
LLNL-CONF-847852

Evaluating and Influencing Extreme-Scale
Monitoring Implementations

Andrew Barry
Hewlett Packard Enterprises

St. Paul, MN, USA
andrew.barry@hpe.com

Jim Brandt
Sandia National

Laboratories
Albuquerque, NM and
Livermore, CA, USA

brandt@sandia.gov

Ann Gentile
Sandia National

Laboratories
Albuquerque, NM and
Livermore, CA, USA

gentile@sandia.gov

Christopher J. Morrone
Lawrence Livermore
National Laboratory
Livermore, CA, USA

morrone2@llnl.gov

Eric Roman
Lawrence Berkeley

National Laboratory
Berkeley, CA, USA

eroman@lbl.gov

Alec Scott
Lawrence Livermore
National Laboratory
Livermore, CA, USA

scott112@llnl.gov

Kathleen Shoga
Lawrence Livermore
National Laboratory
Livermore, CA, USA

shoga1@llnl.gov

Tom Tucker
Open Grid Computing

Austin, TX, USA
tom@ugc.us

Abstract—Over the past decade HPC practitioners have been
able to gain new insights into application resource utilization and
to detect and diagnose problems with decreased latency through
fine-grained monitoring of our HPC systems while incurring no
statistically significant performance penalty.

The HPE Cray EX community is exploring a variety of
tools for telemetry data acquisition with two major monitoring
directions: a) Cray implementation of monitoring using CSM and
b) customer designed/specified system software, including moni-
toring. Both include the Lightweight Distributed Metric Service
(LDMS) for high-fidelity, high-volume node-level data collection
as well as for other features such as dynamically modifiable data
collection rates and integration of both synchronous and event-
driven data. LDMS is Linux distribution agnostic and is utilized
across a variety of OSs in both bare metal and containerized
environments.

In this collaboration of HPE and user sites, we have begun
to explore these two approaches on early-availability platforms
at NERSC and LLNL. We seek to ensure that LDMS directions
continue to support the intended diversity of approaches and
that user contributions to directions and code continue to serve
the greater community. Further, we seek to educate sites on
configuration, deployment features and scalability requirements
for extreme-scale systems and run time analytics.

Index Terms—LDMS; Monitoring; Slingshot; Configuration

I. INTRODUCTION

High Performance Computing (HPC) systems have long
been operated with minimal exposure of system and applica-
tion telemetry data to system administration staff and the HPC
users. This has been, in large part, due to the fear of negative
system and application performance impacts. Over the past
decade we have proven that we can expose reasonably large
quantities of such data on a fine-grained cadence (order of
1 second) with no statistically significant adverse effects on
system or application performance (e.g., [1]). What we get in
return are new insights into how applications are utilizing sys-
tem resources and the ability to detect and diagnose problems

with much lower latency than previously possible (e.g., [2]).
The Lightweight Distributed Metric Service (LDMS) [1], [3]
is widely used for HPC monitoring on Linux-based systems
because of its ability to collect data at large scale and at the
fidelity necessary to resolve features of interest. Additionally,
LDMS supports dynamic modification of data collection rates
and integration of both synchronous and event-driven data.
LDMS was designed for both stand-alone use and flexible
integration with other monitoring technologies.

In the HPE Cray EX community, the software stacks,
and hence the monitoring installation, configuration, and de-
ployment are going in three major directions: a) the HPE-
provided Cray System Management (CSM [4]) stack which
is a prior Cray implementation with highly-tuned system
software, including monitoring and compilers, b) the HPE-
provided HPCM stack which is a version of the HPE Per-
formance Cluster Manager [5] that includes provisioning,
management, and monitoring capabilities, and c) customer
designed/specified system software, which includes the mon-
itoring system and its installation and configuration. With
Perlmutter (see, for example, [6]), NERSC takes the first
approach and with El Capitan (see, for example, [7]) LLNL
takes the third approach. In this paper, we therefore focus on
approaches a and c. In both cases, issues of scale in collection,
transport, analysis, and management of monitoring data must
be addressed. Both NERSC and LLNL utilize LDMS as their
node-level monitoring system.

In this collaboration of HPE and user sites, we begin to
explore commonalities and differences in configuration and
deployment of LDMS as well as how the data is exchanged,
stored and utilized. LDMS has pervasive considerations be-
cause it is used for high-fidelity, high-volume data collection
which must be supported by back-end storage technologies
which in turn must support simultaneous data ingest and
queries for analyses. Identification of similarities and differ-

1

SAND2023-03836CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do
not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
DE-NA0003525.



ences in deployment configurations and data use will ensure
that LDMS continues to support the intended diversity of
approaches and that user contributions to direction and imple-
mentation continue to serve the greater community. Our goal is
to get early insight into requirements that will ensure continued
coherent community development of LDMS components and
their interfaces with site-specific components. Further, we seek
to educate sites on configuration, deployment features, and
scalability requirements for extreme-scale systems and run
time analyses.

