
ORNL is managed by UT-Battelle LLC for the US Department of Energy

Frontier Node Health Checking
and State Management

CUG2023 – Helsinki, Finland

Matt Ezell

22

Frontier Node

33

During Frontier Build -- the Chip Shortage Hit in Earnest!

• When HPE began ordering parts, suppliers said the lead time on orders was increasing an
additional 6-12 months.

• 60 Million parts needed for Frontier
– 685 Different part numbers used in Frontier
– 167 Frontier part numbers affected by the chip shortage

• (more than 2 million parts from dozens of suppliers worldwide)

– 12 Part numbers blocked building the first compute cabinet
– 15 Part numbers shortage for AMD building all the MI200 cards for Frontier

ORNL worked with ASCR to get DPAS rating for Frontier that helped
prioritize USA part orders (DPAS was extended to Aurora and El Capitan)

It wasn’t exotic parts like CPUs or GPUs, rather parts needed by everyone – in
cars, TVs, electronics, such as, voltage regulators, oscillators, power modules

Slide content courtesy Al Geist, ASCAC 2022

44

Supply Chain Remained a Constant Battle until Delivery

HPE saw commitments for parts deliveries from sub-contractors being broken weekly as the
chip shortage got worse. Had to call every supplier every week (sometimes every day)

April 30 – July 15: Initial shortage of 167 part numbers reduced down to 1 part #
• July 15th only found enough to build 63 of 74 cabinets (short 8,000)
• Took three more weeks to find all 8,000
• By that time had a couple more decommits on another part.

HPE had 15 people whose sole job was to try to find the needed parts or
alternatives for Frontier. Using HPE’s size to negotiate with suppliers,

looking for handfuls of parts in warehouses or at other companies who
were also stuck because of chip shortage.

The final parts arrived the morning the last Frontier node was assembled

Slide content courtesy Al Geist, ASCAC 2022

55

Need for Node Health Checks

• Hardware and software faults can cause application failures –
need to check for both

• Some issues are detectable in-band, others only out-of-band

“Mean time between failure on a system this size is hours, it’s
not days, so you need to make sure you understand what

those failures are and that there’s no pattern to those failures
that you need to be concerned with.”

- Justin Whitt, OLCF Project Director

66

Evaluation of Node Health Check Scripts

• The only viable open solution we found was NHC from LBL/mej
– HPCM cm health check uses this under the hood

• We have an in-house script called checknode that we use on
Summit, written in bash

• Prototyped a python-based custom replacement – did not
develop a simpler interface

– No need to specify host targets
– Functions and tests in a single file

In the end, we decided to evolve checknode to work on Frontier

77

When checknode is run

Run… By…
At boot HPCM startup scripts
Between each job The Slurm epilog
At request A human attempting to clear a

previous drain reason
Every 15 minutes cron, on nodes previously drained by

checknode

It is never run while a job is running

88

Special checks

• Lock to make sure only 1 copy of checknode is running at a
time

• Flag file check to make sure the bootup procedure has finished
before attempting any checks
– Hardware techs tend to get impatient waiting on a node to boot

• Save “early” dmesg to avoid losing information that has rolled
over

• Certain checks (long-running) only run at boot and cache their
results for future runs

99

Checknode functions

• logstdout – log a message to standard output
• logstderr – log a message to standard error
• diagerror – mark a fatal error and log to standard error
• compare – ensure that the output of a command matches a certain string
• compare2 – ensure that the output of a command matches one of two strings
• compare_ne – ensure that the output of a command does not equal a certain string
• compare_le – ensure that the output of a command is a number less than given
• compare_ge – ensure that the output of a command is greater than given
• compare_re – ensure that the output of a command matches a regular expression
• compare_nre – ensure that the output of a command does not match a regular

expression
• checkproc – ensure a given process exists in the process table
• run – run a command ensure that the return code is 0
• journalgrep – check the system journal for a given match. Cache the result so

subsequent checks only need to query messages since the previous check

1010

Some Examples
checkproc munged

compare "$(/usr/sbin/dmidecode -s bios-version)" "1.6.2" "BIOS version incorrect"

compare "$(ps axo stat|grep -c D)" 0 "Processes stuck in IO Wait (D)"

compare_ge $(awk '/MemAvailable/ {print $2}' /proc/meminfo) 460000000 "Available memory”

