
Balancing Load in More Ways than One
Verónica G. Melesse Vergara, Paul Peltz, Nick Hagerty, Christopher Zimmer,

Reuben D. Budiardja, Dan Dietz, Thomas Papatheodore,
Christopher Coffman, Benton Sparks

National Center for Computational Sciences
Oak Ridge National Laboratory

Oak Ridge, TN, USA
Email: vergaravg@ornl.gov

Abstract—The newest system deployed by Oak Ridge National
Laboratory (ORNL) as part of the National Climate-Computing
Research Center (NCRC) strategic partnership between U.S.
Department of Energy and the National Oceanic and Atmo-
spheric Administration (NOAA), named C5, is a HPE/Cray EX
3000 supercomputer with 1,792 nodes interconnected with HPE’s
Slingshot 10 technology. Each node is comprised of two 64-
core AMD EPYC 7H12 processors and has 256GB of DRAM
memory. In this paper, we describe the process ORNL used to
deploy C5 and discuss the challenges we encountered during
execution of the acceptance test plan. These challenges include
balancing of: (1) production workloads running in parallel on
the Gaea collection of systems, (2) the mixture and distribution
of tests executed on C5 against F2, the shared Lustre parallel
file system, simultaneously, (3) compute and file system resources
available, and (4) the schedule and resource constraints. Part of
the work done to overcome these challenges included expanding
monitoring capabilities in the OLCF Test Harness which are
described here. Finally, we present benchmarking results from
NOAA benchmarks and OLCF applications that were used in
this study that could be useful for other centers deploying similar
systems.

Index Terms—system testing, acceptance testing, benchmark-
ing

I. INTRODUCTION

As a result of a recently renewed strategic partnership, the
National Climate-Computing Research Center (NCRC) pro-
cured and deployed a new system for the National Oceanic and
Atmospheric Administration (NOAA) research community in
2022. NCRC has been managed and operated by the National
Center for Computational Sciences (NCCS) at Oak Ridge Na-
tional Laboratory (ORNL) since 2009 [1]. NCCS systems and
operations staff have deployed five separate systems as part of
the Gaea project for NCRC since it was first established.

The newest system deployed, named C5, is a HPE/Cray
EX 3000 supercomputer with 1,792 nodes that was deployed
in 2022 and then expanded to 1,920 compute nodes in the

Notice of copyright: This manuscript has been authored by UT-Battelle,
LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of
Energy. The United States Government retains and the publisher, by accepting
the article for publication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or
reproduce the published form of this manuscript, or allow others to do so, for
United States Government purposes. The Department of Energy will provide
public access to these results of federally sponsored research in accordance
with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-
access-plan).

first quarter of 2023. C5 shares a similar node architecture as
that described in [12], however, there are key differences and
improvements in the system software and configuration that
are described in this work.

Although the C5 system is deployed and configured as an
independent system, it is accessible to users via Slurm’s multi-
cluster environment alongside the two production systems, C3,
a Cray XC40 with 1,496 dual Intel Haswell nodes, and C4, a
Cray XC40 with 2,656 dual Intel Broadwell nodes. C5 which
is a HPE Cray EX 3000 with 1,920 dual AMD Rome nodes. In
addition, all NCRC systems, C3, C4, and C5, share a 37.5PB
Lustre parallel file system named F2.

While the architecture of C5 is homogeneous, the nature of
the NCRC multi-cluster environment posed unique challenges
for this deployment. Production workloads were running con-
currently on C3 and C4 while C5 was being deployed, which
required us to carefully plan our testing in order to make
progress towards system acceptance of C5 without disrupting
user workloads.

Following ORNL’s well-defined standard process for system
acceptance, the C5 acceptance test plan includes four compo-
nents: vendor, functionality, performance, and stability testing.

In addition to results from acceptance testing of C5, we
include in this work benchmarking results and observations
made while comparing the Intel Classic and Intel oneAPI
programming environments using NOAA benchmarks and Oak
Ridge Leadership Computing Facility (OLCF) applications.
The lessons learned shared in this work can be useful to other
centers interested in procuring similar systems, running appli-
cations used in this work, or those interested in transitioning
to use the latest toolchains.

In this paper, we first describe the process used to install and
deploy the HPE/Cray EX supercomputer, C5. Then, we discuss
the challenges we encountered during execution of the accep-
tance test plan, which include balancing of: (1) production
workloads running in parallel, (2) the mixture and distribution
of tests executed on C5 against F2 simultaneously, (3) compute
and file system resources available, and (4) the schedule and
resource constraints. Part of the work done to overcome these
challenges included expanding monitoring capabilities in the
OLCF Test Harness which are briefly described here. Finally,
we present benchmarking results from NOAA benchmarks and
OLCF applications that were used in this study that could be



useful for other centers deploying similar systems.

II. SYSTEM ARCHITECTURE

C5 was deployed in two separate phases as described in
Table I. The first phase included 1,728 compute nodes that
were installed in August 2022. Phase I acceptance testing
included all components of the acceptance test, however, had
a shorter stability test. Phase II expanded the system to 1,920
compute nodes in February of 2023 and its acceptance test
included the full set of acceptance test components.

A. C5 compute system

The C5 compute system is comprised of 1,920 compute
nodes which were delivered in two phases as described in
Table I. Each node is comprised of two 64-core AMD EPYC
7H12 processors and has 256GB of DRAM memory.