II. LDMS BACKGROUND

LDMS is a daemon-based framework designed specifically
for High Performance Computing as a low-overhead mech-
anism for collection, transport, and storage of monitoring
data from arbitrary components on intervals small enough
to resolve operational attributes of interest. This framework
enables periodic collection of time-series system data, on
regular intervals, that can provide insight into the state of the
system at any collection point in time. LDMS daemons, called
ldmsd, can provide capabilities for one or more functionalities
of data collection, transport, and storage. A daemon’s plugins
and their configurations determine its functionality. Daemons
on the compute nodes typically run sampler plugins and are
referred to as sampler daemons. Transport is achieved via
multi-hop transmission and/or aggregation. A typical system
monitoring configuration has at least one level of aggrega-
tion collectively referred to as level 1 (L1) aggregators. L1
aggregators are typically sited on non-compute-nodes (NCNs)
and pull data from one to many sampler daemons over an
HPC system’s High Speed Network (HSN). Multiple levels
of aggregation (respectively referred to as L2, L3, ...) can be
utilized to transit network boundaries and finally store data
at a suitable destination for analysis. In order to minimize
the impact on applications, the operations associated with
data sampling at compute-nodes are kept to a minimum (e.g.,
minimal to no processing of raw data). Pulling synchronous
data via RDMA reads by aggregators reduces the compute-
node overhead associated with data transmission. A compact
binary structure called a Metric Set is used to reduce trans-
port of information to the minimum required (i.e., only data
values and modified meta-data). Meta-data here is defined as
information describing data values such as names. Meta-data
is transmitted on initial connection from one ldmsd to another
or on change. Figure 1 illustrates when Metric Set data is
exchanged on the transport.

Synchronized data collection is achieved across LDMS
sampler plugins, both within a single compute node and
system-wide, through the use of a wake-up driven sampling
process scheduled against each ldmsd host’s local clock.
Synchronization errors in data acquisition across a cluster are
the result of clock skew, which is typically minimal on a well-
managed HPC cluster, and of wake-up decisions by the OS
kernel for each ldmsd. In practice, sample time variations of
a few milliseconds are seen across compute nodes on large
scale systems.

Fig. 1. Meta-data is only exchanged if modified

LDMS, being vendor and institution agnostic lends itself
to incorporation, as a monitoring solution component, into
any system. LDMS has been used for a number of years in
production across a variety of large scale systems including
Cori at NERSC and the commodity clusters at LLNL. As the
HPE Cray EX systems come on line at these two institutions,
each has taken a different approach to the continued use
of LDMS as a technology for monitoring their compute-
node infrastructure. NERSC, with Perlmutter, has installed
the HPE CSM monitoring solution and LLNL is using the
DOE Tri-lab Operating System Stack (TOSS) [8] provided
LDMS components and their own configuration management
approach. Note that the LLNL approach is advantageous to
them as it enables a uniform approach to management and
monitoring across all of their compute resources including El
Capitan.

III. LDMS IMPLEMENTATION VIA HPE CSM ON
PERLMUTTER

In this section, we describe the LDMS implementation
for metrics collection on Perlmutter, which is via CSM with
some site-specific considerations. We further describe how the
metric data is made available for exploration and how the
LDMS implementation may be extended beyond the CSM-
provided implementation to collect additional data of interest
to system administrators and users.

A. The HPE CSM Architecture

The HPE Cray System Management (CSM) software stack
is built around a Kubernetes technology in which the majority
of the management software is run in isolated containers on
a cluster of non-compute nodes (NCNs) communicating with
one another through REST-formatted http connections. This
architecture allows for high availability of services, simplified
scalability as each service usage grows, and isolation from
the failure of any particular hardware component. When a
service needs to service a higher load, more copies of the
application can be started within the Kubernetes cluster; each
copy is called a pod. All System Monitoring Application
(SMA) services are run as Kubernetes pods with the exception
of LDMS samplers, which are run as native services within the
node’s operating system. SMA is a collection of technologies



which collect, aggregate, store, and display System Monitoring
Data.

The Metrics pipeline has Kafka [9] at its center. The hard-
ware metrics collectors (hms-hmcollector) listen to Redfish
connections and publish the hardware data to Kafka. Node
metrics are collected and transported off-node and into the
Kafka bus using the LDMS infrastructure. System Monitoring
Application (SMA) PostgreSQL persisters (sma-pg-persisters)
are instances of a scalable, parallel tool for taking metrics
(including LDMS metrics) from the Kafka bus and storing
them in the HPE SMA PostgreSQL database. The number of
running copies of sma-pg-persister can be scaled up or down
based on system size. Test and Development systems will use
only a single instance of the service, whereas a system with
5,000 nodes may require as many as 16 copies.

LDMS sampler daemons publish data to a scalable set
of LDMS aggregator pods; one set for compute nodes and
one set for NCNs. The LDMS aggregators then publish the
data to the same Kafka bus that is used for transmitting log
and hardware metric data. LDMS messages are indicated on
Kafka by the topic cray-node. Each individual metric is
a separate message, in JSON format, with additional self-
describing information. An example is shown below:

{"metric":
{"name":"cray_storage.cray_iostat.w_await",
"dimensions":{"product":"shasta",
"system":"ncn",
"service":"ldms","component":"cray_iostat",
"hostname":"ncn-s003",
"cname":"x3000c0s33b0n0","job_id":"0",
"device":"sda3",
"persist":"wwn-0x5002538e001d844d-part3",
"device_type":"sd"},
"timestamp":1683150820123,"value":0.000000},
"meta":
{"tenantId":"f5d2c1289518469eb63f03fcf462f69b",
"region":"RegionOne"},
"creation_time":7450451465512054383}

Grafana [10] is used for viewing the metric data, and a
number of HPE dashboards are included, though site custom
dashboards may also be used.

LDMS configuration is accomplished by an sma-ldms-
config pod taking the LDMS configuration from a Kubernetes
ConfigMap and writing it to a local Simple Storage Service
(S3) volume which is then read by nodes during the node
personalization process.

