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Abstract—Large scale many-tasks ensemble are increasingly
used as the basic building block for scientific applications running
on leadership class platforms. Workflow engines are used to
coordinate the execution of such ensembles, and make use of
lower level system software to manage the lifetime of processes.
PMIx (Process Management Interface for Exascale) is a standard
for interaction with system resource and task management system
software. The OpenPMIx reference implementation provides a
useful basis for workflows engines running on large scale HPC
systems.

In this paper we present early experience using PRRTE/PMIx
to manage the execution of many-tasks ensemble workloads on
HPE Cray XE systems, namely the early access system Crusher
at OLCF as well as the Frontier Exascale system. We outline
important considerations when using the platform for achieving
performance and highlight this alternative approach for user-
driven task sub-scheduling (i.e., task scheduling within an existing
job allocation). We report results from experiments run on
Crusher and the Frontier Exascale system based on a synthetic
many-task workload.

Index Terms—many-task, resource management, PMIx, exas-
cale

I. INTRODUCTION

Large scale many-tasks ensemble are increasingly used as
the basic building block for scientific applications running
on leadership class platforms [2]. Workflow engines are used
to coordinate the execution of such ensembles, striving to
optimize overall resource utilization and time to solution for
scientific applications. Towards that goal, workflow engines
make use of lower level system software to manage the life-
time of computational processes that constitute such ensem-
bles. Process management can be accomplished using native
(vendor provided) system software, or third party process
management tools.

PMIx (Process Management Interface for Exascale) is a
standard for interaction with system resource and task manage-
ment system software [8], [9], with a reference implementation
provided via Open PMIx used in the PMIx Reference RunTime
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Environment (PRRTE) project that underpins the OpenMPI
project [7]. The use of PMIx as a standard process manage-
ment layer for workflow engines has been hindered by the lack
of viable Python binding to the API, with Python being the de
facto standard for implementing many of the workflow engines
in use on large scale HPC systems. Recently, a Python binding
for PMIx was developed, and its use was demonstrated on the
Summit supercomputer at ORNL.

The PMIx specification offers a common interface for
process management that hides many of the details of the
native resource management system. In the context of the new
HPE Cray XE systems (e.g., Crusher/Frontier and Sunspot/Au-
rora), there will be two different resource managers, SLURM
and PBSPro respectively. The syntax for mapping/binding
of tasks differs between these two resource managers. The
PMIx specification offers a common interface that can be
used to abstract the local resource management environment.
The PMIx interface allows for tools that request launching of
both serial and parallel applications, which may use the client
interface to gather and exchange information about the parallel
execution environment (Figure 1).
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Fig. 1. PMIx interfaces (server, client, tool) that can be used to launch serial
and/or parallel applications (e.g., MPI applications).

The many-task scientific application use cases require coor-
dination among the ensemble of processes (serial and parallel)
that comprise the application workload. The execution of
these tasks can benefit from user-driven scheduling policies
that drive the placement and order of the workload on the
available resources. The emerging exascale systems at the Oak
Ridge Leadership Computing Facility (OLCF) and Argonne



Leadership Computing Facilities (ALCF), Frontier and Aurora
respectively, have complex compute node topologies, which
require care be taken when placing tasks on the nodes. For ex-
ample, on Crusher/Frontier a process on a given compute core
has a higher affinity (higher bandwidth) to two of the eight
GPUs and one of four network interfaces. The performance of
the application will suffer if these affinity requirements are not
observed when binding the resources (network, GPU, CPU)
to the process. In the context of many-task workloads, the
user-driven scheduling must be able to control these resource
binding/mapping details.
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Fig. 2. Architecture of Pyrun driver prototype.