C5 is configured with HPE/Cray’s Slingshot 10 which
consists of Mellanox ConnectX-5 interconnect with HPE/Cray
Slingshot switches. Each compute node is comprised of two
Mellanox ConnectX-5 network interface cards (NICs) to pro-
vide similar aggregate bandwidth (200GB/s) as a HPE/Cray
Cassini NIC can provide. C5 shares a similar node architecture
as that described in [12], however, there are key differences
and improvements in the system software and configuration
that are described in this work.

B. F2 file system

The F2 file system is a 37.5PB Lustre-based system con-
sisting of 6 DDN SFA14KXs, each providing 12x 489TB
declustered RAID targets. F2 has 36 object storage servers
(OSSs), utilizing Dell R640s with 192GB of RAM, 2x Xeon
6126 CPUs, and Mellanox ConnectX-4 InfiniBand NICs. F2’s
metadata layer uses Lustre’s distributed namespace phase 1
(DNE1), configured to use 4 metadata targets (MDTs). The F2
MDTs are provided by a single NetApp EF570; each MDT is
exported to a dedicated metadata server (MDS), configured as
a Dell R640 with 384GB of RAM, a Xeon 6146 CPU, and a
Mellanox ConnectX-4 InfiniBand NIC. F2 uses ZFS backed
Lustre and lz4 compression.

The F2 file system serves several production systems in the
NCRC including: C3, C4, and C5.

C3 is connected to F2 via 12 LNet routers and C4 is
connected to F2 via 8 LNet routers, both with Mellanox
ConnectX-4 InfiniBand interfaces. C5 is connected to F2 via
30 LNet routers configured as HPE ProLiant Gen10 servers
with 256GB of RAM, an AMD EPYC 7302 CPU, a Mel-
lanox ConnectX-6 InfiniBand interface to F2, and a Mellanox
ConnectX-5 Ethernet interface to C5.

III. C5 ACCEPTANCE TEST COMPONENTS

The C5 acceptance test was divided in four different com-
ponents that have been traditionally used by the Oak Ridge
Leadership Computing Facility to evaluate the functionality,
performance, and stability of a new system [11], [12]. These
components include a vendor test (VT), a functionality test
(FT), a performance test (PT), and a stability test (ST). For C5,

each component was customized to evaluate the characteristics
of the system and prepare for the unique workloads planned
by the NCRC.

One advantage of utilizing a similar acceptance test pro-
cedure for each new system deployed is that we are able to
leverage lessons learned from distinct deployments. For C5
acceptance testing, given that the Air Force Weather systems
are very similar in architecture, we were able to leverage
previous work including: updates to the OLCF Test Harness
that enabled Slurm support, and the design and execution of
functionality tests.

We describe the contents of each acceptance test component
for C5 in more detail in this section.

A. Vendor Test (VT)

The Vendor Test (VT) includes execution of diagnostics on
all systems and subsystems. This component allows the vendor
to assess the health of the hardware and demonstrate whether
the system is ready for the next acceptance test component.

The tests in VT ensure that the installed hardware can com-
plete power-on self-test (POST) successfully and is ready to be
configured and localized by NCCS staff. The diagnostics in-
clude but are not limited to High-Performance Linpack (HPL),
stream (CPU) memory benchmark, and vendor-provided and
vendor-executed network health checks.

In addition, during this component, the vendor executes the
contractual applications on the system after they have been
optimized for the architecture. For C5, VT included the five
NCRC applications.

After the vendor has completed these tests, they provide a
detailed report on results and issues identified during VT to
the NCCS team.

B. Functionality Test (FT)

The Functionality Test (FT) component includes a broad
set of functionality tests that cover: system administration,
reliability and serviceability, network health, programming
environment, and usability of the system.

During functionality testing, the individual components and
characteristics of the system are evaluated using synthetic tests
and well-known benchmarks.

In this component, we also ensure that all packages and
libraries required by NCRC can be successfully built for the
corresponding toolchains.

C. Performance Test (PT)

The Performance Test (PT) component ensures that the
system provides the performance required in the contract. This
component is usually uniquely tailored to each procurement.
During PT, we verify that each contractual application can
be executed on C5 successfully in isolation and can meet the
expected performance targets. In addition, for C5, we executed
multiple copies of each NOAA application to understand the
performance impact when the system is fully loaded.

For C5 acceptance testing, the following NOAA applica-
tions were utilized:



Phase Number of Nodes Delivery Installed Total System Size
Phase I 1,792 July 2022 August 2022 1,792
Phase II 128 October 2022 February 2023 1,920

TABLE I
C5 DEPLOYMENT PHASES

• CM4: Coupled Model (CM4) is a coupled atmosphere-
ocean general circulation model that includes atmosphere,
ocean, sea ice, and land models.

• ESM4: Earth System Model (ESM4) includes atmo-
sphere, ocean, sea ice, land, and ocean biogeochemical
components as well as dust/iron cycling.

• SHiELD: System for High-resolution modeling for Earth-
to-Local Domains (SHiELD) focuses on modeling for
weather and subseasonal-to-seasonal forecasting.

• Spear: next-generation modeling system for seasonal to
multidecadal prediction and projection.

• UFS: next-generation modeling system for weather pre-
diction.

For this phase, we worked closely with HPE and NOAA
staff to augment the NCRC test suite for the OLCF Test
Harness to include the five contractual applications. While
CM4 had been used previously for acceptance of C4, the
remaining codes were new to NCCS staff.

