
Designing the HPE Cray Message Passing Toolkit
Software Stack for HPE Cray EX Supercomputers

K. Kandalla, K. McMahon, N. Ravi, T. White, L. Kaplan, and M. Pagel
Hewlett Packard Enterprise Inc

{kkandalla, kim.mcmahon, nravi, trey.white, laurence.kaplan, mark.pagel}@hpe.com

Abstract—The Frontier supercomputer at ORNL, based on the
HPE Cray EX architecture, is the world’s first supercomputer
to break the exascale barrier. The HPE Cray EX architec-
ture is designed to be highly flexible and relies on the HPE
Slingshot technology for its high speed interconnect. HPE Cray
Programming Environment is a key software component that
is tightly integrated with the broader HPE Cray EX hardware
and software ecosystem to offer high performance and improved
programmer productivity on HPE Cray EX systems. HPE Cray
Messaging Passing Toolkit is one of the building blocks of
the HPE Cray Programming Environment. It is comprised of
HPE Cray MPI and HPE Cray OpenSHMEMX software stacks.
HPE Cray MPI is a proprietary implementation of the MPI
specification (based on ANL MPICH 3.4a2) and it is the primary
MPI stack on HPE Cray EX supercomputers. It was instrumental
in surpassing the exascale performance barrier on the Frontier
supercomputer. HPE Cray OpenSHMEMX is a proprietary
implementation of the OpenSHMEM specification and is the
premier SHMEM implementation on HPE EX systems. Both
libraries leverage years of innovation to offer high performance
and scalable communication capabilities. This paper offers an
overview of HPE Cray MPI on HPE Cray EX supercomputers.

I. INTRODUCTION

High density compute nodes that offer high performance
CPUs and tightly coupled GPUs have become the “building
blocks” of modern supercomputing systems. Modern high
performance interconnects offer low latency, high bandwidth
communication capabilities at extreme scale. In addition, some
modern interconnects also offer hardware capabilities such as
congestion management, quality-of-service, adaptive routing,
etc. Combined together, modern compute and networking
architectures are driving the evolution of high end supercom-
puting systems and these architectural trends have ushered in
an era of Exascale computing capabilities. Such capabilities
are critical to satisfy the increasing needs of current and
emerging scientific applications that address challenging real
world problems.

The HPE Cray EX supercomputer architecture offers a
rich set of compute, accelerated compute, software, storage,
and networking capabilities to achieve high performance at
extreme scale. The HPE Cray EX architecture is designed
to be highly flexible and offer a broad range of choices
from a compute and system architecture perspectives. The
HPE Cray EX architecture relies on the HPE Slingshot
technology to offer high performance networking capabilities.
The Frontier supercomputer at ORNL [1] is the world’s first
supercomputer to break the exascale barrier and is based on
the HPE Cray EX architecture. The Frontier supercomputer

was also the most energy efficient supercomputer on the June
2022 version of the Green500 list. In addition to Frontier,
several systems in the Top500 list also rely on the HPE
Cray EX supercomputer architecture. Some of the notable
systems in this list are LUMI [2], Adastra [3], Perlmutter [4],
Crossroads [5], Crusher [6], and Setonix [7]. Several upcoming
systems are also being designed to leverage the HPE Cray EX
supercomputer architecture. This list includes: El Capitan [8],
Aurora [9], and the Alps [10] systems.

Emerging trends in hardware technologies introduce a level
of complexity in the system architecture and this motivates the
need for careful redesign of various system software stacks and
applications. Some of the critical challenges that need to be
addressed are portability, programming difficulty, communica-
tion/synchronization efficiency, and scaling. To be an effective
HPC platform, modern high performance systems need a high-
level software development environment with tightly coupled
compilers, tools, and libraries that can interoperate and hide
the complexity of the system and run efficiently on large scale
supercomputers.

HPE Cray Programming Environment [11] is a key software
component of the HPE Cray EX supercomputing system. The
HPE Cray Programming Environment suite has a strong track
record of offering a robust parallel programming environment
on high end supercomputing systems. It offers a collection of
compilers, tools, and libraries to facilitate the development
of current and next generation scientific applications. It is
tightly integrated with the broader HPE Cray EX hardware and
software ecosystem to offer high performance and improved
programmer productivity on modern HPE Cray EX systems.

A majority of pre-exascale and exascale codes running on
HPE Cray EX supercomputers rely on the Message Passing
Interface (MPI) model. In addition, the SHMEM program-
ming model is also used in many scalable applications. It is
absolutely necessary for HPC software stacks to offer high
performant and scalable implementations of MPI and SHMEM
models to allow scientific applications to achieve their desired
scaling and performance goals. The HPE Cray Messaging
Passing Toolkit (MPT) is one of the building blocks of the HPE
Cray Programming Environment. The HPE Cray MPT stack
is the primary software stack that implements the Message
Passing Interface and SHMEM programming models on HPE
Cray EX supercomputers. The MPT software stack is used
heavily by domain scientists and application programmers
on various HPE Cray EX supercomputers. This software
stack was instrumental in surpassing the exascale performance
barrier on the Frontier supercomputer. HPE Cray MPT has

also enabled various DOE, ECP, and CAAR applications to
exceed their performance and scaling goals on Frontier and
other exascale class HPE Cray EX supercomputers.

HPE Cray MPT is comprised of HPE Cray MPI and
HPE Cray OpenSHMEMX software stacks. HPE Cray MPI
is a proprietary implementation of the MPI specification. It
is based on the open-source MPICH implementation [12]
(3.4a2 release) from the Argonne National Laboratory and
it implements the MPI-3.1 specification. HPE Cray OpenSH-
MEMX is a proprietary implementation of the OpenSHMEM
specification and is the premier SHMEM implementation on
HPE Cray EX systems. Both libraries leverage several years
of innovation to offer high performance and scalable com-
munication capabilities. These software stacks are designed
to offer sustainable supercomputing capabilities by offering
high performance capabilities across a wide array of system
configurations and hardware architectures.