This paper builds on previous work [5], where we studied
the behavior of the PMIx/PRRTE environment on Summit and
the use of the PMIx Python client API to drive many-task
workloads on that platform compared to the platform native
LSF tools. In this work we present early experience deploying
the PMIx/PRRTE software stack on Crusher/Frontier as a
foundational layer for executing workloads based on many-
task ensembles. We use a light weight user level scheduler
prototype (Figure 2) to orchestrate the execution of many-tasks
ensembles using the PMIx Python tools interface. We use a set
of synthetic workloads including the NAS parallel benchmark
to study the execution profile of this prototype. In particular,
we explore the unique process placement challenges posed
by the Frontier/Crusher node architecture, and the controls
exposed to clients of both PMIx/PRRTE and SLURM that
enable fine control of process placement and affinity that
may be needed for workflows with complex task and data
dependencies that may not be easily met by commonly used
process binding and mapping patterns. The experiments will
use the PMIx Python interface, which offers more fine-grained
control and greater insight into the stages of the process life-
cycle.

The contributions of this paper include a detailed description
of the challenges many-tasks workloads may encounter when
running on the new system. We present an overview of
the new system and discuss binding/mapping challenges that
will be important to make efficient use of resources. We
present results from a synthetic workload containing mixed,
scale, and duration to exercise the Pyrun/PRRTE approach for
running ensembles of scientific applications on the system. We

detail the setup and configuration for using the PMIx/PRRTE
solution on Frontier and leverage current work (presented in
separate paper) to enable Open MPI to take advantage of the
shared memory (SHM) and Slingshot 11 (CXI) providers when
running parallel applications.

II. PMIX

Process Management Interface for Exascale (PMIx) is a
community driven standard [8], [9] that offers an application
programming interface (API) to mask differences in native
workload management systems. The PMIx standard extends
the past PMI-1 and PMI-2 definitions [4]. The reference imple-
mentation of PMIx is provided by the OpenPMIx [7] project,
which provides a library to access the client, tool and server
interfaces defined by the PMIx standard. The OpenPMIx
project also maintains a reference runtime environment that
offers a portable PMIx server implementation, PRRTE (PMIx
Reference RunTime Environment). The PRRTE implementa-
tion is the most feature complete version of a PMIx server, but
other vendors have support for portions of the standard (e.g.,
SLURM, PBS Pro).

The primary purpose of PMIx is to offer a common pro-
gramming interface for managing processes in parallel/dis-
tributed systems. There are three “roles” within PMIx [9]:
client, server, tool. A tool is a supplementary utility that can
be used to request new processes be created by a server,
which may include co-location of processes to support the
tool itself, e.g., parallel debuggers. The client and server
interfaces provide the generic connection layer between the
application (client) and workload management system (server).
A PMIx application may be serial (single process) or parallel
(coordinating process comprising a single application). A
unique job identifier (jobid) is assigned to each application
and is used to track its lifecycle (e.g., assigning resources,
starting, terminating). A PMIx namespace is a string used
to uniquely identify jobs and their constituent processes. The
PMIx interface relies heavily on asynchronous events, which
are used to signal new actions (e.g., launch job), supporting
capabilities (e.g., input/output forwarding, signal delivery), and
manage process lifecycle (e.g., process termination, process
failures).

All of the PMIx APIs use a key-value approach for setting
directives and qualifiers (attributes) that are used to tailor the
behaviour of requested actions. For example, when launching
tasks via spawn, the PMIX_BINDTO directive can be used
to specify the appropriate resource binding when starting the
processes (i.e., “core” to bind process to compute cores). The
PMIx standard details the set of supported keys and attributes
for the items in the interface. This key-value approach makes
the interface highly flexible. This enables variations in the
underlying resource management systems as to what features
they choose to support. The callers can probe to determine
supported features using a query interface or use a try/catch
approach to backoff and retry. In this paper we focus on the
PMIx Python bindings, which were introduced in v4.0 of the
PMIx standard.



