgenij Belikov
EPCC

The University of Edinburgh, UK
E.Belikov@epcc.ed.ac.uk

Abstract—In this paper we present intra-node bandwidth
measurements on ARCHER2 (AMD Rome) and LUMI (AMD
Milan) using the open-source CAMP (Configurable App for
Memory Probing) tool, which is a configurable micro-benchmark
that allows varying operational intensity, thread counts and
placement, and memory access patterns including contiguous,
strided, various types of stencils, and random. We also gather in-
formation on power consumption from the Slurm batch scheduler
to correlate it with the access patterns used. For comparison, we
run another set of the measurements on a node on NEXTGenIO
(Intel Ice Lake). Additionally, we report on work to extend
CAMP to increase its resolution so that we can assess the
range of operational intensities between zero and two in more
detail compared to previous results. Moreover, we illustrate the
mechanism for using custom kernels in CAMP using a dot
product calculation as an example. Our results confirm and
extend previous results showing that maximum bandwidth is
reached using a fraction of threads compared to the maximum
number of available cores on a node. In particular, for memory
access with a stride of four and for a contiguous access case, we
observe up to 11% higher bandwidth using 16 threads compared
to the full node using 128 cores on an ARCHER2 node and up to
15% on LUMI, especially for operational intensities below 0.5.
This suggests that underpopulation may be a viable option to
achieve higher performance compared to full node utilisation and
thus the results suggest that benchmarking should include tests
using only a fraction of available cores per node. Additionally,
sub-NUMA-node awareness may be required to reach the highest
performance.

Index Terms—Memory bandwidth, Benchmarking, Perfor-
mance, ARCHER2, LUMI

I. INTRODUCTION

In his recent Turing Award lecture, Jack Dongarra has
traced the co-evolution of mathematical software and High-
Performance-Computing (HPC) hardware showing that ma-
chine balance has shifted significantly in favour of compute
power with some architectures now exhibiting the balance of
over 100 double-precision floating point operations per mem-
ory read operation [1]. This continuing trend leads to a situ-
ation where CPUs can be significantly under used computa-
tionally and many scientific applications that were considered
compute-bound in the past have now become memory-bound
with operational intensity below one. Moreover, hardware
has become increasingly more hierarchical with non-uniform
memory access (NUMA) [2] since the end of Dennard Scaling
due to physical limitations. Thus memory access constitutes a
key intra-node bottleneck and merits further study.

In this paper we present intra-node bandwidth measure-
ments on ARCHER2 (AMD Rome), LUMI (AMD Milan)
and NEXTGenIO (Intel Ice Lake) using the open-source
CAMP (Configurable App for Memory Probing) tool [3].
CAMP is a configurable micro-benchmark that allows varying
operational intensity (i.e. number of double-precision floating
point operations performed per byte transferred between CPU
and memory), thread counts and placement, and memory
access patterns including contiguous, strided, various types of
stencils, and random. We also gather information on power
consumption from the Slurm batch scheduler to correlate it
with the access patterns used. We have extended CAMP to
increase the resolution of the benchmarks so that we can
assess the range of operational intensities between zero and
two in more detail compared to previous results. Moreover,
we illustrate a new mechanism for using custom kernels in
CAMP using dot product as an example. Our results confirm
and extend previous results [3]–[5] showing that maximum
bandwidth is reached using a fraction of threads compared
to the maximum number of available cores on a node. In
particular, for memory access with a stride of four and for
a contiguous access case, we observe up to 11% higher
bandwidth using 16 threads compared to the full node using
128 cores on an ARCHER2 node for operational intensities
below 0.5 and up to 15% on LUMI for operational intensities
below 1. These results support the view that underpopulating
a node may be of benefit for performance without harming
energy efficiency. Our study is aimed at CPU-based systems,
although we are considering extending CAMP to include
GPUs in the future. The main focus in this paper is on the
relative increase in bandwidth observed across different access
patterns and levels of operational intensity when using fewer
threads than the available cores.

