
Deploying Alternative User Environments on
Alps

CUG23 – Helsinki
B. Cumming, J. Coles, T-I. Manitaras, J-G. Piccinali, S. Pintarelli, H. Stoppels

May 10, 2023



Alps is the new HPE Cray EX-based infrastructure at CSCS.

Consolidate separate service-specific clusters onto a single infrastructure
– versatile software-defined clusters (vClusters) with workload-specific

software environment, scheduler, storage and network isolation.

. . . software stack deployment won’t scale with our existing deployment
model. . .

Alps User Environments | 2



Monolithic Software Stacks

Sites provide CPE – then provide
software built on top:

install all the software for all the users
on a shared file system;

use CPE modules + site modules for
environment customisation.

CPE presents challenges as a software
stack foundation:

changes every 3 months

has a large surface area of possible
bugs and regressions.

deploying fixes takes minimum 3-6
months.

Alps User Environments | 3



Bespoke SW stacks

Start with a simpler foundation:

CrayOS + libfabric + Slurm;

no CPE;

less frequent changes over a smaller
area.

Provide workflow-specific software stacks:

only the packages that are needed;

deployed independently;

built using Spack.

“You can create environments without
modules using Spack. ”

“It is tricky to configure Spack. ”

Alps User Environments | 4



The Stackinator: Building Environments



Stackinator is Opinionated

Self contained software stacks are built through a workflow codified in a
tool CSCS developed Stackinator.

provide the inputs: YAML recipe and system configuration . . .

perform the steps: stack-config then make . . .

. . . to build a software stack following the best-practices and HPE Cray
EX-specific methods developed by CSCS (Harmen Stoppels).

Each stack exposes a spack upstream interface, and optional modules and
environment views.

https://github.com/eth-cscs/stackinator

Alps User Environments | 6

https://github.com/eth-cscs/stackinator


Stackinator

Stackinator provides a CLI tool to configure the software stack on the
target system:

> stack -config --recipe $recipe_path \

--system $CLUSTERNAME --build /dev/shm/build

> cd /dev/shm/build

> env --ignore -environment PATH=/usr/bin:/bin:‘pwd ‘/ spack/

bin make store.squashfs -j64

recipe: YAML files that describe compilers, software packages, and
tests for software stack.

system: System config for few libraries (gcc, libfabric, xpmem, slurm,
rdma-core).

mount: The installation path (in the recipe).

build: Where the build will be performed.

Alps User Environments | 7



Stacks

A “Spack Stack” is built in layers on top of a handful of external system
dependencies.

gcc libbfabric xpmem Slurm system config

bootstrap gcc 11.3

recipe

toolchain gcc 11.3

toolchain nvhpc 23.3

prgenv-gnu prgenv-openacc

Alps User Environments | 8



System Configurations

A Spack configuration for the target vCluster that describes the handful of
system dependencies.

compilers.yaml

compilers:
- compiler:
spec: gcc@7.5.0
paths:
cc: /usr/bin/gcc
cxx: /usr/bin/g++
f77: /usr/bin/gfortran
fc: /usr/bin/gfortran

flags: {}
operating_system: sles15
target: x86_64

packages.yaml

packages:
libfabric:
buildable: false

externals:
- spec: libfabric@1.15.2.0

prefix: /opt/cray/libfabric
/1.15.2.0/

slurm:
buildable: false

externals:
- spec: slurm@22-5-2

prefix: /usr
xpmem: ...
rdma -core: ...

Alps User Environments | 9



Recipe: general configuration

Name, mount point, the version of Spack to use and mirror configuration.
config.yaml

name: arbor-dev
store: /user-environment
system: hohgant
spack:

repo: https://github.com/spack/spack.git
commit: releases/v0.19

mirror:
enable: false

Alps User Environments | 10



Recipe: compiler toolchains

Compilers are built in three stages

1. bootstrap: gcc built using the system compiler (gcc 7.5.0).

2. gcc: Optimised gcc version(s) provided by the stack.

3. llvm: (optional) nvhpc and/or llvm toolchains buil with gcc from step 2.

compilers.yaml

bootstrap:
spec: gcc@11

# gcc@11 languages=c,c++ build_type=Release ~bootstrap +

strip

gcc:
specs:
- gcc@11 .3

# gcc@11 build_type=Release +strip

llvm:
requires: gcc@11.3
specs:
- nvhpc@22 .7

# nvhpc@22 .7~ mpi~blas~lapack

Alps User Environments | 11



Recipe: environments

environments.yaml

prgenv -gcc:
compiler:

- toolchain: gcc
spec: gcc@11

unify: true

mpi:
spec: cray-mpich@8.1.18.4
gpu: cuda

specs:
- cuda@11 .8

- osu -micro -benchmarks@5 .9

- openblas@0 .3.21

variants:
- cuda_arch =80

- +mpi

- +cuda

prgenv -openacc:
compiler:

- toolchain: gcc
spec: gcc@11

- toolchain: llvm
spec: nvhpc

unify: true

mpi:
spec: cray-mpich@8.1.18.4
gpu: cuda

specs:
- osu -micro -benchmarks@5 .9%

nvhpc

- cuda@11 .8%gcc

variants:
- cuda_arch =80

- +mpi

- +cuda

Alps User Environments | 12



Building

stack-config generates a build path with a
hierarchy of Makefiles that build the stack as
a DAG of Spack environments.

build path is in /dev/shm – build in
memory

Bubblewrap (bwrap) is used to mount the
store path at the destination during builds

bootstrap

gcc llvm

prgenv-gcc prgenv-openacc

gcc@11%gcc@7.5

gcc@11%gcc@11

gcc@11%gcc@11 gcc@11%gcc@11 nvhpc@22.7%gcc@11

/dev/shm/nvidia-build

Makefile
spack
compilers

Makefile
bootstrap

spack.yaml
compilers.yaml
packages.yaml
Makefile

gcc
spack.yaml

llvm
spack.yaml

environments
Makefile
prgenv-gcc

spack.yaml
prgenv-openacc

spack.yaml
store

Alps User Environments | 13



Wait! What about MPI?

Cray-mpich is the only robust MPI for SS11 as of
May 2023.

We used OpenMPI+ucx on SS10

Stackinator uses a custom Spack package for
cray-mpich:

Repackage headers, libs, compiler wrappers
from RPMs.

Store as tar-balls CSCS-private artifactory.

Run patchelf on libraries and
string-substitution on compiler wrappers.

It takes an engineer an hour to create the binary
package for each new CPE release.

/

bin
mpicc
mpicxx
mpifort
...

include
cray version.h
mpi*.mod
mpi*.h
pmi*.h
pmpi f08.mod
...

lib
libmpi gnu 91.[so,a]
libmpifort gnu 91.[so,a]
libmpi gtl hsa.[so,a]
libmpi gtl cuda.[so,a]
libpmi.[so,a]
libpmi2.[so,a]
libtvmpich.[so,a]
...

Alps User Environments | 14



MPI Configuration is Opinionated
environments.yaml: ”The user requests cray-mpich”

myenv:
compiler:
- toolchain: gcc

spec: gcc@11
mpi:

spec: cray-mpich@8.1.18.4
gpu: cuda

Generated Spack specs in spack.yaml

# cray -mpich specs are "simple"

specs:
- cray -mpich@8 .1.18.4 +cuda

# The tool can generate more complex specs , e.g. OpenMPI

on SS10:

specs:
- openmpi@4 .0:4 +cuda +cxx +pmi schedulers=slurm fabrics=

ucx
- ucx +rdmacm +cma +verbs +xpmem +ib_hw_tm +mlx5_dv +dc +

ud +rc +dm +optimizations +gdrcopy ~assertions ~debug

Alps User Environments | 15



Spack package

repo/packages/cray-mpich/package.py

@run_after("install")

def fixup_binaries(self):

for root , _, files in os.walk(self.prefix):

for f in [os.path.join(root , name) for name in files]

if not self.should_patch(f): continue

patchelf("--force -rpath", "--set -rpath", rpath , f)

if "libmpi_gtl_cuda.so" in str(f):

patchelf("--add -needed", "libstdc ++.so", f)

@run_after("install")

def fixup_compiler_paths(self):

filter("@@CC@@", self.compiler.cc,self.prefix.bin.mpicc)

filter("@@PREFIX@@", self.prefix , self.prefix.bin.mpicc)

if "+cuda" in self.spec:gtl_library = "-lmpi_gtl_cuda"

elif "+rocm" in self.spec:gtl_library = "-lmpi_gtl_hsa"

else: gtl_library = ""

filter("@@GTL@@", gtl_library , self.prefix.bin.mpicc)

Alps User Environments | 16



Optimising Build Times

Building stacks is resource intensive: 30 min – 3 hours with 64-cores.

Build times are the main pain point for developers.

Parallelise the build: build Spack environments in parallel
Expose every opportunity to build packages concurrently.

Build in memory:
Build in /dev/shm.
Use Bubblewrap (bwrap) to bind to the target installation path.

Cache previous builds:
Only build packages once.
Use Spack binary build caches.

Alps User Environments | 17



Optimising Build Times

scratch memory cache partial
0

1,000

2,000

3,000

1.7x

10.8x
3.2x

2,714

1,566

145

487

B
ui

ld
tim

e
(s

)

Alps User Environments | 18



Deploying spack-stacks



SquashFS

The software stack can be copied to a shared file system once built.

At CSCS they are deployed as SquashFS images:

consistent performance – always faster than a shared file system;

reduced storage requirements – compression and deduplication.

each stack is a single binary artifact – easy to version, roll back and
manage in CI/CD pipelines.

SquashFS requires some additional tooling...