A. Pyrun and the PMIX Python client

In this paper, we use a Python driver prototype (Pyrun) to
exercise the Python client API for PMIX, demonstrating its
use to manage the execution of large ensemble of independent
tasks on the Crusher early access system, and the Frontier
CrayEX supercomputer. The PMIx Python API presents a thin
wrapping layer on top of the native C API for PMIx, while
maintaining the callback-based execution model for PMIx. The
Python PMIx client supports multithreading, providing proper
management for the Python GIL on entry into an exit from
the OpenPMIx C library layer.

A client driver code using the PMIx Python API presents
itself as a tool to the PMIx ecosystem. Listing 1 shows the
initialization phase, where a tool instance (the Python driver)
is initialized and connects to the server specified in a file
(dvm file); a callback handler (done_cb) is registered that is
invoked when a job ends. The callback uses a condition vari-
able done_var to notify other threads that maybe blocked
waiting for tasks to complete (e.g. the scheduling/queuing
engine).

1 def done cb(evhdlr:int, status:int, source:dict, info:list, results:list):
2 with done var:
3 done var.notify()
4 return pmix.PMIX EVENT ACTION COMPLETE,None
5

6 tool = pmix.PMIxTool()
7 rc,my proc = tool.init( [{’key’: pmix.PMIX SERVER URI,
8 ’value’: "file:{}".format(dvm file),
9 ’val_type’:pmix.PMIX STRING}] )

10

11 rc,handle = tool.register event handler( [pmix.PMIX EVENT JOB END],
None, done cb)

Listing 1. Example of tool initialization and registration for job
termination to trigger a done_cb callback that uses a condition
variable to notify the Python program.

Instantiating new processes is done via the spawn API.
This API can be used to create a single (serial) process, or
multiple processes that can form a parallel cohort (e.g. by
calling MPI_init()). Information that fully describe the
code to be executed in the newly created processes is repre-
sented in an app data structure, while the desired placement,
mapping, and binding behavior is expressed via the info data
structure. The Python client API uses Python dictionaries (and
list of dictionaries) as the main data type to represent such
info, simplifying the implementation of application logic by
avoiding the need for low level APIs used in the C interface.

1 job info = [ {"key": pmix.PMIX MAPBY,
2 "value": "core",
3 "val_type": pmix.PMIX STRING},
4 {"key": pmix.PMIX BINDTO,
5 "value": "core",
6 "val_type": pmix.PMIX STRING} ]
7 exe = Path("/home/sgrundy/bin/sleeper").resolve()
8 app = { "cmd": str(exe),
9 "argv": [str(exe), "-n", "180"],

10 "maxprocs": 8,
11 "my_id": 1 }
12 rc, nspace = tool.spawn(job info, [app])

Listing 2. Example of tool requesting to spawn an 8 process job that
takes a command-line argument, with all processes mapped & bound
to by cores.

Listing 2 shows an example of tool.spawn() that cre-

ates a job with 8 processes and sleeper -n 180 as the command-
line argument. The 8 processes in the job are mapped to the
available resources based on compute cores, and each instance
(MPI rank) is bound to a single compute core.
1 def iof cb(iofhdlr:int, channel:int, source:dict, payload:dict, info:list):
2 buf = payload[’bytes’][:int(payload[’size’])].decode(’UTF-8’).

strip()
3 # ...process buffer in Python as appropriate...
4

5 tool.iof pull( [{’nspace’:nspace,
6 ’rank’: pmix.PMIX RANK WILDCARD}],
7 pmix.PMIX FWD STDOUT CHANNEL |
8 pmix.PMIX FWD STDERR CHANNEL,
9 [], iof cb)

Listing 3. Example of a tool requesting to have all stdout and
stderr from a remote set of processes routed to the callback handler
iof_cb.

