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Abstract—We describe a method for defining, building and
deploying alternative programming environments alongside the
CPE on HPE Cray EX Alps infrastructure at CSCS. This
addresses an important strategic need at CSCS to deliver
tailored environments within our versatile cluster (vCluster)
configuration. We provide compact, testable, optimized software
environments that can be updated independently of the CPE
release cycle. The environments are defined with a descriptive
YAML recipe, which is processed by a novel configuration tool
that builds the software stack using Spack and generates a
SquashFS image. Cray-MPICH is provided through a custom
Spack package without the need for a CPE installation. We
describe the command line tools and Slurm plugin that facilitate
loading environments per user and per job. Through a series of
benchmarks we demonstrate application and micro-benchmark
performance that matches CPE.

Index Terms—CPE, squashfs, slurm, spack

I. INTRODUCTION

CSCS is deploying logically isolated, versatile software-
defined clusters (vClusters) [3] on the HPE Cray EX system
Alps, to provide services to a wider range of user domains,
each with their own software, security, reliability and scaling
requirements. The vClusters can be customized for each target
use case, as an alternative to one large system that offers a
“one size fits all” programming environment, storage and job
scheduler configuration.

CSCS aims to reduce the complexity of the software
installed on each vCluster through tailored user environ-
ments (uenv’s). These environments will provide the smallest
possible set of compilers, libraries and tools optimized for
vCluster’s requirements, node architecture and the Slingshot
11 interconnect. One obvious use case is for single purpose
clusters, e.g., the production cluster of the Swiss weather
service. Alternatively, multiple use-case specific environments
can be provided on general-purpose HPC vClusters, and
loaded according to a user’s individual needs.

This approach is at odds with the widely-adopted method
to provide software on HPE Cray EX systems: installing the
Cray Programming Environment (CPE), and building use-case
specific software not provided by CPE on a shared file system,
as illustrated in Fig. 1 (a). The CPE provides a wide range

of software – compilers, scientific libraries, communication
libraries, debuggers, profiling tools, etc. – all optimised for
the node and network architecture of the system. Furthemore,
Cray continues to evolve and expand the CPE in response to
changing requirements, for example adding software packages
for ML/AI, with quarterly releases to address bugs, improve
performance and add features. Indeed, CSCS currently delivers
such a one-size-fits-all environment, similarly to other HPC
sites, using EasyBuild to provide additional software built and
maintained by CSCS [4].

However, while the CPE is a good general purpose envi-
ronment for users, using it as a layer in HPC software stacks
conflicts with our aim of reducing the complexity of software
stacks. In particular, two issues arise:

• No single use-case or domain will use more than a small
subset of the features provided by the CPE;

• Due to the CPE’s quarterly cycle, the lead time between
identifying an issue and a fix available and tested on site
can be expected to be in the order of 3-6 months;

By striking a balance between long term stability and provid-
ing up-to-date software versions, CPE cannot fully satisfy use
cases that only require either stability or timely fixes.

The work presented in this paper uses Spack and SquashFS
images to build and deploy software stacks on top of a
simplified base image that provides only the necessary vendor-
specific libraries, for example libfabric, as illustrated in Fig. 1
(b). Such a base image changes less frequently than CPE,
reducing the need to rebuild software stacks with each CPE
update and reducing system dependencies that could require
intervention.

The result is compact, testable, reproducible and optimized
software environments based on a descriptive recipe that can
be updated independently of the CPE release cycle.

II. SPACK STACKS

This section introduces a workflow and tooling for building
use-case-specific programming environment (PE) stacks on top
of a base node image with CrayOS and core dependencies such
as libfabric and Slurm, that does not require the CPE.



(a) (b)

Fig. 1: (a): The “standard” HPE-EX software stack, with the Cray OS, drivers, CPE and site-specific software in the
system image, site-provided software installed on a shared file system. User-installed software depends on the software layers
underneath. The red arrows indicate where changes to one layer have a knock on effect on other software layers, requiring
rebuilds or reconfiguration.
(b): The Alps software stack with the programming environment moved out of the base image. Multiple programming
environments can be deployed on top of this architecture. The CPE, and alternative PEs discussed in Section II, are mounted
at runtime in a new mount namespace by users.

The main tool is Stackinator1, which uses Spack [5] to
build a complete PE stack in a directory, which can then be
deployed as SquashFS images or as directories on a shared
file system. Stackinator is an open-source Python application,
that is opinionated for targeting the vClusters on Alps2, in the
sense that it:

• makes design decisions that focus on reproducability and
performance tuning for the target SlingShot 11 network
and node architectures available on Alps;

• provides limited configuration options for compilers – the
tool configures the full compiler specification according
to CSCS best practices;

• and provides limited configuration options for MPI – only
Cray-MPICH is fully supported (with future support for
MPICH and OpenMPI planned) and for which the tool
will configure for Slingshot 11 and accelerator compati-
bility.

The following sections describe the workflow, from recipe
to squashfs-images, and the novel and HPE Cray EX-specific
implementation details.

1https://github.com/eth-cscs/stackinator
2Minimal changes are required to generate stacks for other systems – a

version that generates stacks for AWS Gravitron 3 clusters was created in a
hackathon.

A. Stack Specification

Stackinator generates stacks from a descriptive YAML file
recipe. To explain Spack recipes, we will work with an
example stack for development on Cray EX EX235n nodes
with NVIDIA A100 GPUs and AMD Zen3 Epyc CPUs. The
stack supports development of GPU-aware MPI applications
with both GCC and CUDA, and applications with NVIDIA
HPC SDK using OpenACC. It is a stripped down version of
a software stack that CSCS provides to the Swiss National
Weather Service (MeteoSwiss) on Alps, specifically:

• A GCC 11.3 compiler tool chain.
• An NVHPC 22.7 compiler tool chain.
• A GCC programming environment prgenv-gcc with

CUDA-aware Cray-MPICH, OSU Benchmarks, Open-
BLAS and CUDA 11.8.

