
1

STREAM: A Scalable Federated HPC Telemetry
Platform

Ryan Adamson, Tim Osborne, Corwin Lester, Rachel Palumbo
National Center for Computational Sciences

Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.

Abstract—
Obtaining and analyzing high performance computing (HPC)

telemetry in real time is a complex task that can impact algo-
rithmic performance, operating costs, and ultimately scientific
outcomes. If your organization operates multiple HPC systems,
filesystems, and clusters, telemetry streams can be synthesized
in order to ease operational and analytics burden. In order
to collect this telemetry, the Oak Ridge Leadership Computing
Facility (OLCF) has deployed STREAM (Streaming Telemetry
for Resource Events, Analytics, and Monitoring), which is a
distributed and high-performance message bus based on Apache
Kafka. STREAM collects center-wide performance information
and must interface with many sources, including five HPE
deployed supercomputers, each with their own Kafka cluster
which is managed by HPCM. OLCF Supercomputers and their
attached scratch filesystems currently send more than 300 million
messages to over 200 topics producing around 1.3 Terabytes per
day of telemetry data to STREAM. This paper describes the
architectural principles that enable STREAM to be both resilient
and highly performant while supporting multiple upstream
Kafka clusters and other data sources. It also discusses the design
challenges and decisions faced in adapting our existing system-
monitoring infrastructure to support the first Exascale computing
platform.

Index Terms—Observability, HPC Telemetry, Analytics,
STREAM

I. INTRODUCTION

The Oak Ridge Leadership Computing Facility (OLCF) [1]
deploys and operates leadership-class computational resources
required to tackle global challenges. OLCF deployed the
CrayEX based Frontier supercomputer in 2022 which ranked
fastest in the world by the Top500 list [2] and is the first
computer to reach exascale at over 1 EF of performance.
Frontier’s Lustre based scratch filesystem, Orion, contains over
650 PB of available storage. In addition to these 2 flagship
systems, OLCF operates the 200 PF Summit supercomputer
and a handful of other CrayEX based computers. Due to the
complexity and high number of systems within this operational
environment, it is critically important but also quite difficult to
collect the appropriate logs, metrics, and telemetry informa-
tion from various components of production systems. OLCF
has deployed STREAM (Streaming Telemetry for Resource
Events, Analytics, and Monitoring) over the past two years
to centralize the collection of this system information in a
performant way for operations staff, center leadership, and
researchers.

The paper is organized as follows: First, contributions to lit-
erature are discussed in section 2. Section 3 explores the design

requirements for a scalable federated message bus shared by
the OLCF as well as the other strategic partnership programs
operated by the National Center for Computational Sciences
(NCCS). Section 4 provides a comprehensive overview of
STREAM as it was implemented. Section 5 describes the
lessons learned while taking STREAM from conception to
deployment. Finally, section 6 discusses the future work that
the OLCF has identified in order to fill remaining gaps in the
STREAM deployment. Finally, section 7 concludes the paper.

II. CONTRIBUTIONS

This paper makes contributions in several areas. First, the
diagrams and technical discussion contained within this text
can be used as a starting point for highly-scalable federated
streaming telemetry platforms that readers may wish to de-
ploy. Second, several novel solutions to discovered federated
streaming problems are discussed, such as federated schema
registries, topic naming schemes, and consistent data dictio-
nary formatting. Finally, because STREAM is a system that
has evolved over the past few years and will continue to
evolve as OLCF’s needs grow over time, this paper serves as
an experience report and lessons learned document. As such,
care should be taken when adapting blueprints and designs to
make sure they meet the needs of the implementer. Kafka is
a complex message bus, it is potentially the wrong choice for
simpler and/or less rigorous publish-subscribe workloads.

III. DESIGN REQUIREMENTS

Working with telemetry data from multiple supercomputers
requires coordination, optimization, and planning. The volume
of data a supercomputer produces must flow freely and avoid
bottlenecks; as streaming continues to gain traction and OLCF
adds more telemetry metrics and/or systems, the Analytics and
Monitoring (AM) workload must be minimized and needs
to scale linearly in order to continue providing leadership
level streaming capabilities. The following design goals were
present during deployment of STREAM:

1) Lower the burden of data engineering and pipeline
management

2) Scale over time with the deployment and decommission-
ing of systems

3) Serve as a ’narrow waist’ for reliable data flow within
NCCS

4) Provide a data-agnostic abstraction layer for producers
and consumers



2

Fig. 1. STREAM is the narrow waist of OLCF’s telemetry platform.