D. Stability Test

The Stability Test (ST) component involves executing the
expected workloads on the system for a predetermined number
of days to measure the reliability, stability, and usability of
the new system. During this component, we make heavy use
of the OLCF Test Harness to maintain the system being
deployed fully utilized and monitor status individual jobs.
To successfully complete ST, all jobs on the system that
complete must produce correct answers and perform within
a predetermined threshold of expected runtime variability.

The same collection of benchmarks as was used in PT
was then used during ST to generate a realistic workload
continuously for a fixed number of days.

IV. C5 ACCEPTANCE TEST RESULTS

In this section, we provide a high level overview of the
results obtained during acceptance testing of the C5 system.

A. Hardware and System Administration

The ORNL acceptance team decided to pare down some
of the typical System Administration tests because many of
the same tests were performed on an almost identical system
previous to this system’s acceptance. All of these tests passed
as expected.

However, when it came time do the core of the functionality
and stability tests, we encountered a number of issues with
Lustre and the Slingshot fabric. One of the Lustre issues
we encountered was that C5 had a significantly shorter LND
timeout than F2 and the LNet routers at 50 seconds while
F2 and the LNet routers were set to 120 seconds. This
caused issues on boot where a subset of C5’s compute nodes

would timeout as LNet and F2 serviced all the requests.
Once all the timeouts were set to 120 seconds most of C5
would consistently mount Lustre. A specific timeout formula
must be set in order avoid some timeouts exceed others in
the timeout hierarchy. An LND timeout >LNet transaction
timeout >ptlrpc (Lustre) timeout. Also, the at_min timeout
of 65 seconds was also set on the Lustre servers.

After these changes, some nodes were still having
issues mounting Lustre and we would experience
random slowness of connected nodes. These issues
were tracked down to a mismatch between the setting
avoid_asym_router_failure on F2 being set to 0
while everywhere else it was set to 1 while two of the
LNet routers had asymmetric NIC failures. This caused
a random set of nodes to fail to mount Lustre and was
the cause of the intermittent performance issues observed
as F2 would attempt to respond via the degraded paths.
For the purposes of performing acceptance testing the two
routers were removed from F2’s routes and eventually
avoid_asym_router_failure was disabled on C5 as
F2 could not enable it due to other compute systems utilizing
it.

C5’s clients also needed these specific set of tuning
parameters to fully address the issues described above:
peer_ credits were reduced from 63 to 16, and
conns_per_peer were reduced from 8 to 1. The conns_
per_peer setting was specifically needed due to workload
issues causing locking on F2.

B. Network Testing

To test the Slingshot 10 network, we utilize several bench-
marks that stress and measure the performance of the network
under a variety of communication patterns and congestion
scenarios. Our initial testing begins using MPIGraph [14]
which exercises every endpoint in the network to every other
endpoint over a series of tests. MPIGraph uses asynchronous
point-to-point sends and receives using non-overlapping ring
communication patterns. Initial testing on C5 using 1,800
nodes with 4MB messages demonstrates an average per-
formance of approximately 8.6 GB/s/NIC with a maximum
performance of approximately 11.6 GB/s/NIC. This is the
expected performance on a Slingshot 10 network with 100
gbps Ethernet NICs.

GPCNet [8] is a tool for assessing the network’s ability
to perform under adversarial congestion scenarios. Using
the GPCNet network_load_test, 80% of the nodes in
the allocation will perform all-to-all congesting collectives
repeatedly. The remaining nodes will perform a series of tests
measuring the bandwidth and latency of several operations.
GPCNet provides both uncongested and congested results for



TABLE II
GPCNET CONGESTION PERFORMANCE RESULTS

Name Isolated Test Congestion Test
RR Two-sided lat 2.6 2.8

RR Two-sided BW+Sync 1688 1693
Multiple Allreduce 42.3 43

comparison. While testing on C5, we ran with 10 processes
per node across 1,800 nodes. The results, shown in Table II,
show that the Slingshot 10 network in C5 handles adversarial
congestion scenarios well. In particular, latency sensitive tests
show virtually no impact when the all-to-all workload is
running within the system. This is to be expected on a
Slingshot 10 network where each NIC injection is 100 gbps
but switch-to-switch links operate at 200 gbps.

During Phase II of the deployment, when the additional
compute nodes and switches were added to the network, we
had a few problems with the system’s fabric.

Slingshot 1.7.3 was the version of the fabric manager that
was used throughout the acceptance of C5. While that version
was very stable, it lacked any useful diagnostics for problems
in the network. The standard tools of fmn_status along
with custom network debug scripts did not find any problems
in the network either. The first issue we discovered was having
two Slingshot groups disconnected from one another. This
problem was due to a bug in the point-to-point file creation
from the slingshot-topology-tool. It was incorrectly
combining two Slingshot groups together and causing no
routing to be sent to one of the Slingshot groups in the system.
This bug does appear to be fixed in the Slingshot 2.x release.

The second major issue that was not fully understood was a
fabric routing issue identified above. It manifested in several
different ways with applications, e.g., job timeouts, Lustre
timeouts, application failures. Due to these issues, we decided
to revert back to the fabric configuration that was in place prior
to the Phase II expansion of nodes and switches. Before that
was done, however, the fabric was reset one last time, which
seemed to fix the routing issue. The team can only speculate
as to why this final fabric reset fixed the issues observed,
but since then, similar timeouts have not been observed in
application jobs. Resetting the fabric has been previously used
to fix a variety of problems with the Slingshot network when
a specific root cause for an issue cannot be identified.