This paper offers an overview of HPE Cray MPI on HPE
Cray EX supercomputers by delving into various design and
implementation methodologies. This paper also includes a
preview of some of the important HPE Cray MPI runtime
parameters to debug, tune, and optimize real-world scientific
applications.

II. BACKGROUND

This section includes a high level description of HPE Cray
EX network architectures and the HPE Cray Message Passing
Toolkit software stacks.

A. HPE Cray EX Network Architecture

HPE Cray EX systems are designed to be highly flexible
in terms of compute, networking, and storage architectures.
HPE Cray EX system networks are typically available in two
architecture flavors: HPE Slingshot-10 and HPE Slingshot-11.
This section describes both network architectures.

1) HPE Slingshot Rosetta: The HPE Slingshot
Rosetta [13], [14] switching infrastructure offers industry
leading performance and scalability. Rosetta supports
Ethernet standards and protocols, in addition to optimized
HPC functionality. Rosetta is a high radix, 64 port switch
that offers 12.8 Tb/s bandwidth while supporting both 100
Gbps and 200 Gbps network adapters. Rosetta switches can
be used to design a system fabric that connects more than
250,000 compute nodes with a maximum of three hops. In
addition, the Rosetta switch also offers key hardware support
for congestion management, adaptive routing, and quality of
service.

2) HPE Slingshot-10 network: HPE Slingshot-10 network
architecture combines ConnectX-5 RoCE network adapters
from NVIDIA [15] and HPE Slingshot Rosetta switches [14]
from HPE. The ConnectX-5 RoCE network adapters from
NVIDIA offer data rates of up to 100 Gbps along with a
broad range of high performance data movement capabilities

such as RDMA and OS bypass. HPE Slingshot-10 systems can
be configured as heterogeneous systems that are comprised of
CPUs and GPUs. In addition, these systems also offer the
capability to use multiple NICs per node for higher aggregate
network bandwidth.

3) HPE Slingshot-11 network: The HPE Slingshot-11 net-
work architecture continues to use the HPE Slingshot Rosetta
switching infrastructure. In addition, the Slingshot-11 archi-
tecture also leverages 200 Gbps HPE Slingshot Cassini net-
work adapters. The HPE Slingshot-11 network adapters offer
reliable, connectionless communication protocols. Communi-
cation software stacks can leverage this feature to support
very large jobs that span thousands of compute nodes with
very low memory footprint. The HPE Slingshot Cassini NIC
offers key hardware offload capabilities for MPI message
matching operations and MPI’s Rendezvous protocol progres-
sion. This is an important capability that allows for strong
message progression without requiring additional CPU cycles.
The Cassini NIC also offers a suite of protocols for data
movement operations that can be leveraged by software stacks
to optimize communication performance for different payload
sizes (Section III-E). HPE Slingshot Cassini NICs also support
multiple HPC traffic classes to further isolate different traffic
patterns. These important features allows applications that
are typically vulnerable to irregular tail latency to experience
repeatable performance on large systems. For one-sided data
movement operations, Cassini also offers hardware support
for atomics operations. In addition, Cassini offers hardware
support for triggered operations and counting events. These
features enable the development of new lightweight MPI com-
munication capabilities, especially in the context of CPU/GPU
heterogeneous systems (Section V-A). Finally, HPE Slingshot-
11 also offers support for On-Demand Paging (ODP).

The Rosetta switch also offers hardware features to ac-
celerate global reduction operations for small payload sizes.
This capability can be leveraged to optimize the performance
of various MPI collectives (MPI Allreduce, MPI Bcast, and
MPI Barrier). This feature is expected to be available during
the second half of 2023.

Certain processor and GPU architectures are only available
in the HPE Slingshot-11 offering. For example, only HPE
Slingshot-11 systems are available with the AMD MI250 GPU
architecture [6], [1]. This paper emphasizes the behavior of
the HPE Cray MPI stack on systems that rely on the HPE
Slingshot-11 network architecture. However, specific salient
points that involve the interaction between the HPE Cray MPI
implementation and the HPE Slingshot-10 network are called
out at appropriate places.

B. HPE Cray Message Passing Toolkit

This section provides an overview of the HPE Cray MPI
software stack for HPE Cray EX systems based on the HPE
Slingshot network architectures and lists some of the key
dependencies.

2

HPE Cray MPI is designed to be highly flexible to address
the broad range of HPE Cray EX system configurations.
Figure 1 describes the breadth of coverage of the HPE Cray
MPI stack across different hardware architectures and soft-
ware environments. Supported hardware architectures include
different CPU, GPU, and network architectures. Software en-
vironments span different compilation environments, operating
systems, and tools. It is necessary to highlight that HPE Cray
MPI supports both HPE Slingshot-10 and HPE Slingshot-11
network architectures.

FEATURE COVERAGE

CPU architectures Intel CPUs, AMD CPUs
NVIDIA Grace CPUs (Under Development)

Network
architectures

SS-10: OFI (verbs; rxm) provider, UCX driver support
SS-11: OFI (CXI) provider
InfiniBand clusters (HPE Apollo systems)

GPU architectures AMD GPUs
NVIDIA GPUs
Intel GPUs (Under Development)

Operating Systems COS, RHEL/CENTOS, SLES

PrgEnv and compilers PrgEnv-cray, PrgEnv-gnu, PrgEnv-nvidia, PrgEnv-amd, and
PrgEnv-intel

Launcher support Slurm, PALS, and Flux

Fig. 1. HPE Cray MPI Coverage

MPI Standard Interface

POSIX

Verbs/rxm ProviderCassini Provider

XPMEM

Libfabric Interface

Abstract Device Interface (ADI)

P
M

I

CH4 Layer

Jo
b

 L
au

n
ch

e
r

Active
Msg

Fallback

Application

MPICH Layer ROMIO

ADIO

Lus. GPFS ...