• An NVHPC programming environment prgenv-openacc
with CUDA-aware Cray-MPICH, OSU Benchmarks and
CUDA 11.8.

The Stackinator recipe is composed of the following files,
stored in a common path:

• config.yaml specifies where the image will be installed
/ mounted (the CSCS default is /user-environment), the
version of Spack and optional configuration for a Spack
build cache.

https://github.com/eth-cscs/stackinator
https://github.com/eth-cscs/stackinator


name: arbor-dev
store: /user-environment
system: hohgant
spack:

repo: https://github.com/spack/spack.git
commit: releases/v0.19

mirror:
enable: false

Reproducible builds use a release branch / version tag
a specific commit of Spack. A rolling release can be
configured by using the develop branch of Spack, which
will build with the most recent Spack recipes.

• compilers.yaml describes the compiler tool chains that
the stack provides:

bootstrap:
spec: gcc@11

gcc:
specs:
- gcc@11.3

llvm:
requires: gcc@11.3
specs:
- nvhpc@22.7

The bootstrap version of GCC built using the system
compiler (GCC 7.5 at the time of writing) is not provided
as a module or part of the Spack upstream presented to
users, instead it is used to build the subsequent GCC com-
piler toolchains. This step is required to ensure that GCC
is built using a compiler that can generate instructions
optimised for the target Zen2 and Zen3 micro-architecture
CPUs. It is also mandatory to specify at least one version
of GCC, in this case GCC 11.3, which is the highest
version compatible with CUDA 11. The LLVM tool
chains are optional, with support for installing multiple
versions of the NVIDIA HPC-SDK and LLVM/Clang.

• environment.yaml describes the software packages:

prgenv-gcc:
compiler:

- toolchain: gcc
spec: gcc@11

unify: true
mpi:

spec: cray-mpich@8.1.18.4
gpu: cuda

specs:
- cuda@11.8
- osu-micro-benchmarks@5.9
- openblas@0.3.21
variants:
- cuda_arch=80
- +mpi
- +cuda

prgenv-openacc:
compiler:

- toolchain: gcc
spec: gcc@11

- toolchain: llvm
spec: nvhpc

unify: true
mpi:

spec: cray-mpich@8.1.18.4
gpu: cuda

specs:
- osu-micro-benchmarks@5.9%nvhpc
- cuda@11.8%gcc

variants:
- cuda_arch=80
- +mpi
- +cuda

The software packages are configured as environments,
each built using the compiler tool chains built previously,
and configured with a (optional) single implementation
of Cray-MPICH, that can optionally be configured for
CUDA or ROCM support.

• packages.yaml and modules.yaml make Spack use pack-
ages installed on the system and generate modules files,
respectively. These follow the YAML specifications for
the Spack configuration files with the same names.

• repo is an optional path containing a Spack repository3,
for overriding Spack’s implementations or providing sup-
port for new packages.

Under the hood, the software in the stack is built in a set
of Spack environments. For the example stack, there are five
environments, illustrated in Fig. 2.

bootstrap

gcc llvm

prgenv-gcc prgenv-openacc

gcc@11%gcc@7.5

gcc@11%gcc@11

gcc@11%gcc@11 gcc@11%gcc@11 nvhpc@22.7%gcc@11

Fig. 2: The dependency graph for the Spack environments that
are generated internally by Stackinator to build the example
Spack stack. The blue boxes are environments used to build
and provide compiler toolchains, and the green boxes show the
software environments that are built using the compilers. The
red boxes show the compiler toolchain that is used to build
the downstream packages.
The bootstrap compiler is built first using the system GCC
7.5, followed by the gcc tool chain, then the llvm tool chain
which requires GCC 11. Finally two environments are built:
prgenv-gcc with GCC 11, and prgenv-openacc which contains
packages built with both GCC 11 and NVHPC 22.7.

The Spack stack requires external packages installed on the
base node image, that implement architecture-specific features
and support, and can vary between vClusters and over time.
For example, the location of libfabric moves every time the
installed version of libfabric is upgraded. A set of “cluster
configurations” for each of the vClusters on Alps is maintained
separately from the recipes in the Stackinator tool:

• A Spack compilers.yaml file that specifies the default
GCC compiler tool chain on the vCluster (GCC 7.5 at

3https://spack.readthedocs.io/en/latest/repositories.html

https://spack.readthedocs.io/en/latest/repositories.html
https://spack.readthedocs.io/en/latest/repositories.html


the time of writing), used to bootstrap the Spack stack
build.

• A Spack packages.yaml file that specifies externally
installed software packages that Spack should never build,
including:

– libfabric: the libfabric library installed in /opt/

cray/libfabric/ with CXI provider.
– slurm: vClusters can have different versions of Slurm

installed: at the time of writing versions 20.11.9 and
22.05.2 are used.

– xpmemm and rdma-core: required by some communi-
cation libraries.

B. Stack Configuration
Stackinator follows the familiar configure-build-install

workflow used to install software. It provides a CLI tool stack-
config, that takes a generic recipe that can be built on any
(vCluster, mount point) combination, and generates a build
path that contains a Makefile, Spack environment descriptions,
and a copy of Spack used to build the stack.

If the recipe that describes the example environment
in Fig. 2 is in the path ∼/recipes/nvidia, the following stack-
config command can be used to generate a build configuration:
> stack-config -r ∼/recipes/nvidia \

-b /dev/shm/nvidia-build \
-s hohgant

where the generated build path is in /dev/shm/nvidia-build

and the build is configured for the vCluster Hohgant. A
simplified version of the generated build directory structure
is illustrated in Fig. 3.

The environment is built using the top-level Makefile, which
executes the following steps:

1) (optional) Configure the build cache
2) Call compilers/Makefile:

a) Concretize bootstrap.
b) Build bootstrap.
c) Concretize GCC.
d) Build GCC.
e) Concretize LLVM (NVHPC).
f) Build LLVM (NVHPC).

