
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Supporting Many Task Workloads on Frontier using
PMIx and PRRTE

Wael Elwasif, Thomas Naughton

Oak Ridge National Laboratory

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak

Ridge National Laboratory, which is supported by the Office of Science of the U.S.

Department of Energy under Contract No. DE-AC05-00OR22725

22

HPC Workflows Build Upon Task Management

• Workflow Engines coordinate the execution of compute tasks.

• Challenges using system software (PBS, Slurm, mpirun … etc):

– Shell- based (one process per task)

– Scalability

– OS resource exhaustion

• Custom process management subsystem for each engine

– Portability, maintenance, code bloat, …

• Use a standard

– PMIx: Process Management Interface for Exascale

3

Motivation

• Portability:

– PMIx standard supported by several native system resource managers

• Not all export the API to outside users

• Programmability

– Using an API instead of command line tools for better control

• User-level deployment

– Implementation deployed in user-space avoid impacting shared system
resources

4

PMIx : Process Management Interface for EXascale

PMIx is a standard API providing libraries and programming models with
portable and well-defined access to commonly available system services

• PMIx is messenger between software services (not a doer)

– Facilitator of interactions between applications, tools & runtime environments

• Standard API for process and resource management

– Specifications for Server/Client/Tool interfaces

• Open, community driven standard

Clients
(e.g, MPI, OpenSHMEM)

Source: https://PMIx.org

https://PMIx.org

6

PMIx : Process Management Interface for EXascale

• Example use cases:

– Process wire-up via either business card exchange or “instant on” (where supported)

– Tool connections including debugger support

– Event notification used by fault tolerant libraries

– Environment discovery for Application/Job/Node information

– Job scheduler interaction

• More information

– Monthly status meetings & Quarterly voting meetings

– Specification & Governance

Source: https://PMIx.org

https://github.com/pmix/pmix-standard
https://github.com/pmix/governance

9

OpenPMIx

OpenPMIx is a feature complete implementation of PMIx Standard

• OpenPMIx provides C library implementation to connect PMIx-enabled clients
(like Open MPI) with PMIx-enabled Tools (like debuggers) and PMIx-enabled
Servers (like PRRTE, SLURM, IBM JSM)

– Open, community supported, scalable implementation

– Proving ground for new additions to PMIx Standard

– Used on many large scale HPC systems

– Cross-version compatibility allows clients to use a different

 version of OpenPMIx than the server or tool

https://OpenPMIx.org

10

PRRTE

PMIx Reference RunTime Environment (PRRTE) is a featureful, scalable,
PMIx-enabled runtime environment

• PRRTE support interfaces needed for PMIx-enabled clients & tools to interact
across HPC systems with a portable PMIx-enabled server

– Offers PMIx support even if host environment is not PMIx-enabled

• Open, community supported, scalable implementation

– Supports single instance jobs via prterun and multiple jobs via prte/prun (“DVM mode”)

– Supports tools interface (to include replacement for MPIR)

• Origin: Based on the OpenRTE runtime from Open MPI, which evolved into a
stand-alone project.

14

PMIx Python Binding

• Recent addition to PMIx (starting Ver. 4.1)

– C bindings present a challenge for general adoption in many workflows

• Part of the OpenPMIx library

– Use Cython to access C-layer in OPenPMIx

• Almost-direct translation of the C-API

– Not all APIs are currently exported via the Python interface

• Maintain the callback-based design

– C layer calls back into the Python binding/client code

• Python data structure simplify usage

– List of dictionaries as the key argument type

16

Pyrun: Prototype Lightweight Python PMIx driver

• Target OpenPMIx and PRRTE

– Rely on PRRTE persistent DVM functionality

– PRRTE functionality only needed for daemons
initialization

• Simple user-level FIFO scheduler with back-fill

• Multiple spawner threads for task injection

• Single PMIx tool connection to PRRTE

• Nonblocking, callback- based API

• Task List (applications)