Collective
Algorithms

Comm/
Group

API/Error
Checking

OFI

Netmods SHMmods

Memory
Management

GPU
Aware MPI

RMA

Traffic
Classes

GPU Transport Layer
(GTL)

ROCr/HSA

CUDA OneAPI

Open-source
components

HPE developed
components

HPE optimized
components

GPU vendor
components

CMA

Datatypes

Arch
specific
tuning

UCX

Fig. 2. HPE Cray MPI Software Architecture

Figure 2 offers a high level view of the HPE Cray MPI
software stack. The current HPE Cray MPI implementation
(version 8.1.26) for HPE Cray EX systems is based on the
open-source ANL MPICH implementation (version 3.4a2)
and uses the CH4 implementation. In addition to the set of
software features ANL MPICH already offers in the CH4
implementation, HPE Cray MPI relies on the OFI Libfabric
interface and the underlying network providers to leverage
the rich set of capabilities offered by modern interconnects.
On HPE Slingshot-10 systems, HPE Cray MPI relies on the
”verbs;rxm” network provider to interact with the Mellanox
networking stack. Optionally, the UCX netmod is also avail-
able for users on HPE Slingshot-10 systems and HPE Cray
MPI man pages document the necessary set of steps to toggle
between the Libfabric and UCX netmods. On HPE Slingshot-

11 systems, HPE Cray MPI relies on the ”Cassini (CXI)”
network provider to leverage the broad set of hardware ca-
pabilities offered by the HPE Slingshot-11 network. The tight
integration between the MPI library and the HPE Slingshot
provider allows the HPE Cray Messaging Passing Toolkit suite
to offer high performance communication at extreme scale.

On HPE Slingshot-10 systems, HPE Cray MPI offers low-
latency, high bandwidth communication capabilities for both
inter-node and intra-node MPI data movement operations. For
inter-node MPI operations, HPE Cray MPI and the verbs;rxm
Libfabric provider layers leverage RDMA capabilities offered
by the Mellanox RoCE NICs. In addition, HPE Cray MPI
supports systems that offer multiple Mellanox RoCE NICs per
node. For intra-node MPI operations, HPE Cray MPI leverages
a combination of POSIX shared memory, XPMEM, and Cross
Memory Attach (CMA) implementations. XPMEM support is
only available on systems that rely on the Cray Operating
systems (COS).

On HPE Slingshot-11 systems, HPE Cray MPI is designed
to take advantage of key hardware features offered by the
Cassini NICs and the Rosetta switches. HPE Cray MPI has his-
torically offered a broad set of highly optimized and tuned MPI
collective operations. On the HPE Cray EX supercomputer ar-
chitecture, HPE Cray MPI offers a set of collective operations
that are specifically tuned for the HPE Slingshot-11 network.
Similarly, HPE Cray MPI also leverages the HPE Slingshot-11
network to offer high performance MPI RMA communication
operations. In addition to hardware offload capabilities, HPE
Cray MPI is tightly integrated with the Cray Operating System
(COS) and exposes ability to allocate memory regions that
are backed by non-standard huge pages. HPE Cray MPI also
relies on new optimizations in PMI and I/O layers and is being
enhanced to support the MPI 4.0 specification. This paper
includes additional areas of hardware/software co-design that
allow HPE Cray MPI to expose extreme scale communication
and synchronization capabilities to scientific applications.

On HPE Cray EX systems that are based on heteroge-
neous compute and accelerated compute architectures (such
as GPUs), HPE Cray MPI offers a rich set of capabilities
to offer “GPU aware” communication operations via the new
GPU Transport Layer (GTL). GPU aware MPI capabilities are
available on both HPE Slingshot-10 and HPE Slingshot-11
systems. GTL is an HPE proprietary layer and offers a broad
range of GPU aware capabilities and optimizations in Cray
MPI for HPE Cray EX systems. The GTL layer is designed
in a modular manner and is easily extendable to support new
GPU vendors and hardware architectures.

III. DESIGN AND IMPLEMENTATION DETAILS

This section describes some of the key design and imple-
mentation aspects of the HPE Cray MPT software stack on
HPE Cray EX systems based on HPE Slingshot-11 networks.
The runtime variables listed in this section are a small subset
of the entire set of variables supported by HPE Cray MPI.

3

This list can be accessed via the “man mpi” command on a
HPE Cray EX system.

A. Multi-NIC Support

HPE Cray MPI supports multiple network adapters per
compute node. The current implementation allows one MPI
process to use a single NIC. Implementation issues and po-
tential benefits related to the use of multiple NICs per process
to implement striping techniques are under evaluation.

By default, HPE Cray MPI detects all available NICs
per node and attempts to use them for the job. The spe-
cific process-to-NIC mapping is decided during MPI Init to
make sure that each NIC is utilized in an efficient manner.
HPE Cray MPI also offers a range of environment vari-
ables that allow users to customize process-to-NIC mapping
to best fit the communication patterns and process-to-CPU
placement techniques that are being used. Specifically, the
MPICH OFI NIC POLICY variable can be used to specify
precise process-to-NIC mapping patterns for a given job.
Accepted values for this variable are: “BLOCK”, “NUMA”,
“ROUND-ROBIN”, “GPU”, and “USER”. These convenient
options allow the user to select the NIC that is closest in prox-
imity to the CPU or GPU being used for each process. This
is extremely important to obtain the best performance. Addi-
tionally, HPE Cray MPI also displays detailed information of
process-to-NIC mapping if the MPICH OFI NIC VERBOSE
environment variable is set. The HPE Cray MPI man page
documents this variable and its options in more detail.