C. Programming Environment Testing

C5 utilizes the full HPE/Cray Programming Environment
(PE) which includes separate sets of programming environ-
ments for three different toolchains: Intel (default), GNU
Compiler Collection (GCC), and the Cray Compiler Envi-
ronment (CCE). Unlike previous systems, C5 was the first
system deployed by NCCS that offered two flavors of the Intel
programming environment: Intel Classic and Intel oneAPI.
The intel-classic modulefile enables use of Intel’s tra-
ditional compilers: icc, icpc, and ifort. In contrast, the
intel-oneapi modulefile enables use of Intel’s oneAPI

Fig. 1. Performance results obtained during the PT component of C5’s
acceptance test (positive % is better).

compilers that provide: icx, icpx, and ifx which support
both CPU and GPU architectures.

Due to the fact that NOAA relies heavily on the Intel Classic
compiler, it was set as default on C5 and was the primary
toolchain exercised during acceptance testing.

The NCRC contractual benchmarks were compiled using
the intel-classic/2022.2.1 compilers provided by
the HPE/Cray PE. In addition, we attempted to build these
benchmarks using the intel-oneapi toolchain and found
incompatibilities with the stack, likely due to newer stan-
dards implementations. The codes will require updates by
the NCRC developers as the end-of-life approaches for the
intel-classic compilers.

D. Performance test results

As part of acceptance testing, we executed the NCRC
benchmarks individually to evaluate the performance capa-
bilities of the system. This set of tests are executed in two
different modes. First, we run a single copy of the benchmark
in isolation on the system. Then, we run many copies of the
same benchmark to fill the entire system and compare the
difference in performance observed between the two scenarios.

Due to the challenges described in Section VI, the second
scenario had to be modified from the initial intended full-
system scale to prevent potential impacts to production work-
loads on C3 and C4 running against the F2 file system.

The results from the performance test demonstrate the sys-
tem is capable of running a realistic number of simultaneously
executed copies for each of the NCRC benchmarks. The
performance differences observed between the isolated single-
copy tests reported by HPE during VT and our reproduced
results from PT are summarized in Figure 1.

E. Stability test results

As part of stability testing (ST), we executed a combination
of all NCRC benchmarks distributed across different metadata
targets (MDTs). We used the OLCF Test Harness to launch
four independent sets of tests that included the benchmarks
and job sizes as shown in Table III. The Phase II ST ran for



TABLE III
STABILITY BENCHMARK TESTS

Test Type Job Size (nodes)
CM4 NOAA 48

ESM4 (small) NOAA 18
ESM4 (large) NOAA 26

Spear NOAA 22
SHiELD NOAA 96

UFS NOAA 24

Fig. 2. Number of jobs executed per NCRC application during the 10-day
ST component.

10 continuous days and in total executed 4,017 jobs across all
NCRC applications as shown in Figure ??. The breakdown of
failures by application is shown in Figure 3

ST jobs were also analyzed for runtime variation. Figures
4, 5, 6, 7, 8 and 9 show the elapsed runtime of each job
as a function of time, by test. These results are summarized
in Table IV. Jobs observed at the very top of the plot are
jobs that ran until walltime. Jobs falling below the cluster of
average points suffered from file system errors, MPI errors,
hardware failures, etc.

Figure 4 shows the elapsed time of each CM4 job during
ST. There are several points around x=120 and x=160 hours
that are nearly double the expected run time. These jobs are

Fig. 3. Percentage of job failures by application observed during the 10-day
ST component.

TABLE IV
STABILITY BENCHMARK RUNTIME VARIABILITY

Test Avg Elapsed (s) Standard Deviation # Jobs
CM4 4148.1 11.3 1050

ESM4 (small) 6016.8 8.0 416
ESM4 (large) 4565.7 8.8 660

Spear 5808.1 13.2 647
SHiELD 4201.2 7.2 861

UFS 6049.5 4.0 123

Fig. 4. The elapsed time of each CM4 job as a function of the start time of
the job.

classified as performance failures.
Figures 5 and 6 show the elapsed time of each ESM4

small and large job during ST.
Figure 7 shows the elapsed time of each SHiELD job run

during ST.
Figure 8 shows the elapsed time of each Spear job

during ST. The highest data points (approx. 14,500 seconds)
correspond to jobs that ran until walltime. Jobs far below the
average elapsed time likely failed with errors ranging from file

Fig. 5. The elapsed time of each ESM4-small job as a function of the start
time of the job.



Fig. 6. The elapsed time of each ESM4-large job as a function of the start
time of the job.

Fig. 7. The elapsed time of each SHiELD job as a function of the start time
of the job.

system hiccups to node failures.
Figure 9 shows the elapsed time for each UFS job. At

the beginning of ST, UFS was causing jobs to walltime while
building the next job, using the OTH’s resubmit capability.
This issue caused the sparse data at the beginning of ST, but
has since been resolved.

For all five NCRC applications, we observed a non-trivial
number of outliers that occurred during ST. Given that F2
was not dedicated exclusively to C5 acceptance efforts, it is,
unfortunately, difficult to isolate the root cause for many of
these performance failures and timeouts. It is worth noting,
however, that since the fabric was reset as described in IV-B,
we have not seen similar issues.