Alps User Environments | 20



CLI Utilities

Non-privileged users are able to mount SquashFS images at runtime using
the squashfs-mount CLI setuid utility that:

1. creates a new mount namespace;

2. mounts the SquashFS file through libmount;

3. then drops privileges and executes a given command.

mounting a squashfs image

squashfs -mount image.squashfs /user -environment bash

The image is mounted in the new process – processes (users) on the
same node can mount different images.

Open Source on GitHub with RPMs for Cray EX.
https://github.com/eth-cscs/squashfs-mount

Alps User Environments | 21

https://github.com/eth-cscs/squashfs-mount


SLURM

A Slurm plugin manages mounting environmnents on compute nodes.

Launch with explicit flags

% srun --uenv -mount=/user -environment \

--uenv -file=img.squashfs \

-n2 -N2 osu_bw

Inherit the environment from the login node

% squashfs -mount img.squashfs /user -environment bash

% srun -n2 -N2 osu_bw

Also works intuitively for sbatch – user can set a default image that, and
individual srun in the script can use different environments.
Open Source on GitHub with RPMs for Cray EX.
https://github.com/eth-cscs/slurm-uenv-mount/

Alps User Environments | 22

https://github.com/eth-cscs/slurm-uenv-mount/


CI/CD

CI/CD pipelines from recipe to deployed SquashFS image is a work in
progress.

Recipes are stored in a GitHub repository – Pull requests and merges
trigger a pipeline:

1. BUILD STAGE: launch a Slurm job on the target cluster+architecture that
uses stackinator to configure then build the image.

2. push the generated image to a JFrog artifactory

3. TEST STAGE: pull the image and run a Slurm job that executes
ReFrame tests.

4. post status to GitHub

5. DEPLOY STAGE: promote artifact to deployment artifactory (manual).

Alps User Environments | 23



Results



OSU

We run OSU benchmarks compiled using CPE and Spack Stacks to
understand the effect of packaging cray-mpich outside CPE.

CPE Spack Stack
osu-benchmark 5.9 5.9
cray-mpich 8.1.21 8.1.24
gcc 11.2 11.3
cuda 11.6 11.8

The benchmarks are run on Clariden, a vCluster with 64-core EPYC CPU
and 4 A100 GPUs – similar to Perlmutter.

Alps User Environments | 25



OSU - P2P Bandwidth

1 2 4 8 16 32 64 12
8

25
6

51
2 1k 2k 4k 8k 16
k

32
k

64
k

12
8k

25
6k

51
2k 1M 2M 4M

0.1

1

10

100

1000

10000

Message Size

B
an

dw
id

th
(M

B
/s

)

cpe/gpu
uenv/gpu
cpe/cpu
uenv/cpu

Alps User Environments | 26



OSU - P2P Latency

1 2 4 8 16 32 64 12
8

25
6

51
2 1k 2k 4k 8k 16
k

32
k

64
k

12
8k

25
6k

51
2k 1M 2M 4M

1

10

100

Message Size

La
te

nc
y

(µ
s)

cpe/gpu
uenv/gpu
cpe/cpu
uenv/cpu

Alps User Environments | 27



GROMACS

A GROMACS strong scaling benchmarks: a 1.4-million atom system (a
pair of hEGFR Dimers of 1IVO and 1NQL) from the HECBioSim
benchmarks suite.

CPE Spack Stack
gromacs 2021.5 2021.5
fftw 3.3.10 3.3.10
openblas 0.3.21 0.3.21
cray-mpich 8.1.21 8.1.24
gcc 11.2 11.3

Run on Clariden, a vCluster with 64-core EPYC CPU and 4 Mi250x GPUs
– identical to LUMI/Frontier/Setonix.

Alps User Environments | 28



GROMACS - Strong Scaling
A difference of maximum ±1.5% between the CPE and the Spack-stack.

1 2 3 4 5 6 7 8 9 10 11 12

5

10

15

20

25

30

35

40

Nodes

Th
ro

ug
hp

ut
(n

s/
da

y)

cpe
uenv

Alps User Environments | 29



Wrapping up



An opinionated appeal

Integration of other CPE products – libsci, cce, etc – would be great.

Spack support is simple:

CPE packages can be installed individually without environment variables
or modules, like normal software.

In an ideal world we could build cray-mpich and libfabric+CXI from source.

Alps User Environments | 31



Thank you



Backup



DDT

Alps User Environments | 34



Configuration of mpicc

bin/mpicc

prefix="/user -environment/linux -sles15 -zen3/gcc -11.3.0/

cray -mpich -8.1.18.4 -gcc -... long hash ..."

CC="${prefix }/bin/gcc"

$CC ${final_cppflags} ${final_cflags} ${final_ldflags} "${

allargs[@]}" -I$includedir -L$libdir -Wl ,-rpath ,

$libdir -lmpi -lmpi_gtl_cuda ${final_libs}

Alps User Environments | 35



Objectives

We have the following objectives for our software stacks:

Reproducable from simple recipes:
versionable with git;
descriptive: what not how.

Separate system-specific configuration from recipe, so that the recipe
does not need modification to

rebuild when a system is updated.
build for different systems.

Alps User Environments | 36