Listing 3 shows an example of the tool requesting to
receive the output from remote processes. When data from
the remote processes is generated on the standard output and
error file descriptors, the contents will be delivered to the
registered callback handler (iof_cb()) where the data may
be extracted from the buffer and processed accordingly by
the calling Python process. The source of the data is also
provided with the callback, so the data can be recorded on a
per-job basis, which might be printed at the end or written to a
common file in order to reduce the number of file descriptors.
This facility can be particularly useful when managing the
execution of a large number of tasks, by using a single file to
store output from all tasks that can be processed postmortem
into separate files per task and/or rank, alleviating the potential
load on the underlying parallel file system from dealing with
too many open files during job execution.

III. PMIX SERVER

A. PRRTE

The PRRTE package includes a PMIx server and tools
to launch and manage PMIx jobs. PRRTE is the default
runtime that will be included with Open MPI v5.0.0, which
now requires PMIx for parallel process initialization. In
Open MPI v5, the mpirun command is a thin wrapper around
the PRRTE launch utility (prterun). There are two startup
modes for PRRTE: one-time and persistent. The one-time
mode has PRRTE daemons start and stop for each launch
of a parallel application (i.e., each mpirun a.out). The
persistent mode decouples daemon startup and allows a set
of PRRTE daemons to be reused for multiple application
launches. This persistent functionality is referred to as Dis-
tributed Virtual Machine (DVM) mode in PRRTE.

PRRTE uses a component infrastructure inherited from
Open MPI to support a variety of capabilities. The process
launch mechanism (PLM) framework is used to startup the
runtime daemons PRRTE uses to manage the parallel execu-
tion environment. We use the slurm PLM for all tests.

B. Mapping/Binding

With PMIx, the placement of processes on computing
resources generally involves two phases, a) logically map-
ping processes to available resource, and b) actually binding



the process to the hardware resources. These relate to the
PMIX_MAPBY and PMIX_BINDTO a show in Listing 2.

We use the ppr format with PRRTE to express
the desired mapping requirements. The syntax is
ppr:X:type:options, where X is an integer value
for number of instances for a given resource type. The
options are a colon-separated list of qualifiers that can
be used to tailor for specific uses cases. For example,
ppr:1:l3cache states to map 1 process to each L3 cache
on each available node, by default filling nodes in order. In this
paper, we use the :PE option to further qualify the mapping
with how many resources to assign to a given process when
mapping. For example, ppr:2:l3cache:PE=4 indicates
that 2 processes are mapped to each l3cache, and assigned 4
cores each. This additional option is especially helpful when
overlapping many tasks to the same nodes. This allows the
mapping/binding to properly separate the processes on the
compute nodes.

C. Affinity on Frontier
As compute nodes become more heterogeneous, it becomes

even more important to pay attention to proper placement of
resources. For example, on Frontier (Figure 3) there are four
AMD MI250 accelerators per node, and each accelerator has
two Graphic Compute Dies (GCDs) that present as eight GPU
devices per node [6]. The bandwidth between different sets of
GPUs and CPUs differs, with some have higher affinity (higher
bandwidth). Additionally, there are four Slingshot 11 network
interfaces per node, which have similar affinity characteristics
to the CPUs and GPUs. This makes process mapping/binding
for node resources more challenging and naive selection can
result in poor performance.

Fig. 3. Frontier compute node topology (source: OLCF)

Resource binding is often expressed in terms of CPU
placement. As more heterogeneous systems like Frontier ar-
rive, proximity of processes to certain devices becomes more
important. A common method for setting the GPU affinity for
a process is to use a “wrapper” script like in Listing 4, which
sets the visible devices based on the process’ CPU binding.