V. OLCF TEST HARNESS UPDATES

We used our in-house developed OLCF Test Harness system
(OTH) [15], [17] to orchestrate launching tests throughout
acceptance. Previously, we would monitor job output and
harness status output through standard UNIX text and file

Fig. 8. The elapsed time of each Spear job as a function of the start time of
the job.

Fig. 9. The elapsed time of each UFS job as a function of the start time of
the job.

manipulation commands. For this acceptance test, we extended
the OTH to output harness events (e.g., “build start”, “job
end”) and status codes to an InfluxDB database. We then built
a series of dashboards in Grafana to organize and display these
data in real-time. These dashboards allowed us to more quickly
and easily monitor testing progress as jobs were running as
well as filter OTH jobs from other workloads running on the
system.

The OTH Monitor lives in a local deployment of Open-
Shift. The architecture is fairly straightforward and consists
of several pods:

1) InfluxDB: is the central collection location of all the test
data points and is backed by a persistent volume claim.

2) Grafana: holds the Grafana instance for displaying data.
3) MariaDB: holds static system information queried by

Grafana to build certain dashboards.
We maintain development and production versions of each

of these to facilitate testing and development as needed.
OTH tests log events and results to the InfluxDB database



in real-time. In the event of hardware or communication faults,
a Python script ran hourly to find any OTH events that were
not posted to InfluxDB. Common failure modes have been
assigned unique status codes to enhance failure visualization
on Grafana dashboards.

We constructed and used several dashboards throughout
acceptance. These dashboards were developed using the Flux
query language [2]. The first dashboard shows the most recent
failed tests in chronological order. This dashboard provides
the name of the test, the scheduler job identifier, the status
code, and the path to the launch directory on the file system.
An example screenshot of this dashboard is shown in Figure
10. The user can fully customize the fields to be displayed
using a drop-down list of check boxes. A small modification
to this dashboard yields one that shows all jobs, listed in
chronological order. Another dashboard computes the number
of successful, currently running, currently building, and failed
tests within a time window. An example of this dashboard is
shown in Figure 11.

VI. C5 ACCEPTANCE CHALLENGES

In this section, we highlight a few of the challenges that
we encountered as well as discuss some of the workarounds
implemented.

A. Concurrent application execution on F2

The first major hurdle that we faced during system ac-
ceptance testing of C5 happened while executing PT using
NOAA-provided applications. The acceptance test plan re-
quired C5 to be able to compute a well-defined volume of work
as part of the contract. To meet this requirement, we needed
to load the system with as many copies of each individual
benchmark as could fit on the system. However, due to the
heavy I/O load that each benchmark generated on F2, in order
to avoid impacting production workloads, we had to find a
balance between the number of benchmarks actively running
on C5 and the load observed on F2 from all NCRC systems.

During initial attempts to launch the PT and ST, we ob-
served DNE1 lock contention. The NCRC test suite running
on C5 ended up exacerbating an existing user workload issue
to the point where jobs were failing to run in a timely manner.
The OTH would launch multiple jobs using the same input
deck and thus the metadata server (MDS) servicing that load.
We later determined that the core issue was due to the fact
that jobs were structured to do millions of file opens and hold
them open for much of the job, a single job causes some lock
contention and multiple jobs attempted to juggle locking for
the same set of files. At the time of acceptance testing, this was
not understood but the issue manifested as extensive locking.

After careful tuning and monitoring of F2, we decided to
both spread the workloads running on C5 across different
metadata targets (MDTs) in order to avoid overloading a single
one. We also chose to split acceptance into smaller sub-phases
that could tolerate interruptions and would still help us identify
issues.

The original workaround for this issue causing Lustre to
crash was to spread out the start of jobs and eventually creating
a set of data per MDS. Since then, the user workload was
modified to create a copy of the input deck per run which has
effectively solved this in production.

B. Impact to NCRC production workloads

Due to the nature of NOAA’s workloads, the load on the
queue on C3 and C4 can vary greatly between weeks. During
times when critical work was being executed, we had to
pivot our testing to use benchmarks that would introduce
minimal I/O load on the file system but would still exercise
the new hardware sufficiently. To accomplish this, in addition
to the five NOAA codes, we augmented the NCRC test suite
with three applications that are used regularly for testing on
the OLCF’s flagship systems, Summit and Frontier, namely
minisweep, GenASiS, and LSMS. These three applications
were chosen not only because they were developed at ORNL,
but also because they have helped us identify system issues
during past deployments.

C. New compiler toolchains

The NCRC multicluster environment has the Intel compiler
as the default toolchain used by NOAA users. Initially, we
intended to run all acceptance test applications using the latest
available compiler toolchains which included the relatively
new Intel oneAPI compilers. However, due to issues identi-
fied building the NOAA applications with Intel oneAPI, we
decided to revert to the Intel Classic compiler. This choice was
made to provide a smoother transition to operations for NOAA
users and give the NCCS team sufficient time to evaluate the
Intel oneAPI toolchain.

D. High-utilization with smaller-sized jobs

During both the PT and ST components, the acceptance test
plan required us to fill the system with NCRC applications.
Because all the NCRC application jobs provided used fewer
than 100 nodes, this meant we needed to maintain at a
minimum approximately 20 applications running simultane-
ously. Although this normally would not be an issue, because
acceptance is run using the same bot user, the directory on F2
where the tests are running is tied to same MDT. As a result,
due to the F2 issues described in Section VI-A, running with
the maximum number of copies resulted in us overloading
that single MDT which caused widespread file system issues
on the NCRC environment. As a result of these obstacles, we
artificially capped the maximum number of copies run for each
application.