3) Call environments/Makefile:
a) Concretize prgenv-gcc and prgenv-openacc concur-

rently
b) Build prgenv-gcc and prgenv-openaccconcurrently

4) Generate store/config.
5) (optional) generate store/modules.
6) Generate SquashFS image of store.
The compilers.yaml, packages.yaml and Makefile for

each of the Spack environments are generated in the Makefile
using Spack. The commands used generate the respective files
required to build the ”prgenv-gcc” are summarised:

• prgenv-gcc/compilers.yaml:
> gcc_prefix= spack -e ../compilers/gcc \

find --format ’{prefix}’ gcc@11
> spack compiler find --scope=user \

$(compiler_bin_dirs $gcc_prefix)

/dev/shm/nvidia-build

Makefile

spack

compilers

Makefile

bootstrap

spack.yaml

compilers.yaml

packages.yaml

Makefile

gcc

spack.yaml

llvm

spack.yaml

environments

Makefile

prgenv-gcc

spack.yaml

prgenv-openacc

spack.yaml

store

Fig. 3: Structure of the build path generated by the Stackinator
tool. The files marked in blue are generated by Spack during
the build process in each of the five environment paths, and
are only shown in the bootstrap path for brevity.

Where the function compiler_bin_dirs is a function that
returns bin path of the compiler, omitted for brevity.

• prgenv-gcc/packages.yaml:

> spack external find --not-buildable --scope=
user perl diffutils gettext

• prgenv-gcc/Makefile:

> spack -e prgenv-gcc/ concretize -f
> spack -e prgenv-gcc/ env depfile \

-o prgenv-gcc/Makefile

First, the environment is concretized (Spack generates
the full set of packages and their dependencies for the
environment), then a Makefile that facilitates building
packages in parallel is generated.

C. Building a Stack

Make is run with an empty environment to improve repro-
ducibility by eliminating the effect of environment variables
on the build:

> cd /dev/shm/nvidia-build
> env --ignore-environment \

PATH=/usr/bin:/bin:‘pwd‘/spack/bin \
make store.squashfs -j32

Two artifacts are generated by the build:
• store: a path contains the full software stack, ready to

be copied to its final location.
• store.squashfs: the path compressed in a SquashFS

image, which can be mounted at the mount point.



How CSCS uses SquashFS to provide the user-environments
to users is covered in Section III.

The build process uses the Bubblewrap4 tool when running
all spack commands to mount the following locations:

• /dev/shm/nvidia-build/store is mounted at the final
location for the Spack stack. Thus the stack is built in a
location where the user has write permissions, and allows
faster in-memory builds (see Section II-E).

• /dev/null is mounted at HOME to improve reproducibil-
ity by ignoring any Spack configuration in HOME.

• /dev/shm/nvidia-build/tmp is mounted at /tmp to re-
tain all Spack logs.

D. MPI

Open source MPI distributions – namely OpenMPI, MVA-
PICH2 and MPICH – are actively developing support for
Slingshot 11 with libfabric. However, at the time of writing
the only MPI with robust Slingshot 11 support is the Cray-
MPICH bundled with the CPE, for which source code is not
available.

One of the objectives of this work is to provide software
stacks without installing CPE. In order to provide Cray-
MPICH, we develop a process for repackaging the compiler
wrappers, library, headers and dependencies like PMI that can
be installed as a Spack binary package.
Step 1: extract and repackage RPMs

The first step is to create a single directory tree that contains
only the required files by extracting them from different RPMs
in the CPE distribution downloaded from HPE as illustrated
in Fig. 4.

For example, the cray-mpich 8.1.24 packages contains files
cherry-picked from the following RPMS in the distribution in
CPE 23.3:

1) cray-mpich-8.1.24-gnu91 for GCC and cray-mpich

-8.1.24-nvidia207 for NVHPC.
2) cray-mpich-8.1.18-gtl

• The GTL (GPU Transport Layer) libraries that im-
plement GPU-aware communication for NVIDIA
and AMD GPUs.

3) cray-pmi-6.1.9

4) cray-pmi-devel-6.1.9

Note that the specific set of RPMs can change from release to
release, so the process of extracting the files from RPMs has
not been automated. It takes a developer an hour to perform
the packaging by hand for each new CPE release.

Separate GCC and NVHPC binary distributions are created
because It is not possible to provide a single binary distribution
of each cray-mpich version for all compilers, because the
Fortran modules in the include path are compiler specific.
Step 2: Patch MPI wrappers

As opposed to the CPE, which provides the CC, cc and
ftn binary compiler wrappers, the Spack package uses the
MPI compiler wrapper scripts mpicc, mpicxx and mpifort that

4https://github.com/containers/bubblewrap

/

bin

cray_spawn_server

mpic++ -> mpicxx

mpicc

mpichversion

mpicxx

mpif77 -> mpifort

mpif90 -> mpifort

mpifort

include

cray_version.h

mpi*.mod

mpi*.h

pmi*.h

pmi2.h

pmpi_f08.mod

lib

libfmpich.so

libmpi.[so,a]

libmpichf90.[so,a]

libmpich.[so,a]

libmpifort.[so,a]

libmpifort_gnu_91.[so,a]

libmpi_gnu_91.[so,a]

libmpi_gtl_cuda.[so,a]

libmpi_gtl_hsa.[so,a]

libmpl.so

libopa.so

libpmi2.[so,a]

libpmi.[so,a]

libtvmpich.[so,a]

Fig. 4: The directory containing cray-mpich and its dependen-
cies. Note that for brevity symlinked library files are removed,
and wildcards are used to describe headers.

are normally installed in locations like /opt/cray/pe/mpich

/8.1.24/ofi/gnu/9.1/bin.
By default, these wrappers use environment variables set

by CPE modules to select the compiler and link architecture-
specific libraries. We modify each of the wrappers by pa-
rameterizing them on three parameters – @CC@, @@PREFIX@@

and @@GTL_LIBRARY@@ – that are set by Spack when they are
installed:

• hard code the full path to the wrapped compiler;
• set paths prefix, includedir, to the cray-mpich Spack

installation path;
• explicitly link -lmpi_gtl_cuda -lmpi_gtl_hsa when

Cray-MPICH is built with the +cuda or +rocm variants
respectively.