When using SLURM utilities directly to launch processes,
the srun utility supports binding a task to the closest GPU
(--accel-bind=g) or closest NIC (--accel-bind=n).
There is not currently a command-line option exposed via

1 #!/usr/bin/bash
2 # Usage: mpirun ... ./gpuwrapper.sh ./a.out
3 declare −A gpumap
4 declare −A visible
5

6 function map gpu() {
7 local c0=$1
8 local c1=$2
9 local c2=$3

10 local c3=$4
11 local gpu=$5
12 for c in $(
13 seq $c0 $c1
14 seq $c2 $c3
15 ); do
16 gpumap[$c]=$gpu
17 done
18 }
19

20 #NUMA 0:
21 map gpu 0 7 64 71 4
22 map gpu 8 15 72 79 5
23 #NUMA 1:
24 map gpu 16 23 80 87 2
25 map gpu 24 31 88 95 3
26 #NUMA 2:
27 map gpu 32 39 96 103 6
28 map gpu 40 47 104 111 7
29 #NUMA 3:
30 map gpu 48 55 112 119 0
31 map gpu 56 63 120 127 1
32

33 echo −n "$(hostname) "
34 taskset −c −p $$
35

36 corelist=$(taskset −c −p $$ | awk ’{print $NF}’)
37 readarray −d , −t strarr <<<$(echo "$corelist")
38

39 unset ROCR VISIBLE DEVICES
40

41 length=${#strarr[*]}
42 for ((n = 0; n < $length; n++)); do
43 entry="${strarr[$n]/$’\n’/}"
44 readarray −d − −t cpus <<<"$entry"
45 ntokens=${#cpus[*]}
46 if [ $ntokens −eq 2 ]; then
47 first=${cpus[0]}
48 last=${cpus[1]/$’\n’/}
49 for c in $(seq $first $last); do
50 visible[${gpumap[$c]}]=1
51 done
52 else
53 visible[${gpumap[$entry]}]=1
54 fi
55 done
56

57 devices="${!visible[@]}"
58 export ROCR VISIBLE DEVICES=${devices// /,}
59 export HIP VISIBLE DEVICES=$ROCR VISIBLE DEVICES
60

61 echo "Use ROCR_VISIBLE_DEVICES=${ROCR_VISIBLE_DEVICES}"
62 exec "$@"

Listing 4. Example wrapper script to set the GPU visible devices
based on the node layout of Frontier.

PRRTE to support binding in terms of the GPU or NIC.
PRRTE does support the PMIx interface to query for hardware
topology information, which could be used to create custom
routines to select “closer” devices. Absent this support from
the PMIx server, applications must determine the appropriate
affinity based on CPU binding. For the many-task scenario,
the “wrapper” script is the most straightforward way to insert
affinity logic for GPUs and NICs based implicitly on CPU
binding. This wrapper does not require any runtime library
modifications and supports both serial processes and processes
that are part of a parallel cohort.

https://docs.olcf.ornl.gov/systems/frontier_user_guide.html#frontier-compute-nodes


D. Abstraction Layer

The PMIx interface can help to decouple the user from
the native resource manager. This has an added benefit in
the face of many-task workloads where the application mix
can be rather varied (i.e., not a single parallel application)
and the details for map/bind, I/O redirection, process lifecycle
events, etc. is reduced to the that of the PMIx interface. This
programmatic interface can improve productivity and reduce
inefficiencies like ad hoc delays when using command-line
only utilities that lack the higher level of system introspection
(e.g., process startup & termination events).

IV. EXPERIMENTAL RESULTS

In this section we present results of using the Pyrun driver
prototype to execute many task workloads on the Crusher early
access system as well as initial runs on Frontier. Two sets of
workloads are used in these experiments, a synthetic workload
used to characterize the ability of the Pyrun prototype and
the PRRTE backend to orchestrate the execution of a large
ensemble of independent tasks, and a workload based on
the NAS parallel benchmark [1], [3] used to exercise the
Pyrun/PRRTE prototype’s ability to execute realistic MPI-
based workloads. These workloads are explicitly configured to
represent ensembles of sub-node independent jobs, a scenario
that is becoming more common in HPC workloads as the trend
towards fat more powerful nodes continue, and many codes
are not able to scale up and make effective use of all node
resources in a single instance.