E. Long build times for NCRC applications

The build time for each NCRC application can be fairly
lengthy ranging from tens of minutes to over an hour. This
presented a challenge as the OLCF Test Harness requires
that each application submitted during ST as a batch job
is built immediately prior to submission. The lengthy builds
resulted in fewer jobs executed simultaneously which impacted



Fig. 10. Grafana failure stream dashboard for the OTH.

Fig. 11. Grafana summary dashboard for the OTH.

overall utilization. To overcome this challenge, we designed
variations of each application that would repeatedly submit a
precompiled binary instead.

VII. SCALING STUDY OF OLCF APPLICATIONS

As described in Section III, the acceptance test plan al-
ready includes an exhaustive set of tests that are executed to
understand the readiness of a system for production workloads
including the specific contractual benchmarks. However, to
evaluate a system as broadly as possible, it is often preferable
to work with applications that are well understood internally at
the OLCF. To that end, in this work we include scaling studies
conducted on C5 for minisweep, GENASIS, LAMMPS, and
LSMS leveraging the different compiler toolchains available
on C5: Intel (both intel-classic and intel-oneapi),
CCE, and GNU.

A. minisweep

Minisweep is a C++ open-source mini-application that
captures the compute intensive portion of the Sn radiation
transport code Denovo [13]. Minisweep has been used previ-
ously to evaluate performance of new architectures as well as
functionality of compiler toolchains [16]. Minisweep supports
MPI, OpenMP (CPU), CUDA, OpenACC, OpenMP (GPU
offload), and more recently HIP. In this work, we focus on the
MPI-only version to understand its scalability on C5. Figure 12
shows a the execution time of a simulation with 643 cells and
an increasing number of ranks. For all cases 4 MPI ranks
are used per node. Results show that above 512-ranks, the
performance begins to decrease. Further investigation would
be needed to better understand the sharp drop in performance
observed at a relatively modest job size.

B. GENASIS

GENASIS (General Astrophysics Simulation System) is a
multiphysics simulation framework aimed at performing the
simulations of astrophysical phenomena [7]. Written in mod-
ern Fortran, it is an extensible, modular code by exploiting
the object-oriented features of the language standard while

Fig. 12. Minisweep multi-node scaling on C5 for a system of size 643 cells.

maintaining high-performant computational kernels. GENA-
SIS uses OpenMP for multithreading on CPU and to of-
fload its computational kernels to accelerators such as GPUs
[4]. For this work, we use the fluid dynamic benchmark
problem RiemannProblem as implemented by GENASIS
BASICS, a subdivision of GENASIS [5]. Since C5 does not
have accelerators, we build GENASIS with OpenMP CPU
multithreading only. Figure 13 plots the strong-scaling of
RiemannProblem in GENASIS BASICS as we increase
the number of OpenMP threads. With all four compilers
available on the system (CCE, GCC, Intel Classic, and Intel
oneAPI), the scalability suffers beyond four threads. This is in
contrast to previous results on different systems where we have
demonstrated strong-scaling with up to 12 OpenMP threads
(for example, Figure 8 in [6]). At this point we continue
to investigate the cause of this poor scalability. One finding
identified on C5 when using the Intel oneAPI Fortran compiler
(IFX) version 2022.2.1 20221020 was an internal compiler
error triggered by the -fast flag. As a workaround, the
results presented here used -O2 instead.



Fig. 13. Strong-scaling of GENASISBASICS RiemannProblem with 643

cells for 100 timesteps. The dashed black line shows ideal scaling as a
reference. Scaling with GCC, CCE, Intel-Classic, and Intel-oneAPI compilers
are plotted as blue squares, red circles, green diamonds, and magenta triangles,
respectively.

C. LAMMPS

The molecular dynamics software, LAMMPS [3], was used
to test the MPI+OpenMP programming model. The OpenMP
and Kokkos packages were used to utilize OpenMP multi-
threading. The Intel Classic, Intel oneAPI, and GCC compiler
toolchains were tested using the Tersoff and ReaxFF bench-
marks provided in LAMMPS. A “replicate” command was
placed after system initialization in each of the input files to
allow for easily scaling the system size.

In this work, we examine the performance impact of the
balance of OpenMP threads to MPI ranks. In all experiments,
the total number of threads (the product of the number of MPI
ranks and OpenMP threads) is 128, which fully consumes the
2 CPUs on each compute node, with hyper-threading disabled.
The Slurm cpu-bind=mask cpu flag was utilized to provide an
explicit set of sequential cores for OpenMP threading to each
MPI task. Experiments were performed using GCC 12.2.0,
Intel oneAPI 2022.0.2, and Intel Classic 2021.5.0 compilers.
In each figure legend, the omp suffix is the OpenMP package
of LAMMPS, while the kk suffix is the Kokkos package of
LAMMPS, compiled using the OpenMP backend of Kokkos.