A. Minimizing Data Engineering Burden

In recent years, several papers have been published that
principally used information about OLCF supercomputers
to make discoveries. This work tends to involve reliability
analysis, failure prediction, or characterization of efficiency
of world-class resources. [3][4] Generally, the monitoring
platforms present at sites serve in an operations role and
system information is guarded by the systems engineers. There
are several barriers to producing research outcomes in this
model: Researchers must request (and be granted!) information
from operations teams. Then, they must learn about and clean
the data set they have received by performing exploratory
data analysis (EDA). Finally, researchers must transform the
data into a format that their analysis tools can operate on.
This preparatory work can consume between 50% to 80% of
the total effort spent! [5]. Additionally, future related research
tends to still follow the same exact pathway and no shared-
speedup is experienced even with related data sets.

To help minimize the mean-time-between-publications, the
OLCF endeavors to perform as much of this curation work
as is reasonable, and it is one of the guiding design goals of
STREAM.

B. Data Centralization and Reliability

The additional design requirements of STREAM are opera-
tional in nature. We desire data access reliability, some guar-
antee as to the accuracy of information flowing through the
platform, and a highly-scalable system capable of absorbing
short bursts (such as during system failure events) as well as
long-term sustained growth as more systems come online. The
data pipelines that existed within the OLCF prior to STREAM
were bespoke ’best-effort’ connections between databases and
scheduled cron tasks that were prone to silent failure. It was
clear that the real issue standing in the way of reliable data
streaming was not the systems themselves, but the number of
point-to-point flows of information that existed without strong
documentation and awareness. The OLCF wanted to centralize
these in some way to provide operational and correctness
guarantees to data pipelines.

Many complex systems take on an ’hourglass shape’ [6] to
minimize complexity between the many supporting layers of
functionality. For example, the narrow waist of the internet
is the IP layer. IP routing is relatively simple and is only

concerned with distributing packets somewhat efficiently along
a path between communication endpoints. Because the routing
layer does not need to care about the supporting or supported
layers of the OSI model, it has allowed global communication
networks to grow significantly over the past forty years.
STREAM is the ’narrow waist’ of the OLCF’s streaming
telemetry data platform: Telemetry data flows from source to
STREAM and then to the many consumers that are interested
in subscribing to those streams.

C. Scaling Over Time

Another benefit of a centralized narrow-waist design over
a direct all-to-all topography is that the worst-case number of
connections between data sources and sinks is reduced from
O(n2) to a O(n) upper bound the n-to-1-to-n hourglass ar-
chitecture. There are pros and cons to this approach, however.
Centralization means that we can develop better monitoring
tools and documentation for end users, but it can potentially
pose a risk to overall throughput and scalability by becoming
a bottleneck.

D. Lifecycle Sustainability

The sustainability of center-wide services is very important.
Clearly, there is systems engineering and administration exper-
tise within the OLCF, but this data curation effort needed to
move up the stack a little bit to also focus on data exploration
and interpretation for STREAM customers. The Analytics and
Monitoring (AM) team decided to operate STREAM on top
of OLCF’s SLATE Kubernetes/OpenShift infrastructure so that
operating system and systems administration expertise of its
members could be replaced by data analysis skill sets, while
retaining the application administration and troubleshooting
knowledge that is required of an operational team. The SLATE
layer of abstraction makes it easier to bring in new hardware
for growth and hardware replacement purposes as well as
providing a consistent set of configuration for test environ-
ments that can be spun up on the fly. There is a learning
curve regarding kubernetes operations, however, and it was
a calculated risk at the time to embrace that kind of PaaS
which was not supported as well as today by vendors of the
applications that we run.

E. Performance Requirements

Performance requirements for a center-wide streaming
telemetry platform are somewhat orthogonal to the standard
HPC center mantra of low-latency and high-throughput com-
munication. Because the primary purpose of STREAM is a
real-time streaming telemetry platform, we expect most of
the consumers to be reading either the latest or at least
very recently written data. On message ingest, brokers will
forward messages to subscribers that are online and polling.
For subscribers that sleep and wake up periodically to monitor
incoming messages, information will tend to still be in broker
application memory or page cache. Thus, fast disk I/O is
required only in workloads where clients want to read all of
the data currently written to a topic. These use cases are better



3

suited to searching or analytics engines like Splunk, Elastic,
or Spark. In those cases, other researchers and operations
staff could run a telemetry gathering process to collect and
downsample information into a format best suited for their
use case. The main benefit to fast bulk disk I/O is mainly
for recovery purposes during a broker failure. Re-replicating
the topic partitions affected by a broker failure can cause TBs
of recovery traffic from all systems and put load on network
interfaces that can affect other topics.