– Executable & arguments

– Number of processes

• Ex. MPI processes

• Scheduler

– Free slot tracking

• Generic counter, or Specific node(s)

– FIFO queue with back-fill

– Spawner threads consume tasks

– Add/Remove slot tracking

• PMIx standard

– Spawn tasks

– Callbacks &
Events

1

2

17

Pyrun PMIX interaction : Initialization

Initialize tools interface and connect to PRRTE daemons

• Pyrun presents itself as a PMIx tool

• Connect to a running PRRTE DVM
using the URI in dvm_file

import pmix
tool = pmix.PMIxTool()
rc, my_proc = tool.init(
 [
 {
 "key": pmix.PMIX_SERVER_URI,
 "value": f"file:{dvm_file}",
 "val_type": pmix.PMIX_STRING,
 }
]

)

18

Pyrun PMIX interaction : callback

Define a job termination call back handler that notifies threads waiting on a condition variable

• Register an even handler for PMIX_EVENT_JOB_END

• Callback notify all threads waiting on a condition variable

def done_cb(evhdlr: int, status: int, source: dict, info: list, results: list):
 with done_var:
 done_var.notify()

 return pmix.PMIX_EVENT_ACTION_COMPLETE, None

rc,myhandle = tool.register_event_handler([pmix.PMIX_EVENT_JOB_END], None, done_cb)

19

Pyrun PMIX interaction: Spawn task(s)

Define and spawn (nonblocking) a PMIx task
on 8 cores – with binding and mapping to cores

• Spawn one (or more) PMIx apps on
behalf of the calling process

• PMIx suport both blocking and non-
blocking spawn

– The Python client currently only supports
blocking spawn

• job_info is shared across all apps

– Specify mapping and binding, ..etc

job_info = [
 {
 "key": pmix.PMIX_MAPBY,
 "value": "core",
 "val_type": pmix.PMIX_STRING
 },
 {
 "key": pmix.PMIX_BINDTO,
 "value": "core",
 "val_type": pmix.PMIX_STRING
 },

]
exe = "/home/elwasif/bin/sleeper"
app = {
 "cmd": str(exe),
 "argv": [str(exe), "-n", "180"],
 "maxprocs": 8,
 "my_id": 1
 }

rc, nspace = tool.spawn(job_info, [app])

20

PRRTE Binding, Mapping, and GPU affinity

• PRRTE is not GPU aware

– Binding/mapping is done using CPU-only constructs

• Need binary wrappers to assign GPUs to processes

• Selection based on known CPU core/GPU NUMA affinity information

• Works for both parallel (MPI) and sequential tasks

• Supports:

– Processes sharing the same GPU

– Processes using more than one GPU

21

Wrapper Code

#!/usr/bin/bash

declare -A gpumap
declare -A visible

function map_gpu() {
 local c0=$1; local c1=$2;
 local c2=$3; local c3=$4;
 local gpu=$5;
 for c in $(seq $c0 $c1; seq $c2 $c3); do
 gpumap[$c]=$gpu
 done
}
#NUMA 0:
map_gpu 0 7 64 71 4; map_gpu 8 15 72 79 5
#NUMA 1:
map_gpu 16 23 80 87 2; map_gpu 24 31 88 95 3
#NUMA 2:
map_gpu 32 39 96 103 6; map_gpu 40 47 104 111 7
#NUMA 3:
map_gpu 48 55 112 119 0; map_gpu 56 63 120 127 1

corelist=$(taskset -c -p $$ | awk '{print $NF}')
#Split the string based on the delimiter, ','
readarray -d , -t strarr <<<$(echo "$corelist")

length=${#strarr[*]}
for ((n = 0; n < $length; n++)); do
 entry="${strarr[$n]/$'\n'/}"
 #Split the string based on the delimiter, '-'
 readarray -d - -t cpus <<<"$entry"
 ntokens=${#cpus[*]}
 if [$ntokens -eq 2]; then
 first=${cpus[0]}; last=${cpus[1]/$'\n’/};
 for c in $(seq $first $last); do
 visible[${gpumap[$c]}]=1
 done
 else
 visible[${gpumap[$entry]}]=1
 fi
done
devices="${!visible[@]}"
export ROCR_VISIBLE_DEVICES=${devices// /,}
export HIP_VISIBLE_DEVICES=$ROCR_VISIBLE_DEVICES
exec "$@"