– this fixes the common runtime error
“MPIDI CRAY init: GPU SUPPORT ENABLED”
is requested, but GTL library is not linked.

https://github.com/containers/bubblewrap
https://github.com/containers/bubblewrap


Step 3: Create a Spack package
The repackaged Cray-MPICH tar balls are stored in a JFrog

Artifactory5 – a self-hosted artifact store accessible only on the
CSCS network that can only be accessed on CSCS systems.
A custom Spack package that installs cray-mpich from the tar
balls is distributed with Stackinator6, but can only be run on
Alps due to this restriction. To use this process at another site,
one would have to create the tar balls, and update the Spack
package accordingly.

E. Efficient Stack Builds

Using Spack to build a full software stack – with multiple
compilers, libraries and tools – is time and resource consum-
ing. A simple stack based on GCC that provides Python, Cray-
MPICH and CUDA, will take in the order of half an hour to
build, and environments for the ROCM GPU stack take over
two hours to build from scratch on a 64-core Epyc CPU.

It is important to reduce build times where possible, so
that maintainers of stacks can iterate and test combinations
of packages, and for timely execution of CI/CD pipelines
for deploying stacks. This section will document the three
strategies that Stackinator uses to achieve this.
Parallelise the build

As illustrated in Fig. 2, building a Spack stack involves
building a Spack environments with a DAG of dependencies
dictating the order of environment concretization/installation.
In turn, installing an environment builds individual packages,
which have their own DAG of dependencies.

The Makefiles generated by the Stackinator define the de-
pendencies between environments – facilitating the concurrent
concretization and installation of independent environments.
The Makefile used to build each environment is generated
using the dependency file generation feature of Spack, which
can build multiple packages in parallel. A single jobserver is
used to parallelise the concurrent environment and package
builds.
Perform builds in memory

The Stackinator tool supports building software stacks for
installation at mount points where the build process does not
have write permissions. For example, on Alps the default
mount point is /user-environment, which is read-only. The
software stack that is to be installed at /user-environment

is built in the store subdirectory of the build path, where
the builder has write permissions. The built process uses
Bubblewrap to mount the store path at /user-environment

for all calls to Spack. In this way, all software is built “in
place” and no relocation is required.

Build times can be signficantly reduced by creating the
build path in memory, for example in /dev/shm/build, so
that all of the dependencies are built and stored in memory,
instead of on a slower shared file system. All of the Cray EX
nodes on Alps have 512 GB of memory, which is sufficient
for building software stacks, though it is important that the

5https://jfrog.com/artifactory/
6See stackinator/repos in the repository https://github.com/eth-cscs/

stackinator.

memory is cleaned up, preferably via an automated policy. See
Section IV-A for a comparison between building in memory
and on a shared filesystem.
Cache previously built packages

The most effective way to reduce build times is to not
rebuild previously built packages. Spack provides build caches,
which facilitate pushing and pulling pre-built packages to
S3 buckets or a file system. Stackinator recipes can include
optional mirrors.yaml file and a private key, to enable build
caches. Providing the location of a build cache with mirrors

.yaml will enable pulling packages from the cache, and if a
key is provided Stackinator will also push all packages to the
build cache as they are built.

III. DEPLOYMENT

A. SquashFS artifacts

Software stacks can be deployed by copying them to a path
on a shared file system, for example if the site-policy is to
install /apps/stacks/<env-name>, the process for building a
climate software stack climate-23.3 would be:

1) Configure the build with stack-config with mount
point /apps/stacks/climate-23.3, and build in /dev

/shm/build/climate-23.3, to reduce the build time
compared to building in place on the shared file system.

2) Once built, copy /dev/shm/build/climate-23.3/store

/* to /apps/stacks/climate-23.3.
Installing software stacks in shared file systems has some

downsides, namely:
• The user-experience is affected by file system perfor-

mance – configuration and compilation access many
small files which are not well-suited to GPFS and LUS-
TRE.

• High storage overheads – for example, a software stack
with CUDA and NVHPC SDK requires at least 30 GB
uncompressed.

• Upgrading the version of a stack by installing it in a new
path requires changing that path in all downstream user
scripts and workflows.

• Users will combine software from different stacks, often
by accident, leading to difficult to debug linking and
runtime bugs.

To address these issues, CSCS deploys the software stacks
as compressed SquashFS images of the directory containing
the software, Spack configuration, modules and meta-data.
Squashfs is an efficient and compressed read-only file system
that offers is well-suited for distributing software stacks, for
the following reasons:

• SquashFS supports both compression and deduplication,
resulting in significantly reduced storage requirements.
The software stack for Meteo Swiss requires 34 GB
uncompressed, and 13 GB as a compressed SquashFS
image.

• Each stack is a single compressed file that includes
an entire software stack, making it easy to manage in
DevOps pipelines and archives:

https://jfrog.com/artifactory/
https://jfrog.com/artifactory/
https://spack.readthedocs.io/en/latest/environments.html#generating-depfiles-from-environments
https://jfrog.com/artifactory/
https://github.com/eth-cscs/stackinator
https://github.com/eth-cscs/stackinator
https://spack.readthedocs.io/en/latest/binary_caches.html


– each CI/CD pipeline generates a single binary arti-
fact;

– programming environments can be versioned and
archived as binary artifacts;

– new stacks can be tested transparently by mounting
a pre-release stack at a common mount point.

• Users can mount stacks on command using command line
utilities or Slurm plugins. Only one stack is mounted at a
time – reducing confusion about which software is being
used in a workflow. Multiple users on the same login
or compute nodes can mount different software stacks
without side-effects on other user’s environments.