The synthetic workload is based on a simple MPI ring buffer
communication probe, where participating processes form a
ring and pass a token around, then the tasks sleep for a random
length of time passed as a command line argument. This
exercises the ability of the PRRTE and OpenMPI runtimes to
instantiate and execute basic MPI startup, shutdown and point-
to-point communications for a large ensemble of independent
tasks.

The workload based on the NAS benchmark is made up of
an ensemble of 8000 randomly selected class B and class C
tests from the MPI version of the NAS Parallel Benchmarks
(NPB) 3.4.2 release. All tasks were run using 4 ranks for each
job. This configuration was chosen to allow for maximum
coverage as many of the tests in the suite have specific
requirements for the size of the executing MPI program, while
allowing for placing a meaningful number of jobs on the same
node.

A. Crusher experiments: Synthetic workload

In these experiments, an ensemble of the synthetic mpi
sleeper workload tasks was executed on different number of
nodes. For each run on N nodes, the workload consisted of
ntasks jobs that sleep for a time interval uniformly distributed
in the interval [450, 550] seconds. The size of the ensemble
depends on the size of individual jobs (nranks) and the
number of nodes in the allocation. These experiments used the
hardware threads on each node to allow for more tasks to be
dispatched on the allocated nodes. The ensemble size (ntasks)

was chosen to be 3X the number of tasks needed to completely
fill the allocated nodes to test the ability of the Pyrun/PRRTE
prototype to sustain task execution for a meaningful period
of time. With 128 hardware threads per node, ensemble size
ntasks = 3×N×168/nranks. So for an ensemble running on
N = 128 nodes and dispatching nranks = 2 tasks, a total of
24, 576 tasks would be dispatched. In this set of experiments,
the values of 1, 2, 4, 8, 16 were used for nranks, resulting in
128, 64, 32, 16 and 8 tasks per node, respectively.

Figure 4 shows the number of concurrent jobs executing for
a subset of the node configurations, while Figure 5 shows the
corresponding utilization history for the allocated nodes. The
figures show that as the number of tasks in the workload and
the size of the allocation grows, the Pyrun/PRRTE prototype
struggles to maintain full utilization as it endeavors to process
a high rate of task completion call backs while dispatching
replacement tasks into the PRRTE DVM. This can be seen
in the reported results, starting with N = 76 nodes and
nranks = 1, utilization drops as the first batch of tasks termi-
nate and the Pyrun driver attempts to replace them with queued
tasks, eventually returning to full utilization before the pattern
repeats before the ensemble enters the draw down phase where
there are no queued tasks to submit. This pattern appears again
for N = 100 where the Pyrun/PRRTE prototype is unable
to achieve full utilization with nranks = 1, and again for
N = 128, where for nranks = 1, the prototype achieves a
maximum utilization of 77.35% before falling due to tasks
completing. The inability to maintain full utilization prevents
the prototype from completing all tasks in the ensemble before
the batch allocation time expires, completing 39, 135 out of
an ensemble of 49, 152 tasks within the 40 minutes allocation
time, or 79.6%.

It should be however noted that despite the inability of the
Pyrun/PRRTE prototype to sustain full utilization as the node
count and ensemble size increase, it is able to successfully
reach a maximum of 12, 674 concurrently executing tasks (for
N = 128 and nranks = 1) before falling behind. Further
improvements in the prototype and the PMIx/PRRTE backend
should further improve the task dispatch performance and
allow for even larger ensembles to be executed successfully.

B. Crusher Experiments: NAS Benchmarks

In this set of experiments, we use the Pyrun/PRRTE pro-
totype to drive the execution of a workload composed of a
8000 4-rank tasks from the NASA Parallel Benchmark (NAS),
class B and C problems. All experiments used a fixed mix of
tasks as their input. These experiments illustrate the trade-
off between increased utilization and optimal performance of
individual tasks in an ensemble workload, and the impact
on the execution time of the overall ensemble. We also
demonstrate the use of the PMIx python client to control task
binding and mapping behavior in PRRTE.