The LDMS samplers provided as part of CSM are:
• Mellanox – the sampler for Slingshot10 which uses a

Mellanox NIC
• Slingshot – a sampler for the Slingshot11 NIC
• Ethtool – an ethernet sampler that can be used with

the above
• procdiskstats – basic I/O statistics
• dvs- a sampler for the HPE Disk Virtualization Service
Sampling intervals for all metric sets are 10 seconds by

default but can be modified.

B. Perlmutter Monitoring

NERSC’s monitoring of Perlmutter includes some site-
specific variations to the CSM deployment. These are dis-
cussed below.

The LDMS RDMA fabric transport has been validated
”in the small” on Perlmutter using HPE’s libfabric over
Slingshot implementation. However, since it has not yet been
tested at scale or for resiliency in the presence of connection
failure and transport errors, NERSC is currently using the
LDMS socket transport on Perlmutter.

For the collection of additional metrics via LDMS, NERSC
decided to run a separate LDMS instance alongside the SMA
configured LDMS. The Ansible script provided by CSM
doesn’t provide much ability to do site-specific LDMS cus-
tomization. Also, CSM doesn’t provide many of the modules
available in the open source version of LDMS. Because of
this, site-specific customization of CSM configurations would
need to be re-implemented with each CSM update.

NERSC exports LDMS data from SMA to a NERSC-wide
shared data store called OMNI. OMNI utilizes VictoriaMet-
rics [11], an efficient and scalable time series storage that
supports a rich query language (promql). A custom LDMS
store plugin was written to export data to VictoriaMetrics via
a gateway. The aggregator feeding this store runs alongside
the SMA aggregators in a separate LDMS aggregator pod that
is managed by the CSM Kubernetes cluster. This aggregator
also makes direct connections to the compute node LDMS
samplers started by SMA. Due to the small size of the LDMS
data sets exported by compute nodes (a few kilobytes) it is
not expected that the second socket connection will pose any
burden to the network bandwidth available from the compute
nodes, even at large scale.

NERSC has also made improvements to address problems
with HPE’s credential distribution to node LDMS configu-
rations. In HPE’s LDMS configuration, when nodes boot,
SMA starts a pod on a fixed worker node (ncn-w001) with
a Kubernetes Persistent Volume Claim (PVC) mount holding
the LDMS secrets. SMA next copies the secrets to the node
and then terminates the pod on ncn-w001. Using this approach
on each node running a sampler is not only slow but unreliable.
Nodes are frequently unable to retrieve the secrets, which
causes the boot-time Ansible plays to fail which, in turn,
prevents the node from booting. NERSC worked around this
issue by moving the sma-ldms-compute Ansible role from
node personalization to image customization. Also troubling in
the credential distribution pipeline is the use of a fixed worker
node (ncn-w001) for the PVC. If ncn-w001 is unavailable
or overloaded then a boot will either be extremely slow or
fail altogether. Even though Kubernetes provides capabilities
for load balancing and failover, SMA’s approach for secrets
distribution is unable to use these capabilities.

The NERSC run LDMS aggregator is managed by a python
script with a boss/worker model, deployed in a Kubernetes
pod. The boss finds all the nodes to monitor (compute, appli-
cation, and management) from the Hardware State Manager



Fig. 2. LDMS data pipeline on El Capitan

(HSM) and generates a configuration file for each type. It
then starts a sub-process worker for each configuration, with a
message queue from the boss to each worker. When the boss
detects node count changes, it generates a new configuration
and restarts the worker. This second NERSC-supplied aggre-
gator instance also enables us to run custom (or more recent)
builds of upstream LDMS than provided by SMA without
needing to replace the LDMS packages that SMA supplies.

HPE’s telemetry-api acts as a Kafka consumer and http
Security Service Edge (SSE) subscription service, feeding
Kafka topic data to an http client. NERSC found the telemetry
API to be unreliable and often inefficient. It stopped feed-
ing data at random times, and frequently caused Kafka re-
balancing events. From the http client side, one mitigation
was to use cron to force a client restart. This is not ideal
for production deployment. There were, however, no resource
issues with HPE’s api-gateway, and it has not seen a lot
of active maintenance or improvement during the Perlmutter
deployment. The telemetry-api could not handle the data rate
(100K to 1M messages per second) of our full scale Perlmutter
system.

NERSC tested a more efficient confluent-python based
version of the telemetry-api and was able to show it could
handle the full data rate.

NERSC continues to use the existing HPE LDMS aggrega-
tor, which uses the Cray-provided Kafka storage plugin
as a Kafka producer to write to the cray-node topic. This
data is read directly from Kafka and written to OMNI.

IV. LDMS IMPLEMENTATION VIA TOSS 4 FOR EL
CAPITAN

In this section, we describe the LDMS implementation
for metrics collection intended for El Capitan via TOSS 4
with site-specific considerations. We further describe how
the metric data is made available for exploration and how
the LDMS implementation can be easily modified to address
changing needs of system administrators and users.

A block diagram for the LDMS data pipeline on El Capitan
is shown in Figure 2. The LDMS configuration for El Capitan
needs to take into account the separate, but related, clusters
running the same or similar hardware. In addition to El Capitan

there are at least: a Test and Development System cluster,
multiple Early Access clusters, and Lustre clusters. These
systems will all run TOSS [8]. Since TOSS also runs on
tens of other clusters at the lab, LLNL requires a monitoring
configuration approach that can scale with the cluster count
without requiring a corresponding scaling of staff.

At LLNL, all TOSS 4 based systems (including El Capitan
and related clusters) are configured from one central Ansible
repository. In the Ansible repository, there are two main ldmsd
configuration templates: one template for the samplers’ con-
figuration(s) and another for the aggregators’ configuration(s).