The remainder of the paper is structured as follows. Sec-
tion II summarises related work which provided the inspiration
for the features combined in CAMP and mentions several
recent memory bandwidth measurement studies. Section III
briefly describes CAMP, its configuration and providing cus-
tom kernels, with focus on changes compared to the original
version [3]. Next, Section IV provides details of the experi-
mental setup including hardware and software configurations
and the description of our methodology. We present our results
and analysis in Section V and conclude in Section VI.



II. RELATED WORK

CAMP [3] combines several features and borrows some
implementation techniques from other benchmarks and tools,
in particular STREAM, adept, and the Empirical Roofline
Toolkit, complementing them and providing memory band-
width measurements for various operational intensities, thread
counts and memory access patterns along with visualisation
scripts in a convenient way. STREAM [6], [7] and its variants
are the industry standard for measuring sustained memory
bandwidth for four kernels: scale, add, copy and triad using
the contiguous access pattern. The results are more useful
than the theoretical peak values from hardware specifications
and can act as a memory roof in the Roofline model [8].
Additionally, STREAM allows the user to define their own
kernel, which offers a way to change access pattern, but
this requires some implementation effort. The adept bench-
marks [9] allow changing memory access pattern to strided,
stencil or random, among other features, which allows the
user to more closely investigate the behaviour of a given
kernel. Unfortunately, neither of these benchmarks allows the
specification of different levels of operational intensity for
testing without additional programming effort. A tool that
allows the tuning of operational intensity is Empirical Roofline
Toolkit [10] via an approach based on preprocessor macros
and requires recompilation for each operational intensity level.
Other tools exist such as lmbench [11], the likwid tool
suite [12], BenchIT [13], and Parallel Research Kernels [14],
which can potentially be used to assess memory bandwidth
and latency. To the best of our knowledge, their use in the
literature is primarily focused on architectural comparisons
and programming models [15], rather than finding the best
configuration on a given architecture for a given kernel.
Additionally, hardware performance counters such (e.g. via
PAPI [16] or likwid-perfctr) can be used, however
relevant counters (e.g. memory traffic from last level caches)
are often not available on production systems.

In a recent study, Velten et al. [4] measure memory charac-
teristics on AMD EPYC and Intel Cascade Lake SP servers.
With respect to memory bandwidth on AMD Rome, the
authors report results from using STREAM via BenchIT
and find that using a subset of cores by spreading a small
number of threads across sub-NUMA regions (CCX or Core
Complex, see IV-A for a discussion of the Rome architecture;
a more detailed description can be found in the aforementioned
paper [4]) can deliver the best performance for memory-
bound kernels. Saini at al. [5] also study AMD Rome and
Intel Cascade Lake performance. STREAM results on AMD
Rome show that highest bandwidth is reached using 16 cores,
showing saw-tooth bandwidth curves with peaks at multiples
of eight, which we have also observed in previous work [3].
It is thus of interest to assess more recent AMD Milan and
Intel Ice Lake with respect to memory behaviour.

III. CAMP
CAMP is a micro-benchmark that allows convenient band-

width measurement whilst varying operational intensity and

thread placement. Below we briefly summarise its extensions
and illustrate how to add and use a custom kernel using dot
product as an example. The new way to configure runs is dis-
cussed in Section IV-B. CAMP is open-source and is available
on GitHub (https://github.com/CAMP-benchmark/CAMP).

A. Extensions

In this work, we extend CAMP in several ways. First, we
enable more fine-grained stepping when varying operational
intensity moving from approximately 0.08 to approximately
0.02. This is achieved by using a kernel that is similar to
STREAM add, but with additional stores for the result. Next,
to enable the use of vectorisation within benchmarks we
switched CAMP’s innermost loop to a macro-based imple-
mentation very similar to the Empirical Roofline Tool. This
resulted in the addition of an outer-level driver written in
Python, which is responsible for applying the configuration
and recompiling the CAMP executable for different macro
settings. However, the original way of invoking CAMP directly
is also still supported. Please refer to the CAMP paper for
more implementation details and description on the legacy way
of running it [3].

