
Frontier node health checking and state management
Matt Ezell

High Performance Computing Scalable Systems
Oak Ridge National Laboratory

Oak Ridge, TN
ezellma@ornl.gov

Abstract—The HPE Cray EX235a compute blade that powers
Frontier packs significant computational power in a small form
factor. These complex nodes contain one CPU, 4 AMD GPUs
(which present as 8 devices), 4 SlingShot NICs, and 2 NVMe
devices. During the process of Frontier’s bring-up, as HPE and
ORNL staff observed issues on nodes they would develop a health
check to automatically detect the problem. A simple bash script
called checknode collected these tests into one central location
ensure that each component in the node is working according to
its specifications.

ORNL developed procedures that ensure checknode is run
before allowing nodes to be used by the workload manager. The
full checknode script runs on boot before Slurm starts, and
a reduced set of tests run during the epilog of every Slurm
job. Errors detected by checknode will cause the node to be
marked as “drain” in Slurm with the error message stored in
the Slurm “reason” field. Upon a healthy run of checknode, it
can automatically undrain/resume a node as long as the “reason”
was set by checknode itself.

This paper discusses some of the checks present in checknode
as well as outlines the node state management workflow.

Index Terms—HPC; HPE; Cray; Frontier; Node Health;
Reliability

I. INTRODUCTION

Delivering the first verified exascale computer to the world
was a large challenge, further complicated by supply chain
issues caused by the COVID-19 pandemic shutdowns. Build-
ing Frontier required over 60 million individual components,
spread across 685 different part numbers. HPE skillfully
navigated the logistical feat of acquiring all the required
components to build the system, though much of the schedule
contingency was consumed by component delays. Parts were
arriving from suppliers to HPE the same day they were being
integrated into compute blades. Frontier was delivered to Oak
Ridge National Laboratory over several weeks in late 2021,
and nodes were rapidly handed over to the benchmarking
teams for scaling work.

Frontier’s HPE Cray EX235a blades are complex, consisting
of 1 AMD GPU, 4 AMD GPUs (that present as 8 separate
devices), 4 HPE SlingShot 200 Gb/s NICs, and 2 NVMe
devices (see Figure 1). It was imperative to ensure that nodes
were completely healthy if they were included in the scheduler,
to optimize the benchmarkers’ time and avoid preventable
failures.

HPE and ORNL staff quickly realized that a comprehen-
sive automated health system was required to ensure quality,
though sufficient tests were not present on the machine or

available at delivery. ORNL evaluated several existing solu-
tions, including the LBNL Node Health Check (NHC) and
HPCM’s Cluster Health Check (CHC). Eventually it was
determined to port an existing in-house script called checknode
to the Frontier platform.

Mean time between failure on a system this size is
hours, it’s not days, so you need to make sure you
understand what those failures are and that there’s no
pattern to those failures that you need to be concerned
with.

Justin Whitt
OLCF Project Director

Both hardware and software faults can cause application
failures, so it is important to check for both. Some node
issues are detectable in-band, but others are only out-of-band.
ORNL checknode combined with SEC monitoring provide
a comprehensive capability to monitor and alert on node
health. ORNL has developed various tools and procedures
surrounding this process to minimize the time required to
identify unhealthy nodes so they can be repaired and returned
to the compute pool.

II. EXISTING SOLUTIONS

ORNL searched for existing software solutions for node
health checking. The only viable open-source candidate found
was Node Health Check from LBNL and Michael Jennings.
ORNL evaluated this software and found it to be functional.

Existing computational platforms at ORNL, such as Sum-
mit, already have a custom homegrown node health script
in place. Porting this to Frontier turned out to be quite
straightforward. Having all the code live in a single file is
advantageous so that updates can be easily pushed out to all
the compute nodes.

A prototype solution was written in python to understand
if a higher-level scripting solution would prove superior to
simple bash. Unfortunately, no simpler interface was found
that improved upon the existing bash script.