All decisions about which samplers are to run on a
particular node are made through logic in Ansible. For
instance, an LLNL custom “facts” script parses the output
of lspci, and sets various facts about types of GPUs
and network devices that are found. The template for the
ldmsd sampler configuration file can then include the correct
LDMS network configuration, and the correct respective
samplers for any GPUs (e.g., dcgm, rdc_sampler)
or networking devices (e.g., slingshot_metrics,
ibmad_records_sampler). Other configuration
decisions are made based on Ansible inventory settings.
Changes to Ansible’s configuration are automatically pushed
to each cluster and Ansible automatically runs daily. System
administrators can push and run Ansible changes manually
when they do not wish to wait for the daily updates.

All LDMS operations are contained within their respective
clusters. Each node of a cluster runs a sampler ldmsd while
only a select subset of cluster nodes run a second ldmsd, on a
different port, acting as an aggregator. The aggregators have a
subset of ldmsd samplers statically assigned to them in their
configurations via the Ansible template.

The Ansible template for the ldmsd sampler configuration
file controls which samplers are running depending on a
number of rules and tests in Ansible. While deployment is still
in progress, LLNL’s intent is to run the following samplers on
El Capitan and related clusters:

• meminfo – dynamic node memory information
• procnetdev2 – dynamic node network interfaces in-

formation
• slingshot_info – Slingshot interface information

similar to that of the cxi_stat command line tool
• slingshot_metrics – a configurable set of Sling-

shot NIC counters
• rdc_sampler – metrics for AMD GPUs
• lustre_client – client-side lustre file system opera-

tions
• lustre_ost – server-side OST operations information
• lustre_mdt – server-side meta-data operations
• zfs plugins (under development) – metrics for ZFS

zpools, vdevs, etc.
• toss – local compute node status

Two of the samplers, slingshot_metrics and
slingshot_info, were custom developed by LLNL for El
Capitan. Both samplers adhere to a philosophy of minimal



configuration. They automatically detect and report infor-
mation for any number of slingshot interfaces. They both
implement scaling through two relatively recent new features
of LDMS: lists and records. The samplers use a single list of
records in which each entry in the list contains a record of
metrics for a single Slingshot interface. The samplers resize
the list as interfaces appear and disappear.

The slingshot_metrics sampler reports on a con-
figurable set of Slingshot NIC counters. Of the potentially
hundreds of counters, the sampler defaults to using a set of
roughly forty. These include performance and error related
counters.

The slingshot_info sampler provides information sim-
ilar to the information found in the default output of the
cxi_stat command. The information includes FRU, part
number, serial number, connection state, PCIe speed, link
speed. This information is very useful for long term tracking,
but generally these metrics are sampled at a much lower rate
than the metrics found in the slingshot_metrics sam-
pler. Implementing two samplers makes it easy to configure
them with different sample rates.

LLNL intends to provide the job id of the currently running
Flux top-level job on each node to fill in the job_id field in
many LDMS metric sets. The prolog and epilog scripts could
be used to publish the job ID to a job_id metric set in
LDMS.

Most of the samplers are currently configured to sample on
a five second interval, for instance slingshot_metrics
and rdc_sampler. This is an initial compromise rate to
help constrain the massive amount of monitoring data from
El Capitan. The number will be adjusted as LLNL gains
experience on El Capitan. Some samplers are set to a much
slower rate, because they provide information that does not
require fast sample rates, such as slingshot_info and
toss.

On some TOSS 4 clusters LDMS is able to use its
RDMA transport, but on El Capitan systems LLNL is cur-
rently using the socket transport. The Slingshot extensions for
libfabric have not yet been upstreamed into libfabric.
In TOSS 4 for El Capitan, the Slingshot-enabled version of
libfabric would need to live in a side directory rather
than being part of the standard TOSS 4 libfabric package,
because TOSS 4 needs to run across many clusters and
architectures, not only El Capitan. Thus far it has proven
prohibitively difficult to build a standard TOSS 4 version of
LDMS that can also use the Slingshot-enabled libfabric,
because the LDMS build for TOSS 4 cannot be compiled
against both the TOSS 4 libfabric and the custom Sling-
shot libfabric at the same time.

Each of the El Capitan related clusters, and eventually most
LLNL TOSS 4 clusters, will have their own independent Kafka
instance running internally. This provides all clusters with
an independent and reliable location in which to publish all
monitoring information.

In order to publish LDMS data to Kafka, LLNL and
Open Grid Computing [12] collaborated to develop a new

Fig. 3. LLNL Operational Data Flow Overview

LDMS store named store_avro_kafka. LDMS storage
policies are configured to elect all or a subset of metrics
from each metric set and pass these values as rows to
store_avro_kafka. store_avro_kafka uses Apache
Avro, which is a system for serializing data. In Avro, the data
is described by an Avro schema. In order to either serialize or
deserialize a piece of data, the schema needs to be known.
To keep the binary-serialized data compact, the schema is
not transmitted with the data. The serializer and deserializer
must use some method to share or exchange the schema.
store_avro_kafka automatically generates schemas for
configured rows from LDMS metric sets and publishes those
schemas to a Kafka Schema Registry. For each row of data,
store_avro_kafka serializes it using Avro and publishes
it to a topic in Kafka. For each schema, there is a separate
topic in Kafka.

The Kafka data bus acts as a common point of data sharing
between multiple producers and consumers. For instance, on
the producer side, LLNL has at least LDMS and Redfish. On
the consumer side, one of the main initial consumers will be
a centralized Elasticsearch database.