[-e /home/cxi_debug/trstest.py] && run /home/cxi_debug/trstest.py

journalgrep sq_intr 'amdgpu: sq_intr' 'GPU sq_intr - put in HBM sandbox’

for nvme in nvme0 nvme1 ; do
[-e /dev/${nvme}n1] || diagerror "NVME namespace ${nvme}n1 does not exist”
SL=$(/usr/sbin/nvme smart-log /dev/${nvme} -o json)
compare "$(echo $SL | jq .critical_warning)" 0 "${nvme} critical warning”

done

for gpuid in {0..7}; do
compare_re "$(cat /sys/class/drm/${gpu}/device/current_link_speed)”

"16(\.0)? GT/s(PCIe)?$" "GPU ${gpu} link speed”
done

1111

Differences between machines is expressed in tttax

verbose Checking Firmware
<% if @variables.include?("recipe") and

Gem::Version.new(@variables["recipe"]) >= Gem::Version.new('11.0.3') -%>
compare "$(/usr/sbin/dmidecode -s bios-version)" "1.6.2" "BIOS version incorrect"
<% elsif @variables.include?("recipe") and

Gem::Version.new(@variables["recipe"]) >= Gem::Version.new('11.0.1') -%>
compare "$(/usr/sbin/dmidecode -s bios-version)" "1.6.1" "BIOS version incorrect"
<% elsif @variables.include?("recipe")

and Gem::Version.new(@variables["recipe"]) >= Gem::Version.new('11.0.0') -%>
compare "$(/usr/sbin/dmidecode -s bios-version)" "1.4.5" "BIOS version incorrect"
<% else -%>
compare2 "$(/usr/sbin/dmidecode -s bios-version)" "1.4.3" "1.4.5" "BIOS version incorrect"
<% end -%>

<% if @variables["hostgroup"] == "frontier" -%>
compare_ge $(ip neigh|grep -c PERMANENT) 150000 "Permanent ARP entries”
<% end -%>

1212

GPU Checks

All GPUs
present

ECC Errors
this Boot SMN Failures xGMI Link

Errors
xGMI

Bandwidth

DGEMM
Performance

EEPROM
Issues

vBIOS IFWI
Version

Ability to
read metrics

Number of
retired pages

RM Firmware
version

Queue
preemption

timeout
Total GPU
Memory

Available
GPU Memory

1313

SlingShot Checks

All Interfaces
Present

Serial Number
is not Blank

PCIe Link
Width

PCIe Link
Speed

PCIe Error
Rates

uC Firmware
Version

Link Status Link Speed Pause Mode LLR Status Correct AMA Uncorrectable
Errors

Packet Buffer
Errors

Credit
Underflows

Retry Handler
Running Link Flap Rate Stuck cxi

Services

1414

File System Checks

NVMe
Devices
Present

NVMe
Firmware
Version

NVMe PCIe
Gen

NVMe PCIe
Width

NVMe Smart
Log Criticals

NVMe Spare
Space

Persistent
Volume

Group Present

All DVS
Mounts
Present

Lustre Mounts
Present

df Returns
within Timeout

LNET NIs
match AMA

1515

Case Study: Slow MPI All-to-All

• MPI all-to-all performance was found to be degraded

• Binary search indicated that excluding certain nodes would
cause performance to return

• Rebooting the problematic nodes would clear the problem

• No obvious cause from looking at the logs

• AMD tracked it down to a bug in the power management
firmware that prevented the CPU from going into burst mode

• Developed a quick, simple test to identify this issue

• Firmware fix came a couple weeks later

1616

Gaps

• BMC (nC) version not available in-band
– We do not allow the nodes to talk to the hostctrl (BMC) network
– Request to HPE to make this available has gone unfulfilled

1717

Slurm Integration

• checknode reads the current Slurm State and Reason

• It updates the state if appropriate

Healthy?

Reason
exists?

Reason
exists?

Do Nothing

Drain Node with
Reason

Resume Node

Can
Clear?

Can
Clear?

Can clear if reason is:
checknode:*
Not responding
Kill task failed

Force
Undrain?