Figure 6 shows the time evolution of the number of active
tasks for different task binding and mapping configuration,
while Figure 7 shows total cores utilized over time for each
configuration. Plots labeled core represent tasks that are
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Fig. 7. NAS Benchmark, 20 Nodes, Active cores
mapped and bound to successive cores on each node. So the

first 4-rank task to land on a node would occupy cores 0− 8
(as hardware threads are represented as physical cores), while
subsequent tasks on the same node would occupy the following
8 cores. This results in 8 processes sharing each L3 cache on
the node, 4 from each task. This is accomplished by setting
the entries PMIX_MAPBY and PMIX_BINDTO to "core" in
the info Python dictionary used to spawn a new PMIX task.

Plots labeled l3cache:PE=N correspond to experiments
where each process in a task is mapped to N cores,
and successive ranks are spread across L3 cache do-
mains. So for N=8, each rank has dedicated access to
all cores in an L3 cache domain, while for N=2 each
L3 cache domain is shared between 4 processes from 4
different tasks, each using 2 cores. This corresponds to
setting PMIX_MAPBY to "ppr:1:l3cache:PE=2" and
PMIX_BINDTO to "core" in the info Python dictionary
used to spawn a new PMIX/PRRTE task.

Sharing the L3 cache between processes adversely impacts
applications performance due to well known cache collision
and eviction effects. This can be seen in Table I where the
average execution time (µ), standard deviation (σ) and the co-
efficient of variation (cv = σ/µ) for the individual benchmarks
executed using PE=8 and PE=2. The table shows that, as
expected, sharing the L3 cache increases the average execution
time for all tasks. The standard deviation and coefficient of
variation also increase due to the unpredictable timing and
exact task mix on any particular node. This increase however
is balanced by the increased utilization of computational



TABLE I
L3 CACHE SHARING IMPACT ON NAS BENCHMARK WORKLOAD

Ntasks µ σ σ/µ
Code PE=8 PE=2 PE=8 PE=2 PE=8 PE=2 PE=8 PE=2
bt.B.x 470 477 37.37 61.45 0.94 8.25 0.03 0.13
bt.C.x 511 525 150.53 242.94 2.10 26.59 0.01 0.11
cg.B.x 533 536 8.03 18.20 0.21 5.22 0.03 0.29
cg.C.x 490 495 22.28 50.66 0.46 12.14 0.02 0.24
ep.B.x 508 514 9.68 10.83 0.14 0.31 0.01 0.03
ep.C.x 514 518 34.95 39.25 0.57 0.20 0.02 0.01
ft.B.x 476 481 8.00 12.37 0.12 1.53 0.02 0.12
ft.C.x 483 492 28.95 46.12 0.30 5.79 0.01 0.13
is.B.x 490 492 2.19 2.83 0.07 0.31 0.03 0.11
is.C.x 503 508 4.99 7.32 0.07 1.00 0.01 0.14
lu.B.x 491 492 22.47 32.89 0.32 2.84 0.01 0.09
lu.C.x 498 510 93.60 129.83 1.18 9.64 0.01 0.07
mg.B.x 489 492 2.17 3.20 0.08 0.46 0.04 0.14
mg.C.x 479 483 8.46 16.74 0.13 3.10 0.02 0.19
sp.B.x 472 474 23.66 54.89 0.31 11.99 0.01 0.22
sp.C.x 501 511 115.71 255.39 0.86 41.84 0.01 0.16
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Fig. 8. 8 Active jobs on Frontier PE4.
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Fig. 9. 9 Utilization on Frontier PE4.

resources, leading to an overall reduction in the execution time
of the entire ensemble. As a result, using PE=2 leads to the
shortest overall execution time for the ensemble, while using
PE=8 results in the simulation exhausting its allocation time
before completing all tasks (resulting in different number of
tasks in I).