LLNL has pre-existing Elasticsearch databases that were
stood up by a different efforts to process logs. The original
goal of only processing logs has been expanded to incorporate
LDMS and other data from El Capitan. To support this addi-
tional load, the El Capitan project has contributed a sizeable
set of hardware on which to run Elasticsearch. This data flow
is shown in Figure 3. While Elasticsearch was a low effort
place to send the data from the Kafka bus initially, LLNL
may expand its database offerings in the future.

Data from Kafka topics is streamed to Elasticsearch using
the Kafka Connect Elasticsearch Service Sink connector. This
Sink is a piece of software that acts as a consumer of topics.
As messages appear in one or more topics, the Sink consumes
those messages, uses Avro to deserialize them (looking up the
matching schemas in the Schema Registry), and writes the
data into the correct indices in Elasticsearch. Using a simple
regular expression, LLNL configures the Sink to watch many
topics and write the data from each into their own respective
index in elasticsearch. LLNL also employs a feature of the
Connect infrastructure called a Simple Message Transform
(SMT). The SMT allows them to rewrite all message fields
named ”timestamp” to be named ”@timestamp”, the latter
being the common default name in Elasticsearch.



Fig. 4. LLNL’s Sonar project provides an interface for users and administra-
tors into El Capitan as well as other LLNL systems’ data.

Unlike the Kafka instances, the Elasticsearch database lives
on a separate, centralized cluster. All of the clusters stream
their data to the central Elasticsearch via their own indepen-
dent Sink connectors.

Once data is in Elasticsearch, it will be visualized though an
instance of Grafana [10] that lives on a centralized OpenShift
cluster. Much like the choice to use Elasticsearch was heavily
influenced by it already being available within LLNL’s center,
the OpenShift clusters are pre-existing, and enable easy stand
up of containerized services like Grafana.

Another consumer of the Kafka data from El Capitan will
be LLNL’s Sonar Project [13]. The Sonar project was created
about a decade ago as a distributed monitoring system that
could capture data from across all LLNL systems and provide
easy-to-use analyses and visualizations to both users and
administrators.

The architecture of the data flow supporting both Elastic-
Search and Sonar is shown in Figure 4. The use of Kafka
for the El Capitan system will enable the LDMS data col-
lected on El Capitan to be easily ingested into the Sonar
monitoring infrastructure through use of Kafka MirrorMaker.
MirrorMaker replicates a subset of topics from the El Capitan
Kafka bus (specifically timeseries LDMS data) onto the Sonar
local Kafka bus where the messages can be further transformed
before being inserted into the Sonar database. The advantage
to using a message bus such as Kafka is that the data on the bus
is database technology agnostic. Thus Sonar can continue to
utilize Casandra to expose system metrics to users of the com-
puting facility while El Capitan will transmit all LDMS topics
to a central Elasticsearch database for use by the Operations
and System Administration teams. This abstraction provides
the flexibility to enable adaptation to potentially changing
needs and opportunities (e.g., new database technologies and
analysis targeted databases).

V. NEW LDMS FEATURES

In this section we present some of the new features of
LDMS that can significantly enhance a sites monitoring expe-
rience.

• RAILS - Encapsulation of multiple Zap connections
inside a single LDMS transport.

• Streams - An API for applications to inject JSON objects
or text strings into the LDMS monitoring infrastructure.

• Application Samplers - A set of samplers Includes appli-
cation and system monitoring data and inter-operates with
Kokkos (SNL), Caliper (LLNL), and Darshan (ANL)

• Slingshot-sited Sampler - A slingshot sampler than runs
directly on a Slingshot switch controller

• Maestro - Distributed configuration of the monitoring
infrastructure.

• Security - Credential based storage, discovery and deliv-
ery of monitoring data.

• Kafka Integration - Facilities for the delivery of Avro
encoded LDMS metric data on the Kakfa bus.

• Logging - A common logging facility supporting subsys-
tem specific message filtering.

A. RAILS
At the first level of aggregation, each LDMS daemon

(ldmsd) has a connection to each sampler daemon, i.e., one
connection and associated thread per sampler daemon. At
the next and subsequent levels of aggregation, however, each
ldmsd has one connection and associated thread for many
sampler daemons by virtue of the aggregation done at the
previous tier. Figure 5 shows the scaling issue absent RAILS.

Fig. 5. Transports utilizes a single Zap endpoint

The RAILS feature (coming in LDMS version 4.4.1) ad-
dresses the scalability issues imposed by the multi-level aggre-
gation infrastructure. By enabling the addition of multiple con-
nections and associated threads to the communication channel
(aka LDMS transport) between ldmsds at different aggregation
levels, RAILS provides higher aggregate network bandwidth
and compute resource available for updating, storing and
publishing metric set data. Figure 6 shows transports using
RAILS.

B. Streams
It is desirable to collect message oriented data from ap-

plications and other system services. The streams API en-
ables applications to inject structured (JSON) and unstructured



Fig. 6. Transport with multiple Zap endpoints

(STRING) data into the LDMS transport, thereby getting the
data into monitoring pipeline. The producer API is message
oriented and accepts a stream name, buffer, length and data
type (JSON or STRING).