B. Traffic Classification

HPE has implemented a set of ”Best Practice” traffic classes
to leverage hardware support for traffic classification for HPC
applications on HPE Slingshot-11 systems. This list currently
includes the following traffic classes:

1) “Low Latency”: The Low Latency traffic class is best
suited for applications that are vulnerable to the per-
formance of small message collective operations. Such
latency sensitive operations are given a higher priority
in the network and this allows applications to benefit
from lower latency and potentially lower jitter due to
variability in network round trip times. However, this
traffic class is also associated with a specific bandwidth
cap.

2) “Dedicated Access”: The Dedicated Access traffic class
allows network packets issued by the communication li-
brary to benefit from a guaranteed bandwidth allocation.
This traffic class is ideally used for highly specialized
users and very high priority jobs that run on production
systems.

3) “Bulk Data”: The Bulk Data class allows the system
fabric to isolate I/O traffic from every other type of
traffic in the fabric.

4) “Best Effort”: The Best Effort traffic class is the default
shared traffic class and provides each application a ”fair-
share” of networking resources within the same class.

5) “Scavenger”: Finally, the “Scavenger” class offers un-
reliable semantics and is intended only for low priority
workflows. This traffic class will not be used for typical
HPC workloads and HPE is exploring the possibility of
using this class solely for background monitoring tools.

Users can request a specific traffic class via the
MPICH OFI DEFAULT TCLASS environment variable.
This variable defaults to the “Best Effort” class. It is
necessary to highlight that not every traffic class will be
available on every HPE Slingshot-11 system and specific
traffic classes also require prior Work Load Manager (WLM)
authorization.

C. GPU Aware MPI Communication

On heterogeneous systems that offer both CPUs and GPUs,
HPE Cray MPI offers ”GPU Aware” MPI support for ap-
plications that perform MPI operations with communication
buffers on GPU-attached memory regions. GPU aware MPI
communication allows applications to pass CPU-attached or
GPU-attached communication buffers to MPI data movement
operations. A GPU aware MPI implementation handles both
types of memory regions appropriately and also leverages
hardware offload capabilities to implement data movement
operations in a high performance manner. HPE Cray MPI is
tightly integrated with the rest of the Cray PE stack to offer
GPU aware capabilities for NVIDIA and AMD GPU devices.
Support for Intel GPUs is under development.

HPE Cray MPI supports the following technologies for MPI
operations involving GPU-attached memory regions: GPU-
NIC RDMA (for inter-node MPI transfers), GPU Peer2Peer
IPC (for intra-node MPI transfers), and preliminary support
for GPU NIC Async (Section V-A). GPU-NIC RDMA relies
on RDMA capabilities offered by modern high performance
NICs to efficiently move data between GPU-attached memory
regions across different nodes. GPU IPC leverages DMA
engines on GPU devices and high bandwidth communication
paths that exist between GPU devices within the same compute
node.

D. Slingshot-11 Hardware Congestion Management

HPE Slingshot-11 offers hardware support for congestion
management. Studies [13], [16] have shown that applications
running on HPE Slingshot-11 systems are much less affected
by network congestion when compared to other network tech-
nologies. These studies were performed in a systematic manner
across different microbenchmarks and HPC applications with a
broad range of communication patterns. Hardware congestion
control is enabled by default on HPE Slingshot-11 systems.

E. Point-to-Point Communication Protocols

This subsection describes some of the key hardware features
used to implement inter-node point-to-point operations.

4

1) Hardware Tag Matching: Cassini NIC offers hardware
support for message matching. This feature is enabled by
default in the CXI provider within the OFI framework. HPE
notes that the hardware support for tag matching is the
preferred execution mode and this capability will be disabled
only under severe resource exhaustion scenarios. In such rare
use cases, the CXI provider will fall back to using a software
implementation of message matching. Since HPE Cray MPI
relies on the OFI layer and the underlying CXI provider, HPE
Cray MPI leverages this capability by default on Slingshot-11
systems. Users may toggle this feature by using the following
environment variable: “FI CXI RX MATCH MODE”. This
variable accepts the following values: “hardware”, “software”,
and “hybrid” and “hardware” is the default match mode on
HPE Slingshot-11 systems. In the “hybrid” mode, for a given
job, the provider first offers the “hardware” match mode
but later transitions seamlessly within the same job to the
“software” match mode for specific MPI ranks that determine
resource exhaustion is imminent.

2) Small message communication protocols: HPE Slingshot
Cassini NIC offers two mechanisms to implement inter-node
small message transfers. The first mechanism is referred to as
the “Immediate Data Command (IDC)”. In this mechanism,
the CXI provider implementation directly transfers the user
payload into a NIC command descriptor and directly enqueues
the descriptor to the NIC Command Queues. The current HPE
Cray MPI stack and the Cassini provider implementation rely
on the IDC mechanism by default for payloads of size less
than 192 Bytes. In the second mechanism, the CXI provider
enqueues a DMA command descriptor in the NIC Command
Queue. The DMA descriptor includes the source address,
length, and the match bits that correspond to the MPI Send
operation. When this descriptor is executed, the Cassini NIC
performs a DMA operation from user’s buffer to perform
the operation. HPE Cray MPI can utilize either protocol on
Slingshot-11 systems.

