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Problem Statement and Goals of this work

Problem Statement

e Science workflows increasingly use Al model inference and fraining components

e Development of Trustworthy Al models is often laborious and compute intensive
 Deficiencies in data management for Al hurt model quality and workflow reproducibility

Goal: develop data management infrastructure that makes it easier to:

» Improve workflow reproducibility and portability to enable bootstrapping of new research
e Including data management spanning Edge, HPC datacenter & Cloud

e Reduce human effort, compute cost and energy in developing Trustworthy Al models
 Leverage historical experience to reduce exploration effort and compute time
« Support collaborative development involving teams from different sites

e Account for energy consumption in end-to-end Al workflow optimization
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Self-Learning Data Foundation for Al
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Federated Common Metadata Framework (CMF)



Federated CMF Architecture and Characteristics
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Federated CMF Components

e Metadata Store
« Explicit (through workflow APIs) and implicit (through hooks to workflow managers) metadata and lineage tracking

« Pipeline — Context — Execution hierarchical abstraction for workflow metadata enables building lineages across
disjoint executions and between different sites

e Artifact Store
o Git-like artifact versioning through the unique content hash
« Supports wide range of storage remotes (S3 object store, local and parallel file systems, etc.)
o External artifacts not managed by CMF supported via uniform resource identifier (URI) mechanism
— Derived artifact with URI encoding the location of source artifact

o CMF Server
e Rest endpoint that can be accessed over HTTPS and used by other authorized clients to push or pull metadata

« Merges metadata from different clients

— The merge step identifies the branch in the pipeline tree under which an incoming execution fits or creates a new context branch or
creates a new pipeline free. Artifact metadata from different sites can be merged using its content hash as the joining key.

e CMF Client

e Enables push or pull of subsets of metadata from a server to a local store

e Enables pulling artifact from the remote store to the local store selectively. The design enables sharing of data when
needed (reducing data movement), but each site can use local artifact store enabling data locality
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Federated CMF Prototype Use Case

e Al model incremental refinement at a different site with new data
o Exa.trkX high energy physics particle frajectory reconstruction multi-stage Al pipeline
—Stage 1: Embedding Neural Network model, Stage 2: Graph Neural Network Model (GNN)
« Al pipeline portable between sites
 Pipelined trained at Site 1 and GNN model refined at Site 2 with CMF stitching disjoint executions between sites
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Federated CMF Other Example Use Cases

e Magnetic Confinement Fusion
« Lifelong (continuous) learning of fusion control models trained at HPC center and deployed at the edge

« Potential to accelerate integration of new research discoveries (plasma anomalies, etc.) to production flows in a
certifiable manner

e Autonomous Electron Microscopy
« Active learning of optimum scan positions for material structure and spectra investigations
« Potential for tight coupling with HPC molecular dynamics or density functional energy simulations

e Real Time Wildfire Management
« Fire detection and monitoring at the edge coupled to HPC modeling of fire spread
« Potential to adjust fire spread model by real-time measurements from the field



Al Model and Hyper-parameter Recommendation
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Al Model and Hyper-parameter Recommendation Objectives

 Utilize a-priori knowledge and metadata captured in CMF from executions of thousands of different

pipelines to recommend a small set of models and hyper-parameters best fitting for a given task and
dataset

e Use these recommendations as a seed (good known configurations) for AutoML methods such as neural
architecture search (NAS) and Bayesian hyper-parameter search to accelerate model development -
reduce human exploration effort, compute time and energy
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Al Model and Hyper-parameter Recommendation Architecture

Input query includes task name and dataset
name

Recommender knowledge graph is built
based on thousands of Al tasks from Open
ML communities imported to CMF

Al task pairs assigned similarity metrics
based on task categories, modalities and
dataset characteristics

Knowledge graph maintains task similarity
distances

Input query task matched to closest reference
tasks from the graph. Recommendations
ordered based on similarity score

Pipelines, models, and hyper-parameters
(when available in Open ML communities)
returned with each recommendation