III. CHECKNODE FUNCTION LIBRARY

The checknode program is a simple bash script. Several
helper functions were developed to ease the addition of new
tests to the script. A quick description of some of the functions
follows:

• logstdout – log a message to standard output



Fig. 1. Frontier Node Architecture

• logstderr – log a message to standard error
• diagerror – mark a fatal error and log to standard error
• compare – ensure that the output of a command matches

a certain string
• compare2 – ensure that the output of a command matches

one of two strings
• compare ne – ensure that the output of a command does

not equal a certain string
• compare le – ensure that the output of a command is a

number less than given
• compare ge – ensure that the output of a command is

greater than given
• compare re – ensure that the output of a command

matches a regular expression
• compare nre – ensure that the output of a command does

not match a regular expression
• checkproc – ensure a given process exists in the process

table
• run – run a command ensure that the return code is 0
• journalgrep – check the system journal for a given match.

Cache the result so subsequent checks only need to query
messages since the previous check

When these functions detect a failure condition, they call
diagerror which in turn increments a failure counter and stores
the failure message to a variable.

IV. CHECKNODE TESTS

The tests present in checknode are added and evolve over
time as new failure modes are discovered. At a high level,
some of the checks include:

• Special Checks
– Lock to make sure only 1 copy of checknode is

running at a time
– Flag file check to make sure the bootup procedure

has finished before attempting any checks
– Save “early” dmesg to avoid losing information that

has rolled over
• General Checks

– Ensure no stray processes exist
– Node BIOS version
– CPU core count
– Size and availability of DRAM
– Hugepage availability

• Hign Speed Network
– All interfaces present
– Firmware version
– Link status
– Link speed
– MAC mode and correct AMA
– Link flap count
– Flow control mode
– Link layer retry mode
– Uncorrectable errors
– Packet Buffer Errors
– Credit Underflows
– Retry Handler Running
– Stuck cxi Services
– ARP entry count

• GPU



– All GPUs present
– VBIOS version
– RM version
– Uncorrected HBM errors
– DGEMM performance
– xGMI error counts
– Ability to read metrics
– Number of retired pages
– RM Firmware version
– Queue preemption timeout
– Total and available GPU Memory

• File systems
– NVMe Devices Present
– NVMe Firmware Version
– NVMe PCIe Gen
– NVMe PCIe Width
– NVMe Smart Log Criticals
– NVMe Spare Space
– Persistent Volume Group Present
– All DVS Mounts Present
– Lustre Mounts Present
– df Returns within Timeout
– LNET NIs match AMA

See Figure 2 for example checks.

V. CASE STUDY

To study and validate network performance, HPE would
regularly run MPI tests on Frontier to ensure no degradation
was present. At one point, HPE noticed that MPI all-to-
all performance was underperforming compared to previous
baselines.

A binary search of the nodes in the job indicated that
excluding certain nodes would cause performance to return.
Rebooting the problematic nodes would clear the problem,
but additional nodes would get into the error state without
warning. There was no obvious cause from looking at the
logs.

AMD tracked the problem down to a bug in the power
management firmware that prevented the CPU from going
into burst mode. Without CPU burst, the all-to-all was unable
to inject sufficient packets quickly enough to saturate the
network. AMD developed a quick, simple test that could
identify this issue. The check was added to checknode so that
stuck nodes could be quickly removed from the system and
prevented from causing issues with user jobs. AMD developed
a firmware fix that was installed a couple weeks later.

VI. INTEGRATION WITH SLURM

When checknode determines that a node is unhealthy, it will
drain the node with the error message as the reason. In case
of multiple errors, only the first error is stored in the reason,
but the count of errors is included for reference.

The checknode script integrates with Slurm to gather the
current state of a node. If a node is determined to be healthy,
there is a flowchart (see Figure 3) to determine if it is safe
to return to the batch pool. By default, checknode will only

return nodes that have a drain reason that was set by checknode
itself. That way, administrator or Slurm operators can hand-set
a drain reason that is not automatically cleared by checknode.

VII. INTEGRATION WITH SEC

ORNL has utilized the Simple Event Correlator (SEC) on
all of its HPC platforms for over a decade. SEC watches
the controller, console, and syslog logs for all the compute
nodes, as well as the Slurm controller logs. When certain error
conditions are detected, SEC will send an alert an optionally
mark the node as drained. Node failures that Slurm detects
cause SEC to run svtest on the relevant nodes.