B. Using a Custom Kernel

To evaluate the underpopulation effects of different kernels,
we provide a series of pre-implemented kernels which have
different operational intensity and access patterns. However,
we are aware that synthetic kernels are insufficient to mimic
the behaviour of all kernels of interest from real application.
We have thus enabled users to be able to include their
own custom kernels within CAMP. This functionality allows
users to implement kernels which act exactly like their target
program, for example, mimicking how data is structured, and
how operands are fetched and computed, and then plug this
kernel into CAMP to investigate how underpopulation, thread
counts and thread placements affect the performance of that
kernel. This is illustrated in Figure 1 for the dot product kernel
that we will use as an example below. The results indicate that
highest bandwidth is achieved when using 64 threads.

Fig. 1: Bandwidth of the dot product kernel on ARCHER2



The custom kernel is included in CAMP during the linking
process of building the benchmark framework. The source
code of the custom kernel is compiled into an object file, which
will then be linked with all other object files from CAMP. We
provide three function interfaces, which enables the linker to
find functions with the same signature in the kernel source
file and then link them to the function calls in CAMP. The
three interfaces are responsible for pre-processing, running
the kernel and post-processing. When run, the CAMP process
creates threads and sets up thread affinity and then calls
these three functions, which are initially executed on a master
thread until encountering parallel regions. For example, in the
dot product kernel implemented in CAMP, we allocate two
vectors and initialise them in the pre-processing phase. Then
in the running phase, the kernel calculates the dot product of
the two vectors. In the post-processing phase the vectors are
deallocated to avoid memory leaks (see Algorithm 1).

Algorithm 1 CAMP custom kernel (pseudocode)

procedure CAMP PREPROCESS
#pragma omp parallel default(none) shared(a, b) {
int tid = omp get thread num();
a[tid] = malloc(size);
b[tid] = malloc(size);
for i in range(1, size) do

a[tid][i] = 1.0;
b[tid][i] = 2.0;

end for
}

end procedure

procedure CAMP KERNEL
#pragma omp parallel default(none) shared(a, b) reduc-

tion(+:sum) {
int tid = omp get thread num();
for i in range(1, size) do

sum += a[tid][i] * b[tid][i];
end for
}

end procedure

procedure CAMP POSTPROCESS
#pragma omp parallel default(none) shared(a, b) {
int tid = omp get thread num();
free(a[tid]);
free(b[tid]);
}

end procedure

The source file name that contains the custom kernel imple-
mentation is specified in the configuration file for the compiler
and linker to use (see Section IV-B). As the dot product kernel
will have fixed operational intensity, the user should specify
a single operational intensity value to run CAMP with that
specific kernel.

IV. EXPERIMENTAL SETUP

A. Hardware and Software

We evaluated the latest version of CAMP on the ARCHER2,
LUMI and NEXTGenIO systems. We summarise the hardware
and software setup in Table I. You can refer to Velten et al. [4]
for a more detailed description of the AMD Rome architecture,
including a discussion of memory latency measurements. We
omit details on the interconnect between the nodes for each
benchmark system as we are focused on intra-node memory
bandwidth measurements.

A node of the UK national supercomputing service
ARCHER2 consists of two 2nd generation AMD EPYC 7742
(Rome) processors [17]. Each processor has 64 cores with
three supported frequency settings (e.g. as provided to the
srun command via --cpu-freq option): 1.5, 2.0 and
2.25 GHz with potential for Turboboost up to 3.4GHz. There
are 8 NUMA regions forming a deep memory hierarchy
as illustrated in Figure 2, each of which is split into two
Core Complex Dies (CCD) which in turn contain two Core
Complexes (CCX). Each CCX consists of 4 cores with
private L1 and L2 caches of 32KB and 512KB, respectively.
The 16MB of L3 cache are shared by the cores in a CCX.
Standard nodes on ARCHER2 have 256 GB DDR4 3200
RAM (ca. 2GB per core) supported by 8 memory channels
per socket organised around a single I/O die. We use the
HPE Cray programming environment (CCE 11.0.4, PrgEnv-
cray) to compile CAMP with OpenMP and optimisations
and vectorisation turned on (-O2 -march=znver2
-Rpass=loop-vectorize -fopenmp -mllvm
-force-vector-interleave=8). The operating
system (OS) is the HPE Cray Linux Environment (based
on SUSE Linux Enterprise Server 15). We use Slurm to
submit jobs and avoid hyperthreading by providing the
--hint=nomultithread option to srun. The jobs are
given exclusive use of the node on ARCHER2.