22

Experimental Evaluations

• Using prerelease OpenMPI 5.0, OpenPMIx 4.2

• Node architecture :

– 64-Core AMD EPYC 7A53 (x 2 HW threads)

– 512 GB DDR5 CPU memory

– 4 AMD 250X GPUs (x2 GCD)

– 128 HBM2E / GPU (64 GB/GCD)

– Infinity Fabric CPU-GPU connection

– 4x Slingshot 11 NIC

• Crusher : 192 Nodes

• Frontier : 9,048 Nodes

23

Crusher Scaling Experiments

• Assess ability of Pyrun/PRRTE to manage large number of independent tasks

• Many-task Workload:

– MPI ring buffer with a random sleep duration in [450–550] Sec.

– Prestage code to NVME on compute nodes to avoid FS issues

– Use all 128 HW threads on compute nodes

– NOT High Throughput workload

• Pyrun uses a pool of available "slots" on which tasks are scheduled

• Sweep on different size allocations (<= 128 nodes)

• Number of tasks = 3 x N tasks to fill the entire allocation

24

Crusher Scaling Experiments

25

Crusher Scaling Experiments

• 128 nodes

– > 12500 concurrent tasks

– Utilization peaks at 80%

– Cannot finish all tasks within allocation time

• Cannot sustain full utilization at high
outstanding task count

– Task launch overhead too large to keep up with
terminating tasks

26

Frontier Experiments:

• Two Scenarios

– PE8: 1 task per GPU - PRRTE mapby ppr:1:l3cache:corecpus:PE=8

– PE4: 2 tasks per GPU - PRRTE mapby ppr:1:l3cache:corecpus:PE=4

• Workload:

– Single rank, MPI ring buffer with a random sleep duration in [550–650] Sec.

– Prestage code to NVME on compute nodes to avoid FS issues

– Use all 64 cores on compute nodes

• Sweep on different size allocations (<= 2048 nodes)

• Number of tasks = 3 x N tasks to fill the entire allocation

27

Frontier Experiments: Active Jobs

PE8

• Many tasks on PRRTE DVM scalable up to 2048 nodes (22.6 % System size)

– O(16000) concurrent tasks

– Cannot finish all tasks within allocation time for PE4 at 2048 nodes

• Cannot sustain full utilization at high outstanding task count

– Task launch overhead too large to keep up with terminating tasks

PE4

28

Frontier Experiments : Utilization

• Utilization drops with large number of outstanding tasks

– Peak only 45% for PE4 on 2048 nodes

• Ramp-up time too long for large task count

• Need to improve task launch latency to maintain high utilization

PE8
PE4

29

Frontier OpenPMIx/PRRTE Ramp Up Performance

PE8: 8 tasks per node

PE4: 16 tasks per node

t0 = time()
tool.spawn(...)
t1 = time()
y = 1/(t1-t0)

30

Crusher Experiments: NAS Benchmark

• Use Pyrun/PRRTE to drive hybrid many task workload

– Exercise OpenMPI sub-node tasks for many task workloads

• Stude tradeoff between individual task performance and
ensemble execution time

– Improved utilization vs slow down due to sharing L3 cache

– PE=8 : 1 rank per l3cache ….
PE=1 : 8 ranks per l3cache

– Ranks from the same MPI job spread on different l3caches

• Workload:

– 20 Crusher nodes

– 8000 4-rank NAS benchmark class B, C problems

– Variable runtime (range from 2 – 150 Seconds)