Al Model and Hyper-parameter Recommendation Example Usage and Results

e Example output for a query with “3d Anomaly Detection” task name and “MVTEC” dataset name:

INPUT CONFIG
Task: 3d Anomaly
Detection

Dataset: {

Name: MVTEC

Type: Image
min_datapoints: 1000
}

Other: {

Run_time: 72hrs
Min_accuracy: 85
Inference time: 60s }

OUTPUT CONFIG

Requested Task: '3d Anomaly Detection'
Recommended Task: '3D Anomaly detection and
segmentation’

Similarity score: '0.625’

Requested Task category: Segmentation
Recommended Task category: Detection, Segmentation
Requested Task Modality: Image

Recommended Task Modality: Image

RECOMMENDED PIPELINE

Pid: 'the-mvtec-3d-ad-dataset-for-unsupervised-3d’
Datasets: [ { 'full_name".'THE MVTEC 3D ANOMALY
DETECTION DATASET’, 'name":.'MVTEC 3D-AD!, 'url":
'https://www.mvtec.com/company/research/datasets/mvtec-
3d-ad'}l,

Git repo: [ { 'description": 'Awesome-3D-Anomaly-Detection-
and-Localization/Segmentation’,

‘framework": 'none’, 'name"; 'Awesome-3D-Anomaly-
Detection/,

'url”; 'https://github.com/JerryX1110/Awesome-3D-Anomaly-
Detection'}],

Paper Title: ' The MVTec 3D-AD Dataset for Unsupervised 3D
Anomaly Detection and Localization’,

Paper url: 'https://arxiv.org/pdf/2112.09045v1.pdf’}

o Example Bayesian Hyper-parameter Optimization
speed-up for several binary and multi-class
classification problems with tabular data mapped to
gradient boosted tree models (XGBoost), when starting
from hyper-parameters recommended by our tool:

Churn Modelling |TelcoCustomerChurn| ForectCoverType
SpeedUp LossDiff |SpeedUp LossDiff |SpeedUp LossDiff
8.60 -0.11% 11.84 -0.63% 1.47 -2.02%




Al Pipeline Energy and Carbon Footprint Analysis
and Optimization
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Al Pipeline Energy and Carbon Footprint Analysis

e Objective

» Accurate reporting of energy consumption and carbon footprint in distributed Al pipelines (including data preparation, model
training and inference) enabling to include energy consumption in Al model optimization and evaluation of various trade-offs

(e.g., accuracy versus energy)
e Architecture

« Utilize Federated CMF to record energy consumption in each Al workflow stage execution as metadata
« Compute energy consumption during the execution rather than post fitting

e The current POC uses experiment-impact-tracker open source to monitor CPU and GPU energy usage on commodity server.
Work in progress to develop client-server architecture for HPC with user clients polling system level process for energy usage

e Example preliminary results:

CO, consumption in 2 layer transfer learning vs. accuracy:
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GPU, CPU and total power consumption for ClimateNet:
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Summary

e We developed Federated Common Metadata Framework (CMF) to:

Manage workflow lineage and metadata across multiple systems or sites

Enable workflow reproducibility and portability among different sites

Provide community-wide visibility to data, workflows and metadata, enabling to bootstrap new research
Support workflows spanning Edge, HPC datacenter and Cloud

e We also developed Al model and Hyper-parameter recommender tool to:
« Recommend best pipeline, model and hyper-parameters from given task and dataset

e Reduce human exploration and compute time and energy by accelerating Network Architecture Search
and Hyper-parameter optimization

« By using a-priori knowledge captured in CMF from executions of thousands of different pipelines

 Finally, we are developing Al Pipeline Energy and Carbon Footprint Analysis tool to:

« Estimate end-to-end energy consumption of distributed Al pipelines, including data processing, model training
and inference

e Include energy consumption in Al model optimization and evaluation of various trade-offs like energy efficiency

at fraining vs energy efficiency at inference and cost of retraining
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