The OLCF has a goal to store and curate as much telemetry
data as possible for the lifetime of OLCF systems. Bandwidth
requirements are thus driven more by storage system sizes
and less by bandwidth needs of incoming telemetry. If we
expect 20PB of telemetry data over a 5 year period, a relatively
meager 140 MB/s steady state data stream is sufficient and is
about the bandwidth provided by a single gigibit ethernet link.

IV. ARCHITECTURE OVERVIEW

The OLCF explored several publish-subscribe systems such
as MQTT, RabbitMQ and Apache Kafka. Eventually, Apache
Kafka was chosen due to the combination of an extremely scal-
able architecture and the fact that topic creation and naming,
user access control, and monitoring can be tightly controlled
by administrators. The High Performance Cluster Manager
(HPCM) software delivered with the CrayEX platform tracks
many local system metrics internal to a system in a Kafka
cluster, and there is an added advantage of toolset compati-
bility between the central STREAM telemetry platform and
cluster-local HPCM instances.

A. STREAM Software Components

The core service of STREAM is Apache Kafka, which is
a highly-scalable, distributed, and reliable publish-subscribe
system. Kafka is one of the largest member projects of
the Apache Software Foundation and has a rich ecosystem
of supporting tools and documentation. Data producers and
consumers interact with the Kafka message bus topics, and
a set of Kafka brokers parallelize the topic into a set of
partitions which is Kafka’s unit of scale. Clients connect to
the set of Kafka brokers to publish messages or subscribe to
topics. Brokers manage communication with all clients and
track the state of the Kafka cluster in order to direct clients to
other brokers that are managing the topic/partitions of interest.
Brokers are responsible for enforcing guarantees of reliability
and redundancy as appropriate.

Other important properties of Kafka include:
1) Messages are both unique (with the offset being the key)

and ordered for any given topic-partition
2) Messages are guaranteed to be delivered in-order to

consumers for a given topic-partition
3) Kafka brokers play a pivotal role in client orchestration,

both ensuring that client producers distribute writes
across topic partitions evenly, and client consumers take
appropriate slices of work and do not consume messages
that other consumers within the same consumer group
have seen already.

4) Low-latency is desired for real-time streaming, so page
cache and in-memory processing is preferred

5) Telemetry streams range from consistent to bursty de-
pending on producer and consumer behaviour

Zookeeper is a companion service of Kafka that stores
cluster state information such as the current leader, topic
settings, and access control lists.

The Schema Registry is a service that stores message
schemas for topics. Schemas can be used by brokers to
enforce message consistency and enable validation. Schemas
typically contain a list of fields, their data types, and comments
describing each field. Topic schemas are important for AVRO
encoding as well, which can drastically reduce data and
processing demands using compression. If AVRO encoding
is used while producing messages to a topic, clients will need
to reference the Schema Registry to be able to decode topic
messages.

Kafka Connect is a way to connect Kafka with remote data
sources. It is a suite of plugins to ingest from and export data
to other applications such as Elastic, Telegraf, and even other
Kafka clusters. STREAM uses Kafka Connect to ingest data
from the HPCM-local Kafka clusters within NCCS.

The Kafka REST Proxy service lets producers or con-
sumers without native Kafka libraries speak using the Kafka
message protocol. These clients produce or consume from a
RESTful API interface for Kafka provided by the service.

Confluent Control Center provides monitoring and con-
figuration capabilities for a Kafka cluster. Topics are provided
dashboards that show data speeds and feeds as well as individ-
ual recent messages. This provides the AM team observability
to verify the health and status of topics as well as debug
producers messages as needed.

Stream Schema Relay is an OLCF-developed Flask ap-
plication that disambiguates schema conflicts across HPCM
clusters that are federated with STREAM. Since each HPCM
system has its own Schema Registry, the Stream Schema Relay
forwards requests from STREAM’s Schema Registry service
to the host systems’ Schema Registry, allowing clients to
retrieve the correct schema and decode their message.