• Consistent and reproducable performance for workloads
that access many small files by virtue of the whole stack
being stored in a single file and file-system caching.

B. CLI Utilities

Non-privileged users are able to mount SquashFS images
at runtime using the squashfs-mount command line utility,
which is a small setuid executable that creates a new mount
namespace, mounts the SquashFS file through libmount, drops
privileges and executes a given command. This procedure is
very similar to SquashFS-based HPC container runtimes such
as Apptainer and Sarus.

For example,

squashfs-mount image.squashfs /user-environment bash

starts a bash shell in which image.squashfs is mounted at
/user-environment. Thanks to mount namespaces, the mount
is not visible to other processes or users.

The utility is open source, available on GitHub and includes
RPMs for installation on Cray EX.

C. Slurm Integration

For a software stack to be available when a job runs,
the stack must be mounted in the namespace of the process
executing the submission script and any commands launched
on other compute nodes. To accomplish this we developed
a Slurm plugin that mounts a software stack based upon
the same namespace mechanism used by the command line
utilities discussed earlier. As the mount point is not globally
visible, nodes can run multiple jobs with different stacks,
either from the same user or different users. Crucially, only one
image is mounted per node not per parallel task. Clean up of
the mount point and software stack is performed automatically
once the parent process terminates. The plugin is publicly
available on GitHub7.

The plugin is designed to be as transparent to a user’s
workflow as possible. This reduces work for users and system
administrators, as the plugin and SquashFS-based software
stack concept can easily be integrated into existing systems
and workflows. In particular, the plugin works with squashfs-

mount to detect which software stacks (and their mount points)
are active. These are taken as default values to the plugin

7https://github.com/eth-cscs/slurm-uenv-mount

which will make them available on the compute nodes. A dif-
ferent stack can be specified as a command-line option to any
of the Slurm submission commands (e.g., sbatch or srun). This
flexibility ensures consistency between the login environment
and the execution environment, while also allowing the user
to use different stacks within a script.

The plugin is written in C++ using the SPANK API for
Slurm plugins. Root-level access is required to mount the
SquashFS image, which means the namespace creation and
mounting code is located in the API function that Slurm
runs in privileged mode. Installation also requires system-
administrator privileges. Typically, this means adding the path
of the plugin library directly to the Slurm plugin configura-
tion file /etc/slurm/plugstack.conf or in a plugin-specific
configuration file under /etc/slurm/plugstack.conf.d/.

In the following example the user is on the login node,
mounts a user environment using squashfs-mount, and starts
a bash shell. This environment provides gcc under /user-

environments/bin. The user can access this version of gcc

when running on a compute node via srun because the
Slurm plugin will recognize the mounted user environment
and provide it on the compute node as well.
$ squashfs-mount compilers.sqfs /user-environment

bash
$ srun /user-environment/bin/gcc test.c

The next example demonstrates using different environ-
ments throughout a Slurm submission script. When the script
executes the plugin will have already mounted the user envi-
ronment (debuggers.sqfs) mounted at the time the job was sub-
mitted. The first command runs a bash script with a different
user environment (compilers.sqfs) mounted to compile a test
program. This test program is run through the debugger found
in the original user environment. The subsequent commands
show an alternative procedure where the compiler environment
is specified directly to srun to compile the test program. Then
the debugger is again run, this time via srun.
$ squashfs-mount debuggers.sqfs /user-environment

bash
$ sbatch test.job
$ cat test.job
#!/bin/bash
#SBATCH -J test_job
#SBATCH -t 10:00:00

squashfs-mount compilers.sqfs /user-environment bash
<<EOF

srun /user-environments/bin/gcc test.c
EOF

/user-environment/bin/gdb -ex run a.out

srun --uenv-file=compilers.sqfs /user-environments/
bin/gcc test.c

srun /user-environment/bin/gdb -ex run a.out

D. CI/CD

A CI/CD pipeline is under development for the Spack-stacks
provided by CSCS to the users of vClusters on Alps. Each
software stack is maintained as a Stackinator recipe in a public

https://github.com/eth-cscs/squashfs-mount


GitHub repository8. The recipes are publicly available, so that
user-groups can use them as the basis for building their own
software stacks.

CSCS has a CI/CD service, that can be configured to
respond to web hooks from a GitHub repository9. When an
authorized user requests that the pipeline for a recipe be run
from pull request (PR) on the GitHub recipe repository, a
webhook alerts the CSCS CI/CD service. Each CI/CD job
provides a tuple (Node-type, Cluster), where node-type is
currently one of A100, Mi200, Zen2 or Zen3. The service
launches a build task on the target node type, using the
configuration for the target cluster (that configures Spack to
use the system compiler, libfabric, Slurm, etc).

The build stage performs the following steps:
• Download and install Stackinator.
• Configure the recipe to use a common build-cache for all

CI/CD pipelines.
• Run Stackinator stack-config to configure a build path

in /dev/shm.
• Build the stack in parallel.
• Push the squashfs image to a job-specific path in the

CSCS JFrog10 artifactory.
Development of the CI/CD pipeline for images is on-going,

with the following stages under development for release in Q3
2023:

• test stage: ReFrame11 [6] inspects the uenv metadata
listing the features offered by each programming en-
vironment. It then launches a list of checks to ensure
that the provided features are working correctly and the
performance is optimal.

• deploy stage: deploy the image to a production artifactory
where it can be accessed by users with a simple CLI
interface.

IV. RESULTS AND PERFORMANCE

A. Efficient Deployment

This benchmark tests the impact of optimisations to reduce
build time of spack stacks described in Section II-E, namely
building in memory and caching previously-built packages.

For this demonstration, we built a software stack that has
all of the dependencies required to develop Arbor [1], [2], a
Neuroscience application written in C++ and Python. Arbor
has a extensive list of dependencies, including C++ libraries,
Python and Python packages.