Figures 14, 15, and 16 show the scaling behavior of 6.9-
million atom, 16.3-million atom, and 32-million atom repli-
cates of the LAMMPS Tersoff benchmark, respectively. All
compiler toolchains demonstrated similar scaling behavior on
all 3 system sizes. At low thread counts using the Kokkos
package, the GCC and Intel oneAPI compilers achieve about
10% better performance than Intel Classic. but by 64 OpenMP
threads, this performance gap is closed in the smallest and
largest systems. The middle size, the 16.3-million atom sys-
tem, displayed a sharp drop in speedup above 8 OpenMP
threads when using the Kokkos package for all 3 compilers.
This behavior is under further investigation. Run-time errors
were encountered near the 1 MPI rank / 128 OpenMP thread
data point. Run-time errors were typically associated with
memory allocation or integer overflow errors.

Fig. 14. Achieved speed of a 6.9 million atom Tersoff simulation as a function
of the number of OpenMP threads per MPI rank.

Fig. 15. Achieved speed of a 16.3 million atom Tersoff simulation as a
function of the number of OpenMP threads per MPI rank.

Fig. 16. Achieved speed of a 32 million atom Tersoff simulation as a function
of the number of OpenMP threads per MPI rank.



Fig. 17. Achieved speed of a 196 thousand atom ReaxFF simulation as a
function of the number of OpenMP threads per MPI rank.

Fig. 18. Achieved speed of a 409 thousand atom ReaxFF simulation as a
function of the number of OpenMP threads per MPI rank.

Figures 17 and 18 show the scaling behavior of 196-
thousand atom and 409-thousand atom replicates of the
LAMMPS ReaxFF benchmark, respectively. All compiler
toolchains demonstrated similar scaling behavior on both sys-
tem sizes. In contrast to the Tersoff benchmark, all 3 compilers
achieve similar performance when using the Kokkos package
at all OpenMP thread counts. The Kokkos package achieves
better performance than the OpenMP package at all thread
counts for all compiler toolchains. One contributing factor
may be the active development on the Kokkos package of the
ReaxFF potential of LAMMPS. The improved performance
demonstrated using the ReaxFF benchmark with the Kokkos
acceleration package between the September 2021 and Febru-
ary 2022 versions of LAMMPS has been shown in [10]. The
same optimizations used to achieve this improved performance
likely benefit the OpenMP performance as well, since the
specific backend is abstracted away by Kokkos.

Figures 19 and 20 show the achieved performance of the
ReaxFF potential when using the Kokkos package from the

Fig. 19. Achieved speed of a 196 thousand atom ReaxFF simulation as a
function of the number of OpenMP threads per MPI rank for September
2021 release of LAMMPS.

Fig. 20. Achieved speed of a 409 thousand atom ReaxFF simulation as a
function of the number of OpenMP threads per MPI rank for September
2021 release of LAMMPS.

September 2021 version of LAMMPS, compared to the current
version of LAMMPS. The classic kk, oneapi kk, and gcc kk
series are the same data presented in Figures 17 and 18.
At the larger system size, the LAMMPS source code used in
this study out-performs the September 2021 source code by
about 10%. However, at 1 MPI rank / 128 OpenMP threads,
the September 2021 release of LAMMPS out-performs the
current source code.

D. LSMS

LSMS is an open source application developed at Oak Ridge
National Laboratory [9], [18] specifically designed for scal-
able first principles calculations of materials. LSMS supports
different architectures and has been utilized to stress various
systems during acceptance testing at the OLCF including
Titan, Summit, and Frontier.

In this work, we utilize the CPU-only version of LSMS
with MPI and OpenMP support enabled to better understand



Fig. 21. Execution time of 128-atom simulation using LSMS on a single-
node of C5 using 8 MPI ranks and varying number of OpenMP threads.

the scalability of the application on the C5 system. The results
shown in Figure 21 use GCC 12.2.0 and Intel oneAPI 2022.2.1
and demonstrate that for both toolchains the performance is
comparable and the application is able to scale fairly well up
to 4 OMP threads.

VIII. CONCLUSIONS

In this work, we present an overview of the installation and
deployment of the NCRC’s latest supercomputer, C5. C5 is
a 1,920-node HPE/Cray EX 3000 supercomputer powered by
two 64-core AMD EPYC 7H12 processors per node that will
be used in production to support workloads from the NCRC.

The unique circumstances surrounding C5’s deployment
resulted in the design of new tools and in modifications
to procedures that gave us the flexibility to accommodate
production workloads executing on the C3 and C4 systems also
part of the NCRC multi-cluster architecture. The monitoring
tools customized for C5 acceptance testing helped the NCCS
team make progress even when test components had to be split
across time periods or deferred to a later time.

By working closely with HPE and NOAA, NCCS developed
a strategy that proved successful to address critical issues
identified preventing full simultaneous utilization of C3, C4,
and C5 systems for production.

Through C5’s acceptance testing, we were able to identify
specific gaps in the vendor-provided tools as demonstrated
by the network health issues identified using GPCNet and
mpiGraph that were undetected via network diagnostics. Being
able to have more robust tools to diagnose issues on Slingshot-
based networks will be critical to ensure a smooth transition
to operations of the system.