3) Hardware Offload for MPI’s Rendezvous protocol for
Large Payloads: HPE’s Cassini architecture offers the
ability to offload the entire rendezvous handshake proto-
col and the data transfer operations to the NIC. When
FI CXI RX MATCH MODE is set to “hardware”, this capa-
bility is enabled in the CXI provider. In this implementation,
the hardware offloaded version of the rendezvous protocol
relies on the target NIC to perform the match operations and
subsequently perform an RDMA Get operation to fetch the
payload from the source node. The hardware implementa-
tion also handles “Ready To Send” (RTS) packets arriving
unexpectedly at the target process. Unexpected RTS packets
are processed in a deferred manner by the NIC. For each
new MPI Recv operation performed by the application, the
hardware attempts to match against the deferred RTS packets
until a match occurs. Once a match has been detected, the
hardware Cassini NIC performs an “RDMA Get” operation
and the corresponding “Rendezvous Done” packet to inform

the source NIC about the completion of the entire data transfer
operation. Since the HPE Slingshot-11 networking hardware
handles both expected and unexpected messages, CPU cycles
are required only to prepare and initiate the transactions. From
a CPU utilization perspective, the source process consumes
CPU cycles to prepare and issue the first RTS packet that
contains the match bits for the message. The target process
consumes CPU cycles to prepare MPI-level and OFI-level
objects that correspond to the MPI Recv operation. The rest
of the rendezvous protocol is entirely offloaded to hardware
and does not require CPU cycles to progress the tag-matching
or the data movement operations. Thus, HPE Slingshot-11
systems can offer improved communication/computation over-
lap for applications that rely on asynchronous point-to-point
operations (Section IV-A4).

F. One-sided Communication Protocols

HPE Slingshot-11 offers highly efficient data movement
and synchronization capabilities for implementing one-sided
communication operations. MPI Put and MPI Get operations
can be directly mapped RDMA Put and RDMA Get opera-
tions. These operations are fully offloaded to the Cassini NIC
and do not require additional CPU cycles. HPE Slingshot-11
also offers hardware support for one-sided atomics. Intra one-
sided operations leverage Posix shared memory and XPMEM
for CPU-attached communication buffers. For GPU-attached
buffers, HPE Cray MPI leverages GPU IPC to optimize intra-
node phases of one-sided operations.

G. Collective Communication and HPE Optimized algorithms

HPE Cray MPI has historically implemented a broad range
of optimizations for collective operations. These optimizations
are geared towards the underlying compute and network archi-
tectures. For HPE EX systems, HPE Cray MPI implements a
suite of highly tuned collective algorithms that are customized
for the HPE Slingshot-10 and HPE Slingshot-11 network
architectures. Software optimizations in Cray MPI consider the
CPU processor architecture, GPU architecture, and node-level
topology. Intra-node phases of collectives operations leverage
XPMEM, CMA, or POSIX shared memory for CPU-attached
communication buffers. For GPU-attached buffers, HPE Cray
MPI leverages GPU IPC to optimize intra-node phases of
collective operations. Section IV-B includes a brief discussion
of some of the optimized collectives in Cray MPI on HPE
Cray EX systems.

IV. PERFORMANCE EVALUATION

This section includes a select set of performance studies
with HPE Cray MPI on HPE Cray EX systems. For brevity,
this section includes an analysis of performance trends ob-
served on the Bard Peak node architecture [17]. Figure 3
shows a very high level view of the architecture of a compute
node in the ORNL Frontier system. Each node offers a single
AMD Trento CPU socket, four MI250 GPU modules, and four

5

HPE SlingShot-11 Cassini NICs devices. Each GPU module
consists of two GPU devices (GCDs). Each Cassini NIC is
attached to a single MI200 module via PCIe Gen4 with the
Extended Speed Mode (ESM) capability. The MI200 modules
are interconnected with 1x or 2x high speed xGMI3 links.
The Trento CPU can access each MI200 module via high
speed 2x xGMI2 links. The PCIe Gen4 ESM links offer a
peak throughput of 25 GB/s/dir. Each xGMI3 link offers a
peak throughput of 50 GB/s/dir and each xGMI2 link offers
a peak throughput of 36 GB/s/dir. A single Trento CPU
socket offers 64 cores, with two hardware threads per core.
Most applications will typically map one or two application
processes per GCD. Each GCD device may be used by up to
8 application processes. Thus, it is important to understand
the communication costs experienced by a given process
for a particular peer process – whether that peer process is
collocated within the same node, or if it is affined to a different
node in the system. Recipes needed to ensure the right affinity
settings are highly specific to the system configuration. [18]
includes some of these recipes needed for the Frontier and
Crusher systems at ORNL.

-

MI200 Module0

GCD1

GCD0

Cassini NIC0

MI200 Module3

GCD7

GCD6

Cassini NIC3

MI200 Module1

GCD3

GCD2

Cassini NIC1

MI200 Module2

GCD5

GCD4

Cassini NIC2

Trento CPU
xGMI3

PCIe G4
(ESM)

xGMI2

xGMI3

Fig. 3. ORNL Frontier Bard Peak Node Architecture

A. MPI Point-to-point operations

This section includes a summary of MPI point-to-point
performance studies with HPE Cray MPI on HPE Cray EX
systems based on the Bard Peak node architecture.

1) Inter-node MPI latency with GPU-attached buffers:
Figure 4 compares the inter-node latency of small message
MPI point-to-point operations when two processes use Cassini
NIC0 on both nodes with different process-to-GCD mappings.
This experiment involves running the “osu latency” ping-
pong latency benchmark with two Bard Peak nodes attached
to the same switch. The benchmark is configured to use
GPU-attached communication buffers on both nodes. For the
“GCD0” case, both processes use GCD0 and Cassini NIC0 on
their respective nodes. For the “GCD1” case, both processes
use GCD1 and Cassini NIC0 on their respective nodes. This
study demonstrates that the impact of Cassini NIC0 being

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 4 8 16 32 64 128 256 512 1K 2K 4K

La
te

n
cy

 (
u

se
c)

Message Length (Bytes)

GCD0 GCD1

Fig. 4. MPI Point-to-Point Inter-node Latency

physically closer to GCD1 has a very small impact (less than
2%) on inter-node small message latency.