Clients of a message stream register for a stream by stream
name. When data arrives on a stream, a callback is called
with a pointer to the data buffer, and if the data is formatted
as JSON, a parsed JSON object. As of LDMS version 4.4.1
and later, there are stream stores that can be used to store
JSON object data to a storage back end (e.g. store_csv,
store_sos)

C. Application Samplers

The streams capability has been leveraged to inject asyn-
chronous data related to application events into the LDMS
monitoring pipeline. The AppSysFusion [14] project has de-
veloped a capability to inject selected application kernel timing
information from Kokkos via the Kokkos Profiling Interface
[15] into the LDMS transport using the stream API via the
kokkos-connector. Kokkos [16], [17] is a performance
portability library which abstracts away architecture-specific
execution and data management details of computational ker-
nels. Application developers use Kokkos to easily port their ap-
plications to new architectures in a performant manner without
having to rewrite and tune their codes. By obtaining kernel and
timing information from Kokkos, application information is
obtained in a scalable-fashion without requiring recompilation
by the user. This enables lightweight ”always-on” monitoring
of applications in conjunction with systems.

The architectural design of the kokkos-connector is
also suitable for use by other data sources. Sandia and LLNL
developers have built connectors for injection of Caliper [18]
data and Sandia and ANL developers have built connectors
for injection of Darshan [19] data into the LDMS transport.
While these external tools do have options for collection of
time-series data at execution time, injection into the LDMS
transport provides the benefit of bounding the on-node mem-
ory footprint for holding the data and removing the I/O costs
associated with writing the data out to a file system.

D. Slingshot-sited Sampler

The Slingshot switch hosts an ARM processor which en-
ables processing capabilities to be sited alongside switch
functionalities. An ldmsd can be run directly on this processor
to collect exposed slingshot metrics. It can create a metric set
which can be transported over the management network via the
sock transport. This is in contrast to the slingshot samplers
mentioned elsewhere which are sited on the node and therefore
can only collect Slingshot NIC metrics exposed to the node.

The LDMS slingshot-sited slingshot_switch sam-
pler currently uses as its data source the HPE-provided
dump_counters binary. The dump_counters program
takes command line arguments to specify ports and counters,
or sets of counters, of interest. There are over a thousand
counters per port and over 64K total port counters per switch.
The execution time to retrieve the full set of metrics is about
half a second including nominal time for the ldmsd to parse
the output and populate a metric set. The dump_counters
arguments are provided to the slingshot_switch sampler
in a configuration file. The output metric set is in the form of
a list of records, one per port, analogous to the metric set
output of procnetdev2. We would like to work with HPE
to identify more efficient port counter access mechanisms.

E. Maestro

Many monitored systems consist of thousands of sampler
daemons, and tens of aggregator daemons organized into
multiple tiers (i.e. aggregation levels). There is a considerable
amount of configuration data, in the aggregate, required to con-
figure the monitoring infrastructure. The Maestro [20] service
manages this data and distributes the required configuration
to each ldmsd daemon in the system. Figure 7 illustrates the

Fig. 7. Infrastructure Managed by Maestro

configured infrastructure.



Maestro stores configuration data in a distributed and re-
silient database called etcd [21]. Maestro itself consists of
three or more maestro daemons that collectively use the
RAFT [22] protocol to implement the resilient distribution of
configuration data. If any one maestro daemon fails, another
daemon takes over the responsibilities of the failing daemon.

Maestro organizes ldmsd into groups. Typical groups in-
clude samplers and aggregation levels as shown in Figure
7. Maestro load balances and redistributes configuration to
ldmsds in each group. Maestro provides resiliency in the
monitoring infrastructure by continuously monitoring ldmsd
daemons. If an ldmsd fails, its configuration is re-distributed
to the remaining ldmsds in the group. The criteria for load-
balancing is one of producers (i.e. an ldmsd instance) or
set load. The set load is computed as follows:

set load =

set count∑
k=1

set data sizek ∗ 1000000

update intervalk

where k is the LDMS metric set id, set data size is the size of
the metric set’s data, and update interval is the update interval
in micro-seconds. If the ldmsd is a first level aggregator, then
the update interval is the sampler plugin’s sample interval in
microseconds.

When load balancing by producer, the number of producers
started on each ldmsd is made as equal as possible. This works
very well when the set count and set schema provided by each
producer are roughly equal. When the number of sets are not
equal or the schema of the sets are different, this can result
in an unequal load on some ldmsds. In this case, it may be
preferred to load balance by set load instead.

F. Security

Credentials, (UID, GID, and access mode) are assigned to
transports, metric sets, and streams. Access to metric set and
stream data is controlled by the ldmsd daemon. Credential
information is carried in the transport such that clients attempt-
ing to access metric set and stream data are authenticated and
their access controlled accordingly.

1) Transports: An LDMS transport is associated with an
owner and group. How the owner and group are assigned de-
pends on the authentication plugin chosen for the connection.
If the authentication method is none or ovis, the UID and GID
assigned to the transport is (0, 0).

If the authentication method is munge, the munge daemon
is used by the active and passive side of the connection to
validate the UID and GID of the connecting process. The UID
and GID are obtained with geteuid(), and getegid()
respectively. If munge authentication is successful, the UID
and GID placed in the metric set header are (getegid(),
getegid()).

2) Metric Sets: The owner and group of a metric set
is contained in the metric set meta data and is therefore
forwarded through the infrastructure from the sampler ldmsd
to the top level aggregator ldmsd. When a client, for example
ldms ls, requests the metric set list from an ldmsd, the daemon
consults the owner, group and permissions stored in the metric

set header. If read access is not granted for the owner and
group contained in the transport on which the request was
made, the set is not included in the set list and is therefore
invisible to the client.

The UID, GID, and access rights are assigned to the set
when the set is created, or later by a configuration com-
mand. Only ldmsd running as root can assign UID, GID
that are different than what is returned by geteuid(), and
getegid(). This prevents non-root users from masquerad-
ing as other users.