We time the time taken to run make on a clean build,
which includes the time taken to bootstrap Spack, concretise
and build all of the packages and generate the compressed
SquashFS image in four different scenarios:

• scratch: Build on an HPE Cray ClusterStor E1000
Scratch file system.

• memory: Build in /dev/shm, i.e. in memory.

8https://github.com/eth-cscs/alps-spack-stacks
9https://gitlab.com/cscs-ci/ci-testing/containerised ci doc
10https://jfrog.com/artifactory
11https://github.com/reframe-hpc/reframe

• cache: Build in /dev/shm using a Spack build cache that
has all of the packages

• partial: Build in /dev/shm using a Spack build cache
where the version of Python in the recipe is changed to
a version that is not in the cache.

Scenario 2 quantifies the effect of building in memory, and
scenarios 3 and 4 illustrate the additional benefits of using
build caches.
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Fig. 5: Reduction in time to build a complete Spack stack when
building in memory and using Spack build caches compared
with building on the scratch filesystem.

Fig. 5 shows that building the image on Scratch takes 45
minutes, which is reduced to 26 minutes when building in
memory – a significant 1.7× reduction in build time. Less
than 3 minutes are required when all packages are available
in a build cache, and less than 10 minutes to build the full
stack when the version of Python in the recipe changed, which
required rebuilding over 30 packages, including Python, py-
numpy and py-mpi4py, which are non-trivial to build.

The partial reflects the most common scenario, because
the typical CI/CD and image development process requires
rebuilding an image with small changes, so that only some of
the packages need to be rebuilt between runs. Furthermore,
the bootstrap and compiler toolchains are typically identical
between different images – e.g., once GCC 11.3.0 has been
built for one stack, it can be reused without change in another.

B. Developer Productivity

We now test whether using compilers and libraries installed
via SquashFS has any impact on the time taken to configure
applications on the command line, which has a direct impact
on developer productivity. In these tests we will use the Arbor
programming environment used in the previous tests – where
the environment is installed in three different ways:

1) squashfs: a SquashFS image mounted at /user-

environment.
2) scratch: installed on the Scratch file system.

https://github.com/eth-cscs/alps-spack-stacks
https://gitlab.com/cscs-ci/ci-testing/containerised_ci_doc
https://jfrog.com/artifactory
https://github.com/reframe-hpc/reframe


3) memory: stored in /dev/shm and mounted at /user-

environment with Bubblewrap.
First, we look at the time required to compile a single “hello

world” C and C++ files using the GNU compiler provided by
the stack:
hello.c:
#include <stdio.h>
int main(void) {

printf("hello world\n");
return 0;

}

hello.cpp:
#include <iostream>
int main(void) {

std::cout << "hello world\n";
return 0;

}

As illustrated in Table I, the compilation times are within
1% when the compiler toolchain is in memory or mounted via
SquashFS, and between 4-11% slower when the toolchain is
installed on the Scratch filesystem.

squashfs scratch memory
C 31.1 34.7 (+11%) 31.2 (< 1%)
C++ 266 276 (+3.8%) 264 (< 1%)

TABLE I: The time taken (in ms) to compile simple hello
world C and C++ files using the programming stack installed
in different locations.

A more involved example is to build Arbor using the stack
developed above. This is broken into two steps:

1) configure: run CMake to configure a build with MPI
and Python enabled, and use generated build files
for Ninja: CC=mpicc CXX=mpic++ cmake ../arbor -

DARB_WITH_MPI=on -DARB_WITH_PYTHON=on -G Ninja.
2) build: run Ninja to build Arbor.
To isolate the file system overheads of accessing the stack,

the Arbor source code and build path are in /dev/shm. The
results in Table II show that the SquashFS mount and in
memory are equivalent, which there is a performance penalty
of between 8-23% on Scratch.

squashfs scratch memory
configure 2.52 3.09 (+23%) 2.53 (< 1%)
build 33.9 36.7 (+8%) 33.8 (< 1%)

TABLE II: The time taken (in s) to configure and build Arbor.

We note the tests in this section were run when the file
system was not in heavy use, and smaller differences were
observed when tested on a flash-based Lustre store – so while
significant, the performance benefits of using SquashFS over
LUSTRE reported here might not justify using SquashFS.
However, in our experience performance of workloads that
access many files in a SquashFS stack is very consistent, re-
gardless of load on the system, and when the SquashFS image
itself is stored in Scratch. On the other hand, compilation and

configuration times vary greatly for software stacks installed
on Lustre or GPFS filesystems – when the file system is
under heavy load compilation can be much slower. As such,
SquashFS is both faster and more consistent and predictable
than installing software on shared file systems, improving the
quality of the user experience on our systems.

C. Benchmarks and Applications

In this section we present benchmarks compiled with CPE
and Spack stacks on the same system, everything else being
equal. The purpose of the benchmarks is not to compare the
performance of node types, or evaluate the efficiency of the
benchmarks, instead the objective is to demonstrate equivalent
performance of the benchmarks when built using the CPE
software stack and spack-stacks. All of the benchmarks use
Cray-MPICH, in order to understand whether repackaging
Cray-MPICH for installation with Spack has any impact on
performance.
MicroBenchmark: OSU

Selected OSU microbenchmarks12 were run on the vCluster
Clariden, which has nodes with 4 NVIDIA A100 GPUs, a
single socket AMD Zen3 Milan CPU, and 4 Slingshot 11
NICs. The following three selected benchmarks run in both
host-host and device-device configurations:

• osu bw: Point to Point bandwidth test. The benchmark
was run between two ranks on different nodes.

• osu latency: Point to Point latency test. The benchmark
was run between two ranks on different nodes.

• osu alltoall: All to all latency test. The benchmark was
run between 16 ranks on 4 nodes, with one GPU per rank
when running device-device tests.