0

5000

10000

15000

20000

25000

30000

8K 16K 32K 64K 128K 256K 512K 1M 2M 4M

B
an

d
w

id
th

 (
M

B
/s

)

Message Length (Bytes)

GCD0 GCD1

Fig. 5. MPI Point-to-Point Inter-node Bandwidth

2) Inter-node MPI bandwidth with GPU-attached buffers:
Figure 5 compares the inter-node uni-directional bandwidth
for large message MPI point-to-point operations when two
processes use Cassini NIC0 on both nodes with different
process-to-GCD mappings. This experiment involves running
the “osu bw” uni-directional benchmark with two Bard Peak
nodes attached to the same switch. The benchmark is con-
figured to use GPU-attached communication buffers on both
nodes. For the “GCD0” case, both processes use GCD0 and
Cassini NIC0 on their respective nodes. For the “GCD1” case,
both processes use GCD1 and Cassini NIC0 on their respective
nodes. This study demonstrates that the fact that Cassini NIC0
is physically closer to GCD1 has no impact on inter-node large
message bandwidth.

3) Intra-node MPI bandwidth with GPU-attached buffers:
Figure 6 demonstrates the impact of process-to-GPU mapping
on intra-node MPI uni-directional bandwidth for large pay-
loads. This experiment also involves the use of two processes
using the same compute node, both processes use GPU-
attached communication buffers, and each process uses a
different CPU hardware thread. The “GCD0-GCD0” case
demonstrates a significantly higher communication throughput

6

0

50000

100000

150000

200000

250000

300000

8K 16K 32K 64K 128K 256K 512K 1M 2M 4M

B
an

d
w

id
th

 (
M

B
/s

)

Message Length (Bytes)

GCD0-GCD0 GCD0-GCD1 GCD0-GCD2

Fig. 6. MPI Point-to-Point Intra-node Bandwidth

for large payloads when compared to “GCD0-GCD1” and
“GCD0-GCD2”. This is because the MPI operations involve
transferring data between processes that are using the same
HBM device on GCD0. The AMD ROCm layer optimizes
this case by leveraging kernels on the GPU to perform data
movement operations instead of offloading the transfers to
the DMA “Copy” engines. For “GCD0-GCD1” and “GCD0-
GCD2”, the AMD ROCm layer relies on the DMA “Copy”
engines to transfer data between GCDs. In both cases, the
data transfer operations involve a set of xGMI links that
exist between GCD devices and the same ROCr IPC software
mechanisms implemented within HPE Cray MPI. For the
“GCD0-GCD1” case, the hardware offers four xGMI links
between GCDs that are on the same MI200 module. However,
the AMD ROCm implementation uses a single DMA engine
to move data between these GCDs. On the MI200 hardware,
HPE and AMD have observed that a single DMA engine can
utilize multiple xGMI links between GCDs on the same MI200
module. However, the copy engine cannot effectively utilize all
of the throughput offered by the set of four xGMI links. In the
case of “GCD0-GCD2”, only one xGMI link can be used to
implement the data transfer operations. Thus, “GCD0-GCD1”
can achieve slightly higher peak communication throughput
when compared to “GCD0-GCD2”. But “GCD0-GCD1” can-
not achieve the peak combined throughput of four xGMI links
on MI200. HPE and AMD are continuing to discuss possible
software strategies to improve the performance of data transfer
operations between GCDs that are collocated on the same
MI200 module.

4) Computation/Communication Overlap for Inter-node
MPI point-to-point operations: Figure 7 demonstrates CPU
% as measured with the Sandia Overlap Benchmark [19].
This benchmark involves two MPI processes on two different
compute nodes. Both processes participate in asynchronous
MPI point-to-point operations with varying payload sizes
and the benchmark reports the percentage of CPU cycles
available to perform application-level compute tasks. For a
given payload size, higher percentage values indicate that a
significant fraction of the communication protocol has been
offloaded to the network hardware and CPU plays a very small

role in progressing the MPI Rendezvous protocol. On HPE
Slingshot-11 systems, the Sandia Overlap Benchmark reports
very high CPU availability for inter-node MPI point-to-point
operations with large payloads since the network hardware
offers strong message progression semantics.

0

10

20

30

40

50

60

70

80

90

100

16K 32K 64K 128K 256K 512K 1M 2M 4M

C
P

U
 A

va
ila

b
ili

ty
 (

%
)

Message Length (Bytes)

CPU Availability % on HPE Slingshot-11

Fig. 7. Computation/Communication Overlap for large message MPI point-
to-point operations

B. Collective Operations

For the sake of brevity, this section demonstrates a small
subset of MPI collective optimizations implemented in HPE
Cray MPI.

Figure 8 describes optimizations in the latest HPE Cray
MPI for MPI Igatherv. This implementation relies on key
optimizations in HPE Cray MPI software for systems based on
the HPE Slingshot-11 and HPE Slingshot-10 networks. These
optimizations improve MPI Igatherv communication latency
for a broad range of payload sizes and communicator sizes.
Figure 8 compares the performance of the Baseline and Op-
timized implementations of MPI Igatherv in HPE Cray MPI
with a communicator size of 65,536, with 512 compute nodes
and 128 MPI processes per node. At this scale, the Optimized
implementation outperforms the Baseline implementation by
about 130X!

Figure 9 demonstrates optimizations for
MPI Reduce scatter block on compute nodes based on
the Bard Peak node architecture with GPU-attached
communication buffers. This experiment was performed
on 8 Bard Peak compute nodes with 8 MPI processes per
node. Each process uses a single GCD device on a node.
The Baseline implementation of MPI Reduce scatter block
involves performing the compute phases of the collective on
the CPU. The Optimized version of the collective leverages
the ability to offload the compute intensive phases of large
payload MPI Reduce scatter block operations to the GPU.
This optimization improves the performance of large payload
MPI Reduce scatter block by about 7X.