As shown in Sections VII and IV, the C5 system is
capable of supporting expected NCRC workloads executing
the five primary NOAA applications in addition to a broader
range of applications selected from the OLCF portfolio. The
results presented here provide early experiences using the Intel
oneAPI toolchain on a HPE/Cray EX 3000 supercomputer
and highlight a few differences that were observed both in
functionality as well as performance when comparing to the

other available toolchains on the system. Although in some
cases, Intel oneAPI demonstrated better performance than Intel
Classic, for example with GENASIS, its performance was still
below that observed with CCE and GNU. Furthermore, NOAA
applications are heavily dependent on not only the Intel Classic
compiler but also a specific version. Given that NOAA requires
bit-wise reproducibility, upgrades to default versions of any
toolchain must be considered carefully in order to evaluate
the impact.

The initial scaling studies presented here highlight a couple
of areas worth exploring further including the poor scaling
observed with OpenMP in GENASIS and LAMMPS, as well
as the limited scaling with minisweep.

We hope that the experiences shared here will be of interest
and helpful to centers that have users with similar require-
ments and are exploring transitioning to systems with similar
architectures and compiler toolchains.

ACKNOWLEDGMENT

This research used resources of the Oak Ridge Leadership
Computing Facility, which is a DOE Office of Science User
Facility supported under Contract DE-AC05-00OR22725.

REFERENCES

[1] DOE and NOAA extend strategic partnership.
[2] Influxdb and flux. https://www.influxdata.com/products/flux/.
[3] LAMMPS, 2018.
[4] BUDIARDJA, R. D., AND CARDALL, C. Y. Targeting gpus with openmp

directives on summit: A simple and effective fortran experience. Parallel
Computing 88 (2019), 102544.

[5] BUDIARDJA, R. D., AND CARDALL, C. Y. Genasis basics: Object-
oriented utilitarian functionality for large-scale physics simulations
(version 4). Computer Physics Communications 281 (2022), 108505.

[6] CARDALL, C. Y., AND BUDIARDJA, R. D. Genasis mathematics
: Object-oriented manifolds, operations, and solvers for large-scale
physics simulations. Computer Physics Communications 222 (2018),
384–412.

[7] CARDALL, C. Y., BUDIARDJA, R. D., ENDEVE, E., AND MEZZA-
CAPPA, A. GENASIS: GENERAL ASTROPHYSICAL SIMULATION
SYSTEM. i. REFINABLE MESH AND NONRELATIVISTIC HYDRO-
DYNAMICS. The Astrophysical Journal Supplement Series 210, 2 (jan
2014), 17.

[8] CHUNDURI, S., GROVES, T., MENDYGRAL, P., AUSTIN, B., BALMA,
J., KANDALLA, K., KUMARAN, K., LOCKWOOD, G., PARKER, S.,
WARREN, S., WICHMANN, N., AND WRIGHT, N. GPCNeT: Designing
a Benchmark Suite for Inducing and Measuring Contention in HPC
Networks. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (New York,
NY, USA, 2019), SC ’19, Association for Computing Machinery.

[9] EISENBACH, M., ZHOU, C.-G., NICHOLSON, D., BROWN, G.,
LARKIN, J., AND C SCHULTHESS, T. Thermodynamics of magnetic
systems from first principles: Wl-lsms. In Proceedings of the 2010
SciDAC conference (04 2010).

[10] HAGERTY, N., MELESSE VERGARA, V., AND THARRINGTON, A.
Studying performance portability of LAMMPS across diverse gpu-based
platforms. Tech. rep., Oak Ridge National Lab.(ORNL), Oak Ridge, TN
(United States), 2022.

[11] LARREA, V. G. V., JOUBERT, W., BRIM, M. J., BUDIARDJA, R. D.,
MAXWELL, D., EZELL, M., ZIMMER, C., BOEHM, S., ELWASIF, W.,
ORAL, S., ET AL. Scaling the summit: deploying the world’s fastest
supercomputer. In International Conference on High Performance
Computing (2019), Springer, pp. 330–351.

[12] MELESSE VERGARA, V., BUDIARDJA, R., PELTZ, P., NILES JR, J.,
ZIMMER, C., DIETZ, D., FUSON, C., LIU, H., NEWMAN III, P.,
SIMMONS, J., ET AL. A step towards the final frontier: Lessons learned
from acceptance testing of the first hpe/cray ex 3000 system at ornl.



[13] MESSER, O. B., D’AZEVEDO, E., HILL, J., JOUBERT, W., BERRILL,
M., AND ZIMMER, C. Miniapps derived from production hpc applica-
tions using multiple programing models. The International Journal of
High Performance Computing Applications 32, 4 (2018), 582–593.

[14] MOODY, A. Contention-free Routing for Shift-based Communication in
MPI Applications on Large-scale Infiniband Clusters, 10 2009.

[15] THARRINGTON, A. N. Nccs regression test harness, version 00, 9 2015.
[16] VERGARA LARREA, V. G., BUDIARDJA, R. D., GAYATRI, R., DALEY,

C., HERNANDEZ, O., AND JOUBERT, W. Experiences in porting
mini-applications to openacc and openmp on heterogeneous systems.
Concurrency and Computation: Practice and Experience 32, 20 (2020),
e5780.

[17] VERONICA G. VERGARA LARREA, MICHAEL J. BRIM, A. T. R. B.,
AND JOUBERT, W. Towards acceptance testing at the exascale frontier.
Cray User Group (2020).

[18] WANG, Y., STOCKS, G. M., SHELTON, W. A., NICHOLSON, D. M. C.,
SZOTEK, Z., AND TEMMERMAN, W. M. Order-n multiple scattering
approach to electronic structure calculations. Phys. Rev. Lett. 75 (Oct
1995), 2867–2870.