C. Frontier Experiments : Synthetic Workflow Scalability

In this set of experiments, the synthetic MPI sleeper bench-
mark described in Sec. IV-A is deployed on Frontier to test the
scalability of the Pyrun/PRRTE prototype when deployed at
scale. For this set of runs, we chose a representative workload
that assigns one or two tasks per GPU on each node in the
allocation. This is done using an ensemble of single rank tasks,

with sleep time uniformly distributed in the interval [550, 650]
seconds, with L3 cache binding and mapping as discussed in
Sec. IV-A. With PE=4 two tasks map to the same L3 cache
(and indirectly to the same logical GPU on the node), while
using PE=8 results in single task per L3 cache/logical GPU
on the node. For PE=8, Figures 10 and 11 shows the time
evolution of the number of active tasks for different allocation
sizes and the corresponding percentage utilization respectively.
Figures 8 and 9 show the active tasks and utilization for PE=4.

The plots show the same pattern discussed earlier for runs
on Crusher, with task launch overhead impeding the ability
of the Pyrun/PRRTE prototype to achieve and maintain full
utilization as allocation size and number of tasks in the
ensemble grow. The plots also demonstrate the ability of the
PRRTE runtime to scale up to 2048 Frontier nodes (or 21.7%
of the machine size). At this scale, the Pyrun/PRRTE is able
to sustain task man management and dispatch without error.
When running on 2048 nodes, the prototype reaches a maxi-
mum of 15, 126 concurrent task (or 92.3% utilization) using
PE=8. When running using PE=4, the prototype reaches a
maximum of 14, 978 concurrent tasks (or 45.71% utilization).
Further work to improve the task dispatch overhead is needed
to allow better utilization at scale.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented our experience using the
PMIx/PRRTE runtime to manage the execution of large
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ensembles of independent tasks on the Frontier Cray EX
Exascale computer system and the Crusher early access system
at OLCF. We used the PMIx Python client API via a prototype
driver (Pyrun) to study the viability of PRRTE/PMIx as the
runtime backend for the execution of massive ensembles of
independent serial and parallel tasks. We evaluated the ability
of the prototype and its scalability in launching massive
ensembles and maintaining full utilization on a large size node
allocations. We successfully deployed the Pyrun/PRRTE pro-
totype to run task ensembles on 2048 Frontier nodes, reaching
a maximum of 92.3% utilization with 8 tasks per node, or
15, 126 concurrent tasks. Experiments also revealed the scal-
ability challenges of the prototype, as task dispatch overhead
in the Python driver and the PRRTE backend prevents task
ensembles on large node allocations from maintaining high
utilization.

We plan future work to reduce the overhead and speed
up the execution of large task ensembles in both the Python
driver, the PMIx Python binding, and the PRRTE backend.
Extending the Python driver to support dispatching tasks to
multiple DVMs that partition a large allocation into smaller
segments would allow faster overall task dispatch and improve
overall utilization. Support for non-blocking task spawn in
the PMIx Python binding would allow the driver to more
efficiently submit more tasks into the PMIx/PRRTE backend.
Finally, the PRRTE backend could be extended to reduce the
overhead of executing tasks on a client-provided set of hosts,
where it is up to the client to keep track of the occupancy
state of each node in the allocation, and use that information
to submit tasks to hosts with available resources, avoiding the
need for the PRRTE backend to search for available slots with
each new task submission.

While this work targeted the PRRTE implementation of the
PMIx standard via the OpenPMIx library Python binding, the
underlying principles and approach can be applied to any
PMIx compliant resource manager/runtime that exports the
standard PMIx interface. To the best of our knowledge, no
other PMIx implementation exports the process management
API used in the Pyrun prototype. Wider support for this API

would provide a portable programmable abstraction to the pro-
cess management functionality embedded in system resource
managers, affording applications and workflow engines more
flexibility and control beyond what is currently possible using
a command line tool based approach. We hope this work
motivates implementers to support and export a more complete
subset of the PMIx specification.
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