A similar optimization is also available on systems with
NVIDIA A100 GPUs and this leads to an improvement
of about 15X for large payload Allreduce operations on
a single node with MPI processes. This optimization is

7

enabled by default if MPICH GPU SUPPORT ENABLED
is set to 1 and can be disabled by setting
“MPICH GPU ALLREDUCE US KERNEL=0”

Both optimizations discussed in this section are enabled by
default in the latest HPE Cray MPI implementation.

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

1 2 4 8 16 32 64 128 256 512 1K

C
o

m
m

u
n

ic
at

io
n

 T
im

e
 (

m
ic

ro
se

co
u

n
d

s)

Message Size (Bytes)

Baseline Optimized

Fig. 8. MPI Igatherv Optimizations in HPE Cray MPI

0

20000

40000

60000

80000

100000

120000

140000

160000

512 128K 1M 16M 32M

C
o

m
m

u
n

ic
at

io
n

 T
im

e
 (

m
ic

ro
se

co
u

n
d

s)

Message Size (Bytes)

Baseline Optimized

Fig. 9. MPI Reduce scatter block Optimizations in HPE Cray MPI

V. NEW AND UPCOMING FEATURES IN CRAY MPT

This section profiles two new features that are available in
Cray MPT.

A. GPU-NIC Async

On modern heterogeneous supercomputing systems that are
comprised of compute blades that offer CPUs and GPUs,
current generation scientific applications and systems soft-
ware stacks are “GPU-aware” and data movement opera-
tions are offloaded to the NIC (GPU-NIC RDMA), or DMA
engines on GPU devices (GPU Peer2Peer IPC). However,
CPU threads are still required to orchestrate data moving
communication operations and inter-process synchronization
operations. Naturally, this requirement results in all commu-
nication and synchronization operations occurring at GPU
kernel boundaries. An application process running on the
CPU first synchronizes with the local GPU device to ensure
that the compute kernel has completed. Next, an application

process initiates, progresses, and completes inter-process com-
munication/synchronization operations. Typically, subsequent
compute kernels can be launched only after the inter-process
communication operations have completed. Owing to this
behavior, current generation GPU-aware parallel applications
are affected by potentially expensive synchronization points
that require the CPU to synchronize with the GPU and
NIC devices. In addition, the overhead of launching compute
kernels is in the critical path and an iterative-parallel appli-
cation experiences this overhead each time a new kernel is
offloaded to the GPU. HPE has been working closely with
GPU vendors to explore, prototype, and implement “GPU-
NIC Async” strategies to address these problems on emerging
supercomputing systems. These strategies also leverage some
of the key technologies offered by the HPE Slingshot-11
network [20].

B. MPIXlate

Several shared library implementations of the Message
Passing Interface (MPI) specification are available for build-
ing MPI applications. Even when they implement the same
MPI specification, some MPI shared libraries are not binary
compatible with others due to differences in implementation
choices. As a consequence, applications built with a specific
MPI shared library can be run only on systems which have
an MPI shared library that is binary compatible with the
one used to build the application. On systems where such a
binary compatible MPI library is not available, the application
must be recompiled using the native MPI shared library.
MPIxlate, a new feature now available in HPE Cray MPI,
enables applications compiled using an MPI library that is not
binary compatible with HPE Cray MPI, to be run without
recompilation on supported HPE Cray systems. MPIxlate
does transparent runtime translation of the Application Binary
Interface (ABI) between supported combinations of source and
target MPI shared library implementations. The MPI shared
library used to compile the application determines the source
ABI and the HPE Cray MPI shared library using which it will
be run determines the target ABI. As HPE builds out the HPC
Cloud portfolio, MPIxlate provides a means by which applica-
tions built with non-MPICH compatible MPI libraries can take
advantage of the optimized Shasta networking infrastructure.

VI. IMPORTANT RUNTIME VARIABLES TO DEBUG AND
DIAGNOSE ISSUES

This section includes some of the useful HPE Cray MPT
environment variables that users can use to debug performance
and functionality issues.

1) Network Timeouts: On a Slingshot system, certain
applications may experience instances of network time-
outs. These timeouts are often attributed to flapping
links. The HPE Slingshot-11 network handles such
events by automatically re-issuing network packets that
were affected by timeout events. Depending on the

8

communication patterns used by specific applications,
these events may result in lower than expected MPI
communication performance. To help debug such per-
formance issues, HPE Cray MPI tracks network timeout
events and summarizes various Cassini counters for
each job. If an application experienced network time-
outs, HPE Cray MPI displays the following line dur-
ing MPI Finalize: “[MPICH Slingshot Network Sum-
mary: N network timeouts]”. Support for collecting a set
of user-specified Cassini hardware counters is also avail-
able. The “MPICH OFI CXI COUNTER REPORT”
variable is documented in the the HPE Cray MPI man
pages.

2) Running out of Cassini Hardware Resources: Cer-
tain communication patterns can cause applications
to experience the following error messages: “PtlTE
NN LE resources not recovered during flow control.
FI CXI RX MATCH MODE=[hybrid OR software] is
required.”. These are fatal errors and are due to select
MPI processes running out of hardware resources in the
Cassini NIC. Such applications may benefit from using
the “hybrid” match mode feature implemented in the
Libfabric Cassini provider. Users can enable this feature
by setting the “FI CXI RX MATCH MODE” runtime
variable to “hybrid” or “software”. (Section III-E1 de-
scribed different message matching modes on HPE
Slingshot-11 systems.)