Fig. 2: Hierarchy of an ARCHER2 node [3]

For LUMI we use a node of the LUMI-C partition, the
CPU-only part of the system. This is equipped with two AMD
EPYC 7763 processors, each with 64 cores, and running at a
base frequency of 2.45 GHz. There is 128 GB of memory per



node, and we utilise the HPE Cray programming environment.
On LUMI, this is the 15.0.0 version of the PrgEnv-cray
environment, leveraging Clang for the C and C++ compilers.
The same compilation flags (omitting -march) and Slurm
configuration as the ARCHER2 experiments are employed
when building and running CAMP on LUMI.

On the NEXTGenIO system, we use a node equipped with
dual Intel Ice Lake (Xeon Gold 6330) processors running at
2 GHz with 256 GB of RAM and 42MB level 3 cache shared
among 28 cores. It offers an interesting point of comparison as
the memory hierarchy is less deep than in the AMD systems,
and the last level cache is shared among a larger number
of cores. The system uses CentOS 7.9 and provides Intel’s
oneAPI compiler suite (version 2023.0.0).

TABLE I: Hardware and Software configurations

ARCHER2 LUMI NEXTGenIO-icx

Hardware
Architecture AMD Rome AMD Milan Intel Ice Lake
Model EPYC 7742 EPYC 7763 Xeon Gold 6330
Cores per node 128 (2x64) 128 (2x64) 56 (2x28)
CPU freq. (GHz) 2.25 2.45 2.00
L1$ (KB) 32 32 48
L2$ (KB) 512 512 1280
L3$ (MB) 16 256 42
RAM (GB) 256 128 256

Software
OS SLES 15 SLES 15 CentOS 7.9
Compiler PrgEnv-cray PrgEnv-cray Intel oneAPI 2023
Python 3.8.5 3.9.13 3.8.5
numpy 1.24.2 1.20.0 1.24.2
pandas 1.5.3 1.3.4 1.5.3
matplotlib 3.7.1 3.7.1 3.7.1

Furthermore, Python 3 is required for running the outer-level
driver script along with the commonly used libraries numpy,
pandas and matplotlib for analysis and visualisation.

B. CAMP Configuration

We extend the original CAMP to use a configuration file
to set compiler flags and specify operational intensity steps,
thread placement and count, data size, number of runs and
memory hierarchy, among other configuration parameters in
a convenient manner as key-value pairs separated by a space.
The most prominent settings are summarised in Table II.

The path to the configuration file is passed as an argument
when running the outer-level CAMP driver script. For a more
detailed example please refer to the code repository. Note that
the FLOPS setting controls the number of times a macro is
applied to increase the innermost operational intensity for a
kernel, and each value in the comma-separated list corresponds
to a run of a set of CAMP measurements based on the number
of threads specified. Also note that the HIERARCHY setting
affects thread placement: for instance omitting sub-NUMA
level on ARCHER2 and only specifying 128,64,16,8
would potentially allow threads inside a CCD to migrate
between cores.

TABLE II: CAMP configuration options

Option Type Function
RESULTS string Results directory
CC string C compiler
CFLAGS string Compiler flags
KERNEL string Kernel file to use (see Section III-B)
FLOPS list of ints Settings for operational intensity
OPENMP_THREADS list of ints Thread counts of interest
MEM long int Array size (number of doubles)
REPEAT int Number of runs for a data point
PATTERN string e.g. contig, stride4, stencil5, random
PLACEMENT string Thread placement e.g. cyclic
HIERARCHY list of ints e.g. 128,64,16,8,4 on ARCHER2
SCALING string strong or weak