The following wrapper script was used to launch all of the
jobs (note that the GPU flags will have no impact on the CPU-
only runs).
export LOCAL_RANK=$SLURM_LOCALID
export GLOBAL_RANK=$SLURM_PROCID

export GPUS=(3 2 1 0)
export NUMA_NODE=$LOCAL_RANK
export CUDA_VISIBLE_DEVICES=${GPUS[$NUMA_NODE]}

export MPICH_GPU_SUPPORT_ENABLED=1

numactl --cpunodebind=$NUMA_NODE \
--membind=$NUMA_NODE \
$exe

The wrapper script ensures optimal affinity of GPUs with
NUMA regions, and we let Cray-MPICH select the NIC in
each case – when using both CPE and Spack stacks the same
NIC was assigned.

The versions of compilers and tools did not match exactly:

CPE Spack Stack
osu-benchmark 5.9 5.9
cray-mpich 8.1.21 8.1.24
gcc 11.2 11.3
cuda 11.6 11.8

12https://mvapich.cse.ohio-state.edu/benchmarks/

https://mvapich.cse.ohio-state.edu/benchmarks/
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Fig. 6: OSU benchmark results comparing cray-mpich performance when built using CPE and spack-stacks (uenv) for host-host
(cpu) and device-device (gpu) configurations.
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The most recent version of CPE installed on the system
was v22.12, and the stack was built using the version of cray-
mpich in v23.3. However, earlier benchmarks and tests using
other versions of cray-mpich from CPE and Spack stacks gave
the same results.

The OSU benchmark results, plotted in Fig. 6, illustrate
that there is no discernable benefit either way of using cray-
mpich from CPE or installed via Spack for the point-to-point
bandwidth and latency results. For the all-to-all collective there
were more significant relative differences for messages under
32K in size, as illustrated in Fig. 7:

• messages (≤ 256 bytes): CPE had higher latency for host-
memory, and Spack stacks had consistently higher latency
on the GPU.

• messages (512–16k bytes): Spack stacks had between 5-
20% higher latency.

More testing where we pin down the exact same version
of cray-mpich and other dependencies would be required to
understand whether the difference is caused by how cray-
mpich is installed in Spack stacks.
Application Benchmark: GROMACS

A strong-scaling GROMACS benchmark was performed
using the same version of GROMACS built using the CPE and
a Spack-stack. GROMACS13 is free and open-source software
suite for high-performance molecular dynamics and output
analysis. The GROMACS version used is 2021.5 in single
precision, while the versions of compiler and cray-mpich did
not match exactly between the CPE and spack-stack:

CPE Spack Stack
gromacs 2021.5 2021.5
fftw 3.3.10 3.3.10
openblas 0.3.21 0.3.21
cray-mpich 8.1.21 8.1.24
gcc 11.2 11.3

13https://www.gromacs.org/

Note that when using CPE FFTW and OpenBLAS were built
using Spack instead of using the cray-fftw and cray-libsci
modules from CPE in order to isolate the impact of cray-
mpich.

The simulations were run on nodes with a single socket
AMD Zen3 Milan CPU, and 4 Slingshot 11 NICs. For the
strong scaling benchmarks, a 1.4-million atom system (a pair
of hEGFR Dimers of 1IVO and 1NQL) is used, included in
the HECBioSim benchmarks suite14. The number of MPI tasks
per node was kept constant at 64 with one OpenMP thread per
rank, and the number of nodes was scaled from 1 to 12.

The benchmark strong scales well, as shown in Fig. 8, with
a difference of 1%-1.5% between the CPE and the Spack-stack
with no clear advantage between the two.
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Fig. 8: GROMACS strong scaling measured in ns/day (higher
is better) when built using spack stacks and CPE.

14https://www.hecbiosim.ac.uk/access-hpc/benchmarks
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Application Benchmark: SPH-EXA
The SPH-EXA15 project is a multidisciplinary effort that

looks to scale the Smoothed Particle Hydrodynamics (SPH)
method to enable exascale hydrodynamics simulations for the
fields of Cosmology and Astrophysics. This section focuses
on comparing the behavior of the code built with and without
the Stackinator tool. For this, we built two Stackinator stacks:
one for CUDA and one for ROCM. The compiler and libraries
included in these images were based on cray-mpich/8.1.21,
in addition to gcc/11.x and cuda/11.8 or hip/5.2 for the
CUDA and ROCM stacks respectively. Next, the stacks were
mounted to access the compiler and libraries for building our
MPI+OpenMP+CUDA and MPI+OpenMP+HIP versions of
the code. Finally, we executed the executables and compared
the results with those of the same code built with the Cray
Programming Environment (CPE). The primary focus in this
context is the runtime behavior of the code rather than the
performance of the code itself.

Fig. 9 shows the performance obtained for the codes ex-
ecuting the Sedov–Taylor16 blast wave explosion test case
with 4003 particles per gpu and 40 time-steps, and for the
MPI+OpenMP CPU-only version of the code with 4833 par-
ticles per compute node.

The results show that the squashfs-based executables deliver
competitive performance with that of the CPE based executa-
bles on both GPU architectures and multicore: the Spack-stack
was between 4-10% faster on A100 GPUs, between 0-4%
slower on AMD GPU and the CPU results are within 2%.

D. Analysis Tools

1) Debugging tools: This section focuses on showing the
usage of the Forge DDT debugger in a user-environment.

Forge DDT can be launched using Express Launch (ddt
srun myexe), Reverse Connect (ddt --connect srun myexe

) or Offline mode (ddt --offline srun myexe). Express
Launch requires a good X11 connection hence it is recom-
mended to use the Reverse Connect method, which uses the
Remote Client to debug remote jobs while running the user
interface on a local machine. In addition, Forge DDT can
be configured to integrate with queuing systems, allowing for
the submission of jobs directly from the user interface. The
debugger can also open and debug one or more core files after
an application terminates or attach to running programs.