3) Issues with “fork()”: On HPE Slingshot-11 systems,
applications that rely on “fork()” can experience issues if
the child process tries to access memory regions owned
by the parent process after a “fork()” is performed.
In such cases, users are advised to set the following
runtime variables: “export CXI FORK SAFE=1”,
“export CXI FORK SAFE HP=0”, and “export
FI CXI DISABLE CQ HUGETLB=1”.
With SLES15 SP4 and newer Linux kernels, some of the
“fork()” issues have been addressed in the Linux ker-
nel via changes to the Copy-on-write semantics. Some
applications may benefit from these changes directly on
newer Linux kernels and this removes the need for users
to set the CXI FORK SAFE related runtime variables
for applications that rely on “fork()”.

4) Corner cases with GPU-NIC RDMA: On
HPE Slingshot-11 systems, GPU enabled
applications may experience hangs and the
following error messages are seen in the “dmesg”
logs: cxi core:cass vma write flag:22 VMA does not
have write permissions. This error message is often a
result of the following user errors:

a) HPE Cray MPI’s GPU aware logic is not en-
abled because the followinng runtime variable
was not specified in the job submission script:
“MPICH GPU SUPPORT ENABLED=1”

b) Application uses GPU Managed memory regions
and HPE Cray MPI’s Managed memory support

is disabled. HPE Cray MPI currently supports
Managed Memory regions by default.

c) The application executable was not linked correctly
against GPU runtime library. On systems with
NVIDIA GPUs, this scenario is likely to occur if
the “module load cudatoolkit” command was ex-
cluded in the environment or in the job submission
script.

Users are encouraged to review HPE Cray MPI’s man
pages for runtime variables related to GPU support.
These man pages also include suggested recipes for
building and linking user applications.

VII. SUMMARY AND CONCLUSION

HPE Cray EX systems are powering some of the fastest
supercomputing systems in the world. In addition to designing
systems with key novel technologies, HPC system software
stacks need to be designed carefully with specific performance
and scaling goals. HPE Cray Programming Environment is a
critical piece of the software stack on HPE Cray EX system
and it enables the development and optimization of current and
next generation scientific applications. This paper provided a
detailed description of the HPE Cray MPT software stack
and its importance on HPE Cray EX systems. This paper
described some of the key hardware/software interactions and
key co-design areas to optimize the performance of scientific
applications. Finally, this paper also documented some of
the important runtime variables that can be used to debug,
diagnose, and tune the performance of scientific applications
on HPE Cray EX systems.

REFERENCES

[1] Oak Ridge National Lab, “Frontier,” https://www.olcf.ornl.gov/frontier/.
[2] Lumi Consortium, “LUMI,” https://lumi-supercomputer.eu/.
[3] Genci, “ADASTRA,” https://www.genci.fr/en/node/1149.
[4] National Energy Research Scientific Computing (NERSC), “Perlmutter,”

https://www.nersc.gov/news-publications/nersc-news/science-
news/2021/berkeley-lab-targets-exascale-with-perlmutter-and-nesap/.

[5] Los Alamos National Lab, “Crossroads,”
https://www.lanl.gov/projects/crossroads/.

[6] Oak Ridge National Lab (ORNL), “Crusher,”
https://docs.olcf.ornl.gov/systems/crusher quick start guide.html.

[7] Pawsey Supercomputing Centre, “Senotix,”
https://pawsey.org.au/systems/setonix/.

[8] Lawrence Livermore National Lab (LLNL), “El Capitan,”
https://www.llnl.gov/news/llnl-hpe-partner-amd-el-capitan-projected-
worlds-fastest-supercomputer.

[9] Argonne Leadership Computing Facility, “Aurora,”
https://www.alcf.anl.gov/aurora.

[10] Swiss National Supercomputing Center (CSCS), “ALPS,”
https://www.cscs.ch/computers/alps/.

[11] HPE, “HPE Cray Programming Environment,”
https://www.hpe.com/psnow/doc/a50002303enw.

[12] Argonne National Laboratory, “MPICH: A High-Performance,
Portable Implementation of MPI,” https://www.anl.gov/mcs/mpich-a-
highperformance-portable-implementation-of-mpi.

[13] D. De Sensi, S. Di Girolamo, K. H. McMahon, D. Roweth and T.
Hoefler, “An In-Depth Analysis of the Slingshot Interconnect,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’20, New York,
NY, USA, 2020.

9

[14] HPE, “HPE Slingshot Rosetta Interconnect,”
https://www.hpe.com/us/en/compute/hpc/slingshot-
interconnect.htmlresources.

[15] NVIDIA, “NVIDIA ConnectX-5 Ethernet adapters,”
https://www.nvidia.com/en-us/networking/ethernet/connectx-5/.

[16] S. Chunduri, T. Groves, P. Mendygral, B. Austin, J. Balma,
K. Kandalla, K. Kumaran, G. Lockwood, S. Parker, S. Warren,
N. Wichmann, and N. Wright, “GPCNeT: Designing a Benchmark
Suite for Inducing and Measuring Contention in HPC Networks,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’19. New
York, NY, USA: Association for Computing Machinery, 2019. [Online].
Available: https://doi.org/10.1145/3295500.3356215

[17] Scott Atchley, “Preparing For Frontier Training Series,”
https://olcf.ornl.gov/wp-content/uploads/Frontiers-Architecture-Frontier-
Training-Series-final.pdf.

[18] Oak Ridge National Lab (ORNL), “Frontier User Guide,”
https://docs.olcf.ornl.gov/systems/frontier user guide.html.

[19] Sandia National Laboratory, “Sandia micro-benchmarks (SMB),”
https://github.com/openucx/openhpca.

[20] N. Namashivayam, K. Kandalla, T. White, N. Radcliffe, L. Kaplan, M.
Pagel, “Exploring GPU Stream-Aware Message Passing using Triggered
Operations,” 2022.

10

