
1

Containers Everywhere
Towards a Fully Containerized HPC Platform

D. Fulton, L. Stephey, R.S. Canon,
B. Cook, A. Lavely

Lawrence Berkeley National Lab
May 11, 2023

CUG 2023 - Helsinki, FI

2

This work is a team effort

Special thanks to NERSC colleague Christopher Samuel (Computational Systems Group)
for help installing Slurm 23.02

Laurie Stephey
(NERSC)

Shane Canon
(NERSC)

Daniel Fulton
(NERSC)

Brandon Cook
(NERSC)

Adam Lavely
(NERSC)

3

Overview

• Containers at NERSC today

• NERSC’s container wishlist

• Containers everywhere! What? Why?

• Design requirements for putting containers everywhere

• Implementation examples of putting containers everywhere

• Outstanding issues/challenges with containers everywhere

4

Containers at NERSC Today
•User-facing container runtimes (batch jobs and interactive tools)

o Shifter
o Podman-HPC

•Packaging complex applications (user or staff managed)
o CP2k
o NWChem
o And more...

•Deployment of HPC system services:
o Slurm
o Monitoring
o Shifter Image Gateway

5

What’s Missing?
• Container orchestration…

o … for complex user workflows with HPC resources.
o … for persistent user services with HPC resources.
o … for staff provided (non-system) HPC services.

• Hidden/seamless containers for novice users.
• Automated continuous deployment for

staff provided services.

6

Containers Everywhere!
A containers everywhere HPC strategy is one where the container is the
primary building block of software, deployment, and orchestration at all
levels of an HPC system.

• Not just the packaging method, but also more flexible and scaleable
application architecture and continuous deployment.

• Together, we believe this can provide more flexibility in the HPC
system to more easily incorporate new hardware, and support a
broader set of science use cases.

• Is containers everywhere viable?
Cloud hyperscalers are already doing it!

Design Requirements

8

Stakeholders

•HPC Admin - An HPC administrator.

•HPC Staff Member - An HPC systems engineer providing services,
software, or other support without root privileges.

•Experienced Container User - An HPC user who is experienced with
building and running containers.

•Novice Container User - An HPC user who is a novice with the use of
containers.

9

HPC User Motivations

• Easier to install system packages and rootful applications.
• Granular control over performance.
• Enhanced collaborations, controlling and sharing application

runtimes and application development environments.
• More stability, flexibility, portability, reproducibility.
• Democratized containers for all users, including novices.

10

HPC Operator Motivations

• Decouple system maintenance from user environment.
• Easier/more frequent system updates.
• Allow non-root staff to contribute to system configuration.
• Rolling maintenances using orchestration (Kubernetes).
• More granular versioning.
• Synergy with cloud environments:

o Test HPC environments in cloud
o Portable system environments
o Easier cloud bursting

11

Use Cases

Reproduce Trad. HPC Functionality
• Interactive login into container.
• Routine file editing
• Code build/compile
• Running a scheduled batch job.
• Debugging/performance analysis
• Run metadata intensive application
• Sharing data with project collaborators
• Compose application runtime

environment
• Troubleshoot a user session.

Add Additional Functionality
• Compose an interactive development

environment
• Sharing a composed environment
• User-owned persistent complex

services.
• Advanced Resource and Access

Control
• Rolling HPC Maintenances
• Sandboxing System Updates
• Sandboxing Non-admin staff
• Continuous Deployment of Staff

provided software/service

Key Point: There are many use cases to satisfy all the way through stack
from control plane to user applications.

12

Design Milestones
Minimum Viable Simple, Loveable,

Complete
“Kitchen Sink”

Minimal impact to Novice
Container User

Users may customize login
environment containers

Users can specify resource
access control in containers

Secure. All user containers
run in user namespaces.

Containers-in-containers Kubernetes-in-kubernetes

Default login and
development environments
are in containers

User environment and
system software containers
are decoupled

Fully containerized system
software

Compute jobs in containers. Containerized service plane
(staff deployments)

Containerized service plane
(user deployments)

Session management.

Implementation

14

Example: Session Proxy Architecture
Session Proxy and Session Manager ensure user session persistence
across container rescheduling and logins.

15

Example: Jupyter Uses Container Today

16

Example: Jupyter/Session Proxy Integration

17

Example: Running a Debugger
Key ideas: May require strace to be installed in the image. May also require expertise that novice
users won’t have. Utility wrapper could help.

Running strace inside a container:

podman-hpc run --rm --volume /tmp:/tmp docker.io/myapp:v1.0 \
strace -e trace=file -f -o /tmp/podman-myapp-trace \
python3 -m myapp $(date +%s)

Running strace on a process in another container:

podman-hpc run --rm --name=test docker.io/myapp:v1.0 \
python3 -m myapp

podman-hpc run --rm --volume /tmp:/tmp --pid=container:test \
--cap-add sys_admin --cap-add sys_ptrace --net=container:test \
--security-opt=seccomp:unconfined docker.io/mystrace:v1.0 \
strace -e trace=file -f -o /tmp/podman-myapp-trace -p 1

strace: Process 1 attached

18

Example: Containers in Containers

Appropriate permissions need to be added to the outer container, as well
as a container runtime installation, directly or via runtime hook.

perlmutter:~> podman run --cap-add=sys_admin,mknod
--device=/dev/fuse --security-opt label=disable -it --rm
quay.io/podman/stable /bin/bash

[root@180f0e912674 /]# podman pull ubuntu

[root@180f0e912674 /]# podman run ubuntu:latest echo 'hello!'

hello!

19

Example: Batch Integration
• Currently, Slurm doesn’t extend the
munge perimeter into containers.

• SchedMD is working on several
Slurm/Kubernetes interaction models.

• One workaround would be a sidecar container to proxy
requests to the workload manager.

• Ultimately, HPC operator has to resolve the philosophical
conflict (high utilization vs high availability).

Future Work and Final Thoughts

21

Difficult Things that Need More Work

•Using Kubernetes with devices in control plane.

•User namespaces make sharing via filesystem difficult.

•Scheduling philosophy (Slurm/Kubernetes integration)

o High utilization vs high availability

•Software environment composability

o Probably don’t want monolithic images.

o Probably don’t want a matrix of images.

o Runtime composability or tools to let users compose their own.

22

Plans at NERSC
•Continue to support shifter

•Grow user base of podman-hpc and gather user-driven use cases with
an OCI compliant container runtime. Seek open source solutions.

•Deeper exploration of orchestration and scheduler interaction.

•Develop CI/CD model for staff software middle layer. Add (more)
automation into NERSC software operational model.

•Prototype session management plumbing, and/or work with HPE UAIs

•Evaluate limitations for system stack.

23

Final Thoughts

•Both HPC operators and user could benefit in many different ways from
putting containers everywhere.

•We realize containers everywhere is ambitious (maybe even a bit crazy)
and will require a substantial amount of work and collaborative effort.

•But the cloud is already doing it!

•Even if containers are not adopted everywhere in HPC, we are currently
leaving a lot on the table. Just trying will lead to improvements.

24

Thank You!