1818

downnodes tool
[root@admin1.frontier tmp]# downnodes -h
usage: downnodes [-h] [--nodes NODES] [--state STATES] [--reason REASON]

[--comment COMMENT] [--extra EXTRA] [--partition PARTITION]
[--exclude EXCLUDE] [--list] [--fanout FANOUT]
...

positional arguments:
command to run

optional arguments:
-h, --help show this help message and exit
--nodes NODES, -n NODES

Only query these nodes
--state STATES, -s STATES

Node states and state flags to include
--reason REASON, -r REASON

Reason search string to match
--comment COMMENT, -c COMMENT

Comment search string to match
--extra EXTRA, -e EXTRA

Extra search string to match
--partition PARTITION, -p PARTITION

Slurm parition to query
--exclude EXCLUDE, -x EXCLUDE

Nodes to exclude from checking
--list, -l Output as a comma-separated list
--fanout FANOUT, -f FANOUT

Fanout for parallel commands

1919

downnodes
[root@admin1.frontier tmp]# downnodes -r rebooted

frontier02235 x2105c3s5b0n0 3d Node unexpectedly rebooted

frontier02298 x2105c7s4b1n0 3d Node unexpectedly rebooted

frontier02431 x2106c7s7b0n0 1d Node unexpectedly rebooted

frontier02794 x2109c6s4b1n0 1d Node unexpectedly rebooted

[root@admin1.frontier tmp]# downnodes -r rebooted -l

frontier[02235,02298,02431,02794]

[root@admin1.frontier tmp]# downnodes -r rebooted hostname

downnodes: frontier02235: exited with exit code 255

frontier02431: frontier02431

frontier02794: frontier02794

frontier02298: frontier02298

frontier02235: ssh: connect to host frontier02235 port 22: No route to host

2020

Regular Checks

• File system or network issues can drain nodes in bulk

• When the system recovers, we would like the nodes to be
returned for new jobs

• A 15-minute cron job runs downnodes to run
checknode against any nodes with a drain
reason that starts
with “checknode”

2121

SEC Integration

• Simple Event Correlator has been used to monitor Jaguar, Titan,
Summit, and Frontier

• SEC runs on the admin node, all the leader nodes, and the
Slurm controller node

• Watches controller, console, syslog, and slurm controller logs

• Certain failures will drain a node and set the reason
– Most common is Slurm-detected node failure

2222

SEC Node Failure
Node name -> xname: frontier04123 x2208c1s5b0n0
[2023-05-06T09:08:55.312] Killing JobId=1315086 on failed node frontier04123
Issuing command: scontrol update node=frontier04123 comment="app.the_user.test.nodefail.j1315086.n8192"
reason="app.the_user.test.nodefail.j1315086.n8192" state=drain

SEC has not caught any errors on frontier04123 in the past 10 minutes. Trying svtest...

frontier04123 didn't respond to ping. Node controller: x2208c1s5b0 is responsive, running svtest...
TLNC detected. Please wait...
node 0 is off. Current MMRs are empty. Checking captured MMRs...
This node had a power failure. Printing capture MMRs...

R_NFPGA_TLNC_PWR_CSR_CAP

early_pg_error = 0
emergency_shutdown = 0
epd_halt = 1
es_flt_ctlr_soc_s0_c0 = 0
es_gpu0_thermtrip = 0
es_gpu1_thermtrip = 0
es_gpu2_thermtrip = 0
es_gpu3_thermtrip = 0

...
pg_vdr_abcd_s0_c0 = 1
pg_vdr_efgh_s0_c0 = 1
pg_vpp_abcd_s0_c0 = 1
pg_vpp_efgh_s0_c0 = 1
pg_vtt_abcd_s0_c0 = 1
pg_vtt_efgh_s0_c0 = 1
pwrgd_out_c0 = 1
pwrok = 1
r_nfpga_tlnc_pwr_sts_cap = ffffeff
unused_31_28 = 0

GPU 1 power fault

2323

Hardware Engineer Workflow

• Triage engineers are assigned to rows and evaluate failures

• Nodes and their partners are drained and/or reserved with
MAINT reservations

• When the nodes are idle, a hardware ticket is entered

• The physical work is completed

• The triager runs an in-depth test harness to determine if the
issues are fixed

2424

Future Work

• Continue to add checks as problems are identified

• Use the slurm extra field for the hardware techs to schedule
draining
– Automatically partner-aware, so partner nodes will drain when a

hardware issue is stored to the extra field

Questions?
ezellma@ornl.gov

https://github.com/olcf/frontier-checknode