B. STREAM Hardware Components

STREAM is composed of six Dell PowerEdge R740s with
128 GB of RAM, 24x12 TB SSDs, and 2 Intel Xeon Gold 32
core processors at 3.1 GHz. Each of these servers are joined
to a RedHat OpenShift cluster. Confluent’s Kafka Kubernetes
operator is used to deploy six Kafka pods evenly across
available hardware. Each pod is configured to use 16 threads
(8 cores), 64 GB of memory, and 24 TB of disk. Pods for
ephemeral services such as Zookeeper, Control Center, and
Schema Registry are not particularly processor or memory-
heavy and are co-scheduled on the same six OpenShift worker
nodes.

C. STREAM Producers

Some notable STREAM producers include HPCM, Lustre
system metrics obtained via telegraf, and xalt[7] job records.
These producers are created and maintained by various groups



4

Fig. 2. Detailed STREAM components and their support by SLATE physical infrastructure. Data sources generally reside within their own network infrastructure
on the left of the diagram while data sinks/destinations are on the right. SLATE also supports several data consumption applications.

throughout the OLCF. One of the heavier producers of data is
HPE’s HPCM cluster management software. HPCM produces
through redfish to its own Kafka bus where the analytics and
monitoring team replicates the stream using a Kafka replicator.
Across NCCS systems, this averages around 18 MB/s at
105,000 messages/s. For Frontier data, the team augments
some streams to include hostname and serial numbers for
each component in the stream; we plan to replicate this
enhancement to all the other equivalent HPCM streams. The
storage team in OLCF collects and produces Lustre related
data using telegraf. Storage accounts for about 50 MB/s of data
and 128,000 messages/s on average. This data contains system
telemetry for Lustre systems as well as rpc events from the
systems. Another important but relatively low-profile producer
to STREAM is the collection of xalt job records, which
characterize applications compiled and run on HPC resources
within the center. Of the 223 topics currently configured on
STREAM, the top seven are detailed in Table I. The majority
of data flows on STREAM are much smaller than these topics.

D. STREAM Consumers

Various consumers connect to STREAM with dashboards,
exporters, or scrapers. One of the key applications that con-
sumes data from STREAM is Summit’s power efficiency
application. This application uses real-time data from Summit
and weather forecasts to optimize power for cooling. Most of
the data that comes through STREAM is scraped and stored
in an Elasticsearch Data Lake. Many Grafana dashboards
across the OLCF are driven by the data in Elasticsearch.
These dashboards provide operational awareness across the
supporting organizations of OLCF.

E. Performance Analysis

Experience so far with STREAM has shown that the archi-
tecture is resilient and it has scaled well as new systems related
to Frontier’s delivery have been installed. Overall, STREAM’s
biggest pain point has been producers and consumers, not
the Kafka bus itself. The current average write rate is 72
MB/s. The main producer being Frontier’s file system, Orion,
which bursts to 82 MB/s from 256 servers every few minutes.
This pushes total throughput to 105 MB/s during that interval,
with a sustained 38 MB/s when Orion isn’t producing. We’ve
observed 4 Kafka brokers sustain this write-rate, so we know

we still have room to grow. Each Kafka node is outfitted with
a 10 GbE connection for data. With six nodes, the theoreti-
cal maximum throughput is 7.5 GB/s, including replication,
production, and consumption. Currently, we’re at 300 MB/s
including all replication, production, and consumption. So, the
system can still grow 10x and be below half the theoretical
max.

V. LESSONS LEARNED

A. Topic Naming Conventions

Topic names should be informative but not cumbersome
so that streams are differentiated in a standard and reliable
way. This prevents mislabeling, confusion, and loss of data
throughout the entire data life cycle. Topics are named accord-
ing to the project, system, and type of data collected, such
as metrics, telemetry, or power. We went through numerous
iterations before landing on a set of naming conventions that
covered both the information we wanted and constraints of our
services requirements. Our current topic naming convention is
a tuple of identifying information about a data source and takes
the form:

DataOwner.SourceSystem.Subsystem.CommonName

As an example, the HPCM messages containing CrayEX
telemetry information and other metrics for Frontier would be
named:

stf002hpc.frontier.hpcm.crayex telemetry

Here, stf002hpc is