3) Streams Data: The ldmsd is a broker for streams data.
This data is only forwarded to subscribed clients that are
authorized to receive this data.

G. Kafka Integration

Kafka [9] is an event distribution infrastructure that is
popular for publishing data on Cray/HPE and other platforms.
Avro [23] is a serialization protocol for encoding network
data. Avro is often used because it enables the unambiguous
exchange of event data values that are significantly smaller
than the un-encoded data.

The LDMS Avro-Kafka store makes metric set data available
on the Kafka bus. The Kafka message data is encoded either as
JSON text or an Avro encoded object. When encoded in Avro,
schema management is provided via an Avro Schema Registry
[24]. The Avro-Kafka storage plugin adds new schema to the
registry as required. Clients consult the registry to receive
the schema definition necessary to decode the Avro objects
contained in each Kafka message.

H. Logging

A generic message logging service and API has been added
that:

• Normalizes message output
• Tags all messages with a subsystem and log mask

Internal to the message library, each subsystem and plugin can
be assigned its own logging mask. This enables precise control
over how much logging data is produced by each subsystem.
For example, the slurm2 plugin could be configured with a
log mask that includes DEBUG without affecting the levels of
message data logged by other subsystems and plugins.

The configuration of the logging mask can be performed dy-
namically with the ldmsd controller application. This allows
the administrator to change log masks at run time to provide
greater log visibility for subsystems and plugins of interest.

VI. VERSATILITY/SUSTAINABILITY

In this section, we highlight key similarities and differ-
ences in two implementations (CSM and TOSS 4) of node
monitoring on the HPE Cray EX system using LDMS and
also present open issues and questions to be explored. Some
implementation differences are site-specific choices (e.g., data
store choices) and multiple options are intended to be sup-
ported. However, in some cases, implementation details may
result in difficulties for sites’ abilities to easily stay current
with top of tree and take advantage of new LDMS features,



such as those described in Section V. Divergence in core
LDMS functionality can also create an additional community
burden because it creates an artificial need to support multiple
concurrent implementation paths. Both NERSC and LLNL are
regular contributors to the LDMS source and to directional
discussions and can help drive common paths forward.

• Both NERSC and LLNL are using the LDMS socket
transport (not RDMA), but for different reasons:

– NERSC is not using the RDMA transport of LDMS
because the LDMS libfabric transport has not
yet been tested at scale for resiliency in the presence
of connection failure and transport errors on HPE’s
libfabric over Slingshot implementation.

– LLNL is not testing or using the RDMA transport of
LDMS because HPE’s libfabric implementation
is different from the upstream Open Fabric Alliance
(OFA) version used in RHEL and its use would
require multiple concurrent versions of LDMS, one
for OFA libfabric and one for HPE’s Slingshot
libfabric, to be maintained within TOSS 4.

• Version discrepancies:
– HPE ships an internal version of LDMS with CSM

which is significantly behind the latest LDMS release
and does not contain many of the enhancements
discussed in Section V. TOSS 4 is regularly updated
and provides the latest LDMS release which keeps
LLNL’s LDMS deployments current. NERSC’s self-
installed version also stays current with the latest
LDMS release.

– HPE’s CSM contains LDMS samplers that have not
been up-streamed and may be proprietary.

It is unclear what plans HPE has to upstream its enhance-
ments to the open source release on github.

• Ansible scripts and other configurations: How different
are these? Can they be shared/leveraged? How much does
this matter?

• CSM Containerized deployments: How valuable is this
feature/implementation? What are the tradeoffs vs RPM
install on bare metal? How does the CSM implemen-
tation compare to the open source LDMS containerized
dockerhub [25] release and what might be leveraged?

• Kafka message formats: LLNL and HPE have different
formats. LLNL uses Avro encoding and sends configured
combinations of metrics in a single Avro encoded mes-
sage, resulting in significantly fewer bytes transmitted.
HPE sends one metric per message in JSON format
with additional self-describing information, simplifying
schema management. Is there a plan for HPE to move to
the Avro format?

• Kafka topics: Is there a need/advantage for a topic
directory service for managing topics and descriptions to
facilitate the processing of expanded LDMS data sources
(e.g., per-application data) on the Kafka bus?

• Performance insights: Can the community meaningfully
share any knowledge/experiences, given the implementa-

tion differences? For example, the variation in the Kafka
format means there can’t easily be a rule of thumb in one
implementation that extends to the other. Perhaps fan-in
and sampling-rates vs. number and size of metric sets vs.
Kafka resources can be characterized and shared.

VII. CONCLUSIONS

In this paper we have begun to explore the implementation
differences in deploying and configuring LDMS and in mak-
ing LDMS-based data available for analysis on the NERSC
Perlmutter system and intended for the LLNL El Capitan
system. We have highlighted differences and open questions
that may affect the versatility and sustainability of the LDMS
instantiations as the open source LDMS codebase continues to
evolve. The authors will continue to work together to explore
possible convergence on some of the identified directions and
open questions.

The designs in this paper may be subject to revision as
they are exercised on the platforms. Perlmutter is currently
undergoing work for acceptance and while there are El Capitan
Early Access Systems, El Capitan has not yet been delivered.
The authors will be working together to explore best practices
to scalably support the potential data flow from these, and
other, extreme-scale systems.

VIII. ACKNOWLEDGEMENTS

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

Sandia National Laboratories is a multi-mission laboratory
managed and operated by National Technology & Engineering
Solutions of Sandia, LLC, a wholly owned subsidiary of
Honeywell International Inc., for the U.S. Department of
Energy’s National Nuclear Security Administration under
contract DE-NA0003525.