In a classic workflow, users build a debug version of their
code with the -g and -G compilation flags and submit a job
with the sbatch slurm command. For example, the native.

slurm script:

#!/bin/bash
#SBATCH --ntasks=8
#SBATCH --ntasks-per-node=4
#SBATCH --cpus-per-task=16
#SBATCH --threads-per-core=1
#SBATCH --output=job.out
#SBATCH --error=job.err
#SBATCH --time=0:15:0

15https://github.com/unibas-dmi-hpc/SPH-EXA
16https://doi.org/10.48550/arxiv.2202.02840
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Fig. 10: Debugging SPH-EXA with Forge DDT.

#SBATCH --partition=nvgpu
#
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
module load cray/22.11
module swap PrgEnv-cray PrgEnv-gnu
module swap gcc/11.2.0 CUDAcore/11.8.0
#
ddt --connect \
srun --cpus-per-task=16 \
--cpu-bind=verbose,none ./cuda_visible_devices.sh \
./native.exe

will load the Cray Programming Environment (CPE) and
launch the debugger with the ddt --connect command. As
the job starts, the users can use the remote client installed on
their local machine to debug the code.

When running in a user-environment, it is required to
manually launch the debugger. For example, the uenv.slurm

script:

#!/bin/bash
#SBATCH --ntasks=8
#SBATCH --ntasks-per-node=4
#SBATCH --cpus-per-task=16
#SBATCH --threads-per-core=1
#SBATCH --output=job.out
#SBATCH --error=job.err
#SBATCH --time=0:15:0
#SBATCH --partition=nvgpu
#SBATCH --uenv-file=forge2213.squashfs
#SBATCH --uenv-mount=/user-environment
#

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
# export ALLINEA_SET_SYSROOT="/"
module use /user-environment/modules
module load arm-forge cray-mpich cuda gcc
#
srun --cpus-per-task=16 \
--cpu-bind=verbose,none ./cuda_visible_devices.sh \
forge-client ./uenv.exe

will mount the uenv-file, load the User Environment and
launch the debugger with the forge-client command. Sim-
ilarly to the previous case, users can debug the code when
the job starts. Fig. 10 shows the Forge DDT remote client
connected to a job running the SPH-EXA code. DDT can be
used to debug parallel programs in both scenarios. Attaching
to running programs with Forge DDT in a user environment
requires additional testing as the process running the appli-
cation and the Forge DDT process are not necessarily in the
same namespace.

A100 H2D D2H D2D

4 15,782 8,636 16,819
8 18,632 6,593 16,845
12 30,834 8,808 16,879
16 30,849 7,201 16,898

TABLE III: CUDA memcpy

2) Performance tools: Table III shows the amount of
CUDA memory copies (in MB) for the Sedov–Taylor test case.



The performance data was collected with the NVIDIA Nsight
Systems17 tool. The transfer sizes (in MB) for Host to Device
(H2D), Device to Host (D2H) and Device to Device (D2D) for
simulations with uenv and without uenv (cpe only) are equal,
demonstrating that the performance tool can be used in both
scenarios.
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Fig. 11: Weak scaling profiling results on AMD EPYC 7A53
CPU nodes for SPH-EXA.

Fig. 11 shows profiling results for the Sedov–Taylor test
case on CPU nodes. The performance data was collected
with the Score-P18 tool (version 8.1). The breakdown of the
runtime into different regions such as USER, OpenMP and
MPI demonstrates that the performance tool can be used in
both environments.

V. FUTURE WORK

The user-environmnents on Cray EX systems presented
here is currently being used internally by CSCS software
development teams, and by the MeteoSwiss in preparation for
their next operational weather forecast system. The service will
be rolled out to external users of vCluster users over 2023,
and there will be further development to extend features and
provide a robust service.

17https://developer.nvidia.com/nsight-systems
18https://score-p.org

The CI/CD pipeline is a high priority, with integration with
the ReFrame testing framework to ensure that software stacks
are corrent and performant.

We plan to provide a mechanism for the command line tools
and Slurm plugin to mount multiple images – for which the
main motivating use case is providing debugger and profiler
toolchains alongside programming stacks.

A command line tool that provides a singled interface for
users to query, download and interact with environments is
under development.

We will discuss collaboration with HPE to provide Cray-
MPICH and other CPE software packages via Spack stacks,
as well as extending our current experimental support for other
MPI distributions on Cray EX.

Finally, while the tools are designed by CSCS and for use
on Alps, we would welcome collaboration with other sites.
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len, F. Bösch, J. Luboeinski, S. Frasch, L. Drescher, and L. Landsmeer.
Arbor library v0.8.1, Nov. 2022.

[3] S. R. Alam, M. Gila, M. Klein, M. Martinasso, and T. C. Schulthess.
Versatile software-defined hpc and cloud clusters on alps supercomputer
for diverse workflows. The International Journal of High Performance
Computing Applications, 0(0):10943420231167811, 0.

[4] P. Forai, K. Hoste, G. Peretti-Pezzi, and B. Bode. Making scientific
software installation reproducible on cray systems using easybuild. In
Proceedings of the Cray Users Group Meeting (CUG2016), 2016.

[5] T. Gamblin, M. P. LeGendre, M. R. Collette, G. L. Lee, A. Moody, B. R.
de Supinski, and W. S. Futral. The Spack Package Manager: Bringing
order to HPC software chaos. In Supercomputing 2015 (SC’15), Austin,
Texas, November 15-20 2015.

[6] T. Manitaras, V. Karakasis, J. Otero, E. Koutsaniti, J.-G. Piccinali,
R. Sarmiento, C. Bignamini, V. H. Rusu, A. Jocksch, M. Kraushaar,
L. Marsella, S. Keller, S. Omlin, S. Kliavinek, H. Mendonça, M. Gior-
dano, M. Turner, G. Lo-Re, M. Boissonneault, S. Leak, M. Paipuri,
V. Sochat, J. Favre, S. Moors, Z.-Q. You, Åke Sandgren, J. Morrison,
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