– Prestage code to NVME on compute nodes to avoid FS issues

– Use all 64 cores on compute nodes

31

Crusher NAS Experiments

• PE=8 fails to finish within allocated time

• PE=2 gives best ensemble execution time

• map by core places all 4-ranks from the same job on the same l3 cache domain

• More concurrent jobs makes up for degraded performance due to cache sharing

32

NAS Cache Sharing Effect

Code Ntasks µ σ σ/µ

PE=8 PE=2 PE=8 PE=2 PE=8 PE=2 PE=8 PE=2

bt.B.x 470 477 37.37 61.45 0.94 8.25 0.03 0.13

bt.C.x 511 525 150.53 242.94 2.10 26.59 0.01 0.11

cg.B.x 533 536 8.03 18.20 0.21 5.22 0.03 0.29

cg.C.x 490 495 22.28 50.66 0.46 12.14 0.02 0.24

ep.B.x 508 514 9.68 10.83 0.14 0.31 0.01 0.03

ep.C.x 514 518 34.95 39.25 0.57 0.20 0.02 0.01

ft.B.x 476 481 8.00 12.37 0.12 1.53 0.02 0.12

ft.C.x 483 492 28.95 46.12 0.30 5.79 0.01 0.13

is.B.x 490 492 2.19 2.83 0.07 0.31 0.03 0.11

is.C.x 503 508 4.99 7.32 0.07 1.00 0.01 0.14

lu.B.x 491 492 22.47 32.89 0.32 2.84 0.01 0.09

lu.C.x 498 510 93.60 129.83 1.18 9.64 0.01 0.07

mg.B.x 489 492 2.17 3.20 0.08 0.46 0.04 0.14

mg.C.x 479 483 8.46 16.74 0.13 3.10 0.02 0.19

sp.B.x 472 474 23.66 54.89 0.31 11.99 0.01 0.22

sp.C.x 501 511 115.71 255.39 0.86 41.84 0.01 0.16

33

Conclusions

• PMIx/PRRTE Python client usable as a standard process
management layer for workflow engines.

– Scalable to large node counts and large ensembles on PRRTE

• Provide a user-level programmable solution

– Little or no impact on system resource and job managers

• Needed: Improvements in task launch latency

• Needed: Better PMIx vendor support

– Export API for user-level access.

34

Questions?

Acknowledgement: This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-
00OR22725. This research was partially supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the
U.S. Department of Energy Office of Science and the National Nuclear Security Administration.

	Slide 1: Supporting Many Task Workloads on Frontier using PMIx and PRRTE
	Slide 2: HPC Workflows Build Upon Task Management
	Slide 3: Motivation
	Slide 4: PMIx : Process Management Interface for EXascale
	Slide 6: PMIx : Process Management Interface for EXascale
	Slide 9: OpenPMIx
	Slide 10: PRRTE
	Slide 14: PMIx Python Binding
	Slide 16: Pyrun: Prototype Lightweight Python PMIx driver
	Slide 17: Pyrun PMIX interaction : Initialization
	Slide 18: Pyrun PMIX interaction : callback
	Slide 19: Pyrun PMIX interaction: Spawn task(s)
	Slide 20: PRRTE Binding, Mapping, and GPU affinity
	Slide 21: Wrapper Code
	Slide 22: Experimental Evaluations
	Slide 23: Crusher Scaling Experiments
	Slide 24: Crusher Scaling Experiments
	Slide 25: Crusher Scaling Experiments
	Slide 26: Frontier Experiments:
	Slide 27: Frontier Experiments: Active Jobs
	Slide 28: Frontier Experiments : Utilization
	Slide 29: Frontier OpenPMIx/PRRTE Ramp Up Performance
	Slide 30: Crusher Experiments: NAS Benchmark
	Slide 31: Crusher NAS Experiments
	Slide 32: NAS Cache Sharing Effect
	Slide 33: Conclusions
	Slide 34: Questions?