VIII. HELPER SCRIPT

ORNL developed a script called downnodes that parses the
Slurm node information expressed as json and presents the
results in an easy-to-digest format. The hardware engineers
and the system engineers use this output to understand the
current health of the system as well as what actions need to
be taken in the short term.

The columns include the node hostname, the xname, the
“age” of the message, and the reason. The command can filter
for just certain reasons and also print all the matching nodes
in a condensed list format. If a command is provided at the
end of the command line, downnodes will use the ClusterShell
library to run the command in parallel on the matching nodes.
A common use case is to run checknode on nodes with certain
problems (such as file system timeouts) when the root issue
has resolved. In fact, the use case is so common that ORNL has
integrated a cron job to automatically return nodes that were
drained due to intermittent errors. See Figure 4 for example
command output.

IX. HARDWARE ENGINEER PROCEDURES

Hardware triage engineers are typically assigned to Frontier
on a row-basis, with responsibility to get and maintain their
row healthy. That process includes root-causing node failures,
marking failed nodes and their partners drained so that they
stop running jobs, and entering a hardware ticket so that a
technician will take physical action on the node. After the
ticket is returned, the triage engineer will run a node screen
to ensure that nodes are healthy before returning them to the
pool.

X. FUTURE DIRECTIONS

Tests have been added to checknode over time as problems
have been discovered; new checks will inevitably need to be
added as additional problems are encountered while Frontier
is in production.

A future feature to add to checknode is to automatically
handle draining partner nodes (the “other” node on the blade)
when a hardware action is scheduled. The plan is to have
the hardware engineers store the hardware action detail in the
node’s “extra” field.



checkproc munged
compare "$(/usr/sbin/dmidecode -s bios-version)" "1.6.2" "BIOS version incorrect"
compare "$(ps axo stat|grep -c D)" 0 "Processes stuck in IO Wait (D)"
compare_ge $(awk ’/MemAvailable/ {print $2}’ /proc/meminfo) 460000000 "Avail mem"
[ -e /home/cxi_debug/trstest.py ] && run /home/cxi_debug/trstest.py
journalgrep sq_intr ’amdgpu: sq_intr’ ’GPU sq_intr - put in HBM sandbox’
for nvme in nvme0 nvme1 ; do
[ -e /dev/${nvme}n1 ] || diagerror "NVME namespace ${nvme}n1 does not exist"
SL=$(/usr/sbin/nvme smart-log /dev/${nvme} -o json)
compare "$(echo $SL | jq .critical_warning)" 0 "${nvme} critical warning"

done
for gpuid in {0..7}; do

compare_re "$(cat /sys/class/drm/${gpu}/device/current_link_speed)"
"16(\.0)? GT/s( PCIe)?$" "GPU ${gpu} link speed"

done

Fig. 2. Example checknode checks

Healthy
?

Reason 
exists?

Reason 
exists?

Do Nothing

Drain Node with 
Reason

Resume Node

Can 
Clear?

Can 
Clear?

Force 
Undrain

?

Fig. 3. Slurm Intgration

ACKNOWLEDGMENT

The author would like to thank several individuals for
providing information and assistance in preparing this paper.
Don Maxwell provided valuable insights and mentorship while
developing this work. Jordan Webb is the primary maintainer

of the active SEC rules that run on Frontier.

This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Depart-
ment of Energy under Contract No. DE-AC05-00OR22725.



[root@admin1.frontier tmp]# downnodes -r rebooted
frontier02235 x2105c3s5b0n0 3d Node unexpectedly rebooted
frontier02298 x2105c7s4b1n0 3d Node unexpectedly rebooted
frontier02431 x2106c7s7b0n0 1d Node unexpectedly rebooted
frontier02794 x2109c6s4b1n0 1d Node unexpectedly rebooted
[root@admin1.frontier tmp]# downnodes -r rebooted -l
frontier[02235,02298,02431,02794]
[root@admin1.frontier tmp]# downnodes -r rebooted hostname
downnodes: frontier02235: exited with exit code 255
frontier02431: frontier02431
frontier02794: frontier02794
frontier02298: frontier02298
frontier02235: ssh: connect to host frontier02235 port 22: No route to host

Fig. 4. downnodes Output