C. Methodology

CAMP uses OpenMP’s omp_get_wtime() function to
measure runtime and calculates bandwidth by dividing the
configured data size in bytes by the runtime. Although CAMP
supports the use of hardware performance counters via PAPI,
the relevant data traffic related counters were not available
on some of the systems we were benchmarking, so that this
feature has not been used. If not otherwise stated, we have
performed 10 runs for each data point and report the best value.
For our experiment we are using a strong scaling setup where
the data size is fixed as the number of threads is increased.
We ensure that the data size used is large enough that it
significantly exceeds the cumulative last level cache size on
each system. Threads are pinned to cores in a cyclic fashion,
taking into account the hierarchy configuration to ensure a
sparse distribution. Raw data is retained in a CSV file, allowing
users to perform custom analyses separately. The variation in
our measurements for each experiment was evaluated and is
low enough to not impact any conclusions.

V. RESULTS AND ANALYSIS

In this section we compare the results obtained on our
three experiment systems for the contiguous, strided (with a
stride of four) and 5-cell stencil patterns. We focus on relative
changes in achieved bandwidth as operational intensity and
thread counts are varied, with darker squares indicating higher
bandwidth, whilst light squares indicating reduced bandwidth.
Note that the y-axis is not scaled uniformly for the heatmaps
as we wish to focus on operational intensities below one.

Figure 3 depicts relative bandwidth for contiguous (left col-
umn) and strided (right column) access patterns on ARCHER2
also varying the CPU frequency setting. We observe that
highest bandwidth is achieved when using substantially fewer
threads than cores available, especially for operational intensi-
ties below 0.5. This pattern is consistent and confirms previous
results [3]–[5].

In most cases highest bandwidth is achieved using only
16 out of 128 threads and the bandwidth is higher by 9-
11% on average. Additionally, we notice that increasing CPU
frequency appears to strengthen this effect so that it persists for
somewhat higher operational intensities. This is most strongly
visible in the case of the stencil pattern, where spatial and



(a) Contiguous (1.50 GHz) (b) Stride4 (1.50 GHz)

(c) Contiguous (2.00 GHz) (d) Stride4 (2.00 GHz)

(e) Contiguous (2.25 GHz) (f) Stride4 (2.25 GHz)

Fig. 3: Bandwidth relative to full node (darker is higher)
on ARCHER2 (CPU frequency setting in parentheses) for
Contiguous and Stride4 access patterns

temporal locality is increased through reuse of cells already
in the cache. In the left column of Figure 4 we can see how
the effect is invisible for the lowest CPU frequency setting,
barely visible for the default setting of 2.00 GHz, but appears
more clearly for the fastest setting, although the increase in
bandwidth is modest with 1-2% when using between 80 and
120 threads for operational intensities below 0.4.

The effect may seem less pronounced if the hierarchy
setting is sub-optimal, e.g. by omitting sub-NUMA level from
placement consideration, as shown in Figure 7d for strided
access. The best bandwidth is now mostly achieved using 24-
32 threads, rather than 16, with lower bandwidth increase of
around 6-7% on average as opposed to Figure 3f. Additionally,
we note that as expected the experiments using lower CPU
frequency setting took longer to run and also consumed more
power (data not depicted).

Figure 5 presents absolute bandwidth measured for the
contiguous case with the default CPU frequency setting on
ARCHER2, comparing full node against the best underpopu-
lated value for the given operational intensity. We observe that
the difference is largest for operational intensities below 0.5,
whilst for the intensity of 2.67 the kernel seems no longer-
memory-bound.

(a) Stencil5 (1.50 GHz) (b) Contiguous

(c) Stencil5 (2.00 GHz) (d) Stride4

(e) Stencil5 (2.25 GHz) (f) Stencil5

Fig. 4: Bandwidth relative to full node (darker is higher) for
Stencil5 on ARCHER2 (left column, CPU frequency setting
in parentheses) and various patterns on LUMI (right column)

The right column of Figure 4 presents the bandwidth
achieved on LUMI for the three chosen access patterns. The

Fig. 5: ARCHER2: Best bandwidth value compared with fully
populated (contig; note the y-axis does not include zero for
readability)



underpopulation effect appears stronger than on ARCHER2
with ca. 14% average bandwidth increase when using 16
threads for operational intensities below one for contiguous
and strided access (with a stride of 4). For the 5-cell stencil the
measurements seem more erratic, although best performance
is in line with our expectations. However, the reason for the
patchy mid-range measurements is, as yet, unclear.