This paper describes objective technical results and
analysis. Any subjective views or opinions that might be
expressed in the paper do not necessarily represent the views
of the U.S. Department of Energy or the United States
Government.

REFERENCES

[1] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop, A. Gen-
tile, S. Monk, N. Naksinehaboon, J. Ogden, M. Rajan, M. Showerman,
J. Stevenson, N. Taerat, and T. Tucker, “The lightweight distributed
metric service: A scalable infrastructure for continuous monitoring of
large scale computing systems and applications,” in SC ’14: Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2014, pp. 154–165.

[2] A. Agelastos, B. Allan, J. Brandt, A. Gentile, S. Lefantzi, S. Monk,
J. Ogden, M. Rajan, and J. Stevenson, “Toward rapid understanding of
production hpc applications and systems,” in 2015 IEEE International
Conference on Cluster Computing, 2015, pp. 464–473.

[3] OVIS-HPC. OVIS/LDMS. [Online]. Available: https://github.com/ovis-
hpc/ovis



[4] Hewlett Packard Enterprise Development LP. Cray System Management
Documentation. [Online]. Available: https://cray-hpe.github.io/docs-
csm/en-10/

[5] ——. HPE Performance Cluster Manager. [Online]. Available:
https://www.hpe.com/psnow/doc/a00044858enw

[6] NERSC. Using Perlmutter. [Online]. Available:
https://docs.nersc.gov/systems/perlmutter/

[7] LLNL. LLNL and HPE to partner with AMD on El
Capitan, projected as world’s fastest supercomputer. [Online].
Available: https://www.llnl.gov/news/llnl-hpe-partner-amd-el-capitan-
projected-worlds-fastest-supercomputer

[8] E. León, T. D’Hooge, N. Hanford, I. Karlin, R. Pankajakshan, J. Foraker,
C. Chambreau, and M. Leininger, “Toss-2020: A commodity software
stack for hpc,” in Proc. International Conference for High Performance
Computing, Networking, Storage and Analysis, (SC’20), 2020.

[9] Apache Foundation. Apache Kafka. [Online]. Available:
https://kafka.apache.org/

[10] Grafana Labs. Grafana: The Open Observability Platform. [Online].
Available: https://grafana.com/

[11] VictoriaMetrics. VictoriaMetrics: Simple & Reliable Monitoring For
Everyone. [Online]. Available: https://victoriametrics.com/

[12] OGC. Open Grid Computing. [Online]. Available: https://ogc.us
[13] Gimenez, Alfredo A. and USDOE National Nuclear Se-

curity Administration, “Sonar,” 2018. [Online]. Available:
https://www.osti.gov//servlets/purl/1493001

[14] O. Aaziz, B. Allan, J. Brandt, J. Cook, J. E. Karen Devine, A. Gentile,
S. Hammond, B. Kelley, L. Lopatina, S. Moore, S. Olivier, K. Pedretti,
D. Poliakoff, R. Pawlowski, P. Regier, M. Schmitz, B. Schwaller,
V. Surjadidjaja, M. S. Swan, N. Tucker, T. Tucker, C. Vaughan, and
S. Walton, “Integrated System and Application Continuous Performance
Monitoring and Analysis Capability,” Sandia National Laboratories,
Tech. Rep. SAND2021-11184, 2021.

[15] S. D. Hammond, C. R. Trott, D. Ibanez, and D. Sunderland, “Profiling
and debugging support for the Kokkos programming model,” in High
Performance Computing, R. Yokota, M. Weiland, J. Shalf, and S. Alam,
Eds. Cham: Springer International Publishing, 2018, pp. 743–754.

[16] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling
manycore performance portability through polymorphic memory access
patterns,” Journal of Parallel and Distributed Computing, vol. 74, no. 12,
pp. 3202 – 3216, 2014, domain-Specific Languages and High-Level
Frameworks for High-Performance Computing. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0743731514001257

[17] C.R. Trott, et al., “Kokkos 3: Programming model extensions for the
exascale era,” IEEE Transactions on Parallel and Distributed Systems,
vol. 33, no. 4, pp. 805–817, 2022.

[18] D. Boehme, T. Gamblin, D. Beckingsale, P.-T. Bremer, A. Gimenez,
M. LeGendre, O. Pearce, and M. Schulz, “Caliper: Performance intro-
spection for hpc software stacks,” in Supercomputing 2016 (SC16), no.
LLNL-CONF-699263, 2016.

[19] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and
R. Ross, “Understanding and improving computational science storage
access through continuous characterization,” in Proc. of 27th IEEE
Conference on Mass Storage Systems and Technologies (MSST 2011),
2011.

[20] OVIS-HPC. LDMS Monitoring Cluster Configuration Management
and Load Balancing Service. [Online]. Available: git@github.com:ovis-
hpc/maestro.git

[21] etcd.io. A distributed, reliable key-value store for the most critical data
of a distributed system. [Online]. Available: https://etcd.io

[22] raft.github.io. The RAFT Consensus Algorithm. [Online]. Available:
https://raft.github.io

[23] The Apache Foundation. Apache Avro™- a data serialization system.
[Online]. Available: https://avro.apache.org/

[24] Confluent. Schema Registry Overview. [Online]. Available:
https://docs.confluent.io/platform/current/schema-registry/index.html

[25] OGC. Dockerhub hosted containers for LDMS deployment. [Online].
Available: https://hub.docker.com/r/ovishpc/ldms-build