Fig. 6: ARCHER2: Energy consumption (contig 2.0GHz)

Figure 6 presents some data on energy consumption for the
contiguous access pattern using the default CPU frequency
setting on ARCHER2. Overall, the energy consumption for
the full node and for the underpopulated case appear relatively
similar. We hypothesise that when only small numbers of
threads are used, Turboboost reaches highest levels for the
best underpopulated runs (i.e. less than or equal to 3 cores
used per CCD) which offsets potential energy savings. It is
also possible that the granularity of results collected here are
insufficient for strong conclusions to be drawn.

Finally, we assess bandwidth on NEXTGenIO as illustrated
in Figure 7. As we expected, the effect is much less pro-
nounced as the Intel Ice Lake architecture is less hierarchical
compared to AMD Rome and Milan. Although we observe
up to 10% improved bandwidth, the improvement happens in
fewer cases and using higher fraction of total of 56 cores:
e.g. with 40 threads for the contiguous access pattern and
operational intensity of around 0.3 and with 32 threads for
the access pattern using stride of 4 for operational intensity
around 0.5. Additionally, it is not clear why the effect appears
weaker for the lowest levels of operational intensity.

VI. CONCLUSION

Using CAMP we provide an assessment of intra-node
memory bandwidth on ARCHER2 (AMD Rome), LUMI
(AMD Milan) and NEXTGenIO (Intel Ice Lake) with focus
on relative bandwidth increases due to underpopulation for
operational intensities in range between zero and two. Our
results confirm and extend previous results [3]–[5] showing
that maximum bandwidth is reached using a fraction of threads
compared to the maximum number of available cores on a

(a) Contiguous) (b) Stride4

(c) Stencil5 (d) ARCHER2: Stride4 w sub-
optimal hierarchy

Fig. 7: Bandwidth relative to full node (darker is higher) for
various patterns on NEXTGenIO Ice Lake node and a Stride4
with sub-optimal hierarchy setting on ARCHER2

node. In particular, for memory access with a stride of four
and for a contiguous access case, we observe up to 11% higher
bandwidth using 16 threads compared to the full node using
128 cores on an ARCHER2 node for operational intensities
below 0.5 and up to 15% on LUMI for operational intensities
below 1. On NEXTGenIO the effect is less pronounced with
up to 10% improved bandwidth but in fewer cases and using
a larger fraction of available cores, as the architecture is less
hierarchical. These results support the view that underpopulat-
ing a node may be of benefit for performance without harming
energy efficiency. By gathering some data on energy con-
sumption we notice that underpopulation does not necessarily
result in reduced energy consumption and additionally using
lower CPU frequencies did not show any benefit for the access
patterns chosen, whilst the underpopulation effect appeared
stronger for higher CPU frequencies. We also emphasise the
subtlety of pinning at sub-NUMA-region level on systems with
deep memory hierarchies, which may be easy to overlook.

In the future, we envision adding GPU support to CAMP to
study heterogeneous systems. Additionally, we would like to
develop a library of kernels, covering various common linear
algebra subroutines and relevant data structures and to apply
CAMP for performance modelling.

ACKNOWLEDGMENTS

This work used the ARCHER2 UK National Supercom-
puting Service (https://www.archer2.ac.uk), the NEXTGe-
nIO system (http://www.nextgenio.eu) and LUMI (https://
www.lumi-supercomputer.eu/). The NEXTGenIO system was
funded by the European Union’s Horizon 2020 Research
and Innovation program under Grant Agreement no. 671951,



and supported by EPCC, The University of Edinburgh. We
acknowledge the EuroHPC Joint Undertaking for awarding
this project access to the EuroHPC supercomputer LUMI,
hosted by CSC (Finland) and the LUMI consortium through
a EuroHPC Regular Access call.

REFERENCES

[1] J. J. Dongarra, “The evolution of mathematical software,” Communica-
tions of the ACM, vol. 65, no. 12, pp. 66–72, 2022.

[2] C. Lameter, “NUMA (Non-Uniform Memory Access): An Overview:
NUMA becomes more common because memory controllers get close
to execution units on microprocessors.” ACM Queue, vol. 11, no. 7, pp.
40–51, 2013.

[3] W. Peng and E. Belikov, “CAMP: a synthetic micro-benchmark for
assessing deep memory hierarchies,” in 2022 IEEE/ACM International
Workshop on Hierarchical Parallelism for Exascale Computing (HiPar).
IEEE, 2022, pp. 28–36.

[4] M. Velten, R. Schöne, T. Ilsche, and D. Hackenberg, “Memory per-
formance of AMD EPYC Rome and Intel Cascade Lake SP server
processors,” in Proceedings of the 2022 ACM/SPEC on International
Conference on Performance Engineering, 2022, pp. 165–175.

[5] S. Saini, J. Baron, J. Chang, R. Hood, and H. Jin, “Performance
evaluation of a supercomputer based on AMD Rome and Intel Cascade
Lake processors,” in 2022 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). IEEE, 2022, pp. 848–
859.

[6] J. D. McCalpin, “Memory bandwidth and machine balance in current
high performance computers,” IEEE Comp. Soc. Technical Committee
on Computer Architecture (TCCA) newsletter, vol. 2, no. 19-25, 1995.

[7] L. Bergstrom, “Measuring NUMA effects with the STREAM bench-
mark,” arXiv preprint arXiv:1103.3225, 2011.

[8] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Communications
of the ACM, vol. 52, no. 4, pp. 65–76, 2009.

[9] N. Johnson, “Adept deliverable D2.3 - updated report on Adept Bench-
marks,” 2015, https://github.com/EPCCed/adept-micro-omp, Last ac-
cessed: 2022-03-25.

[10] Y. J. Lo, S. Williams, B. V. Straalen, T. J. Ligocki, M. J. Cordery,
N. J. Wright, M. W. Hall, and L. Oliker, “Roofline model toolkit: A
practical tool for architectural and program analysis,” in International
Workshop on Performance Modeling, Benchmarking and Simulation of
High Performance Computer Systems. Springer, 2014, pp. 129–148.

[11] C. Staelin, “lmbench: an extensible micro-benchmark suite,” Software:
Practice and Experience, vol. 35, no. 11, pp. 1079–1105, 2005.

[12] J. Treibig, G. Hager, and G. Wellein, “Likwid: A lightweight
performance-oriented tool suite for x86 multicore environments,” in
2010 39th International Conference on Parallel Processing workshops.
IEEE, 2010, pp. 207–216.

[13] G. Juckeland, S. Börner, M. Kluge, S. Kölling, W. E. Nagel, S. Pflüger,
H. Röding, S. Seidl, T. William, and R. Wloch, “BenchIT – performance
measurement and comparison for scientific applications,” in Advances
in Parallel Computing. Elsevier, 2004, vol. 13, pp. 501–508.

[14] R. F. Van der Wijngaart and T. G. Mattson, “The Parallel Research Ker-
nels,” in 2014 IEEE High Performance Extreme Computing Conference
(HPEC). IEEE, 2014, pp. 1–6.

[15] J. R. Hammond and T. G. Mattson, “Evaluating data parallelism in C++
using the Parallel Research Kernels,” in Proceedings of the International
Workshop on OpenCL, 2019, pp. 1–6.

[16] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “PAPI: A portable
interface to hardware performance counters,” in Proc. of the department
of defense HPCMP users group conference, vol. 710. Citeseer, 1999.

[17] D. Suggs, M. Subramony, and D. Bouvier, “The AMD “Zen 2” proces-
sor,” IEEE Micro, vol. 40, no. 2, pp. 45–52, 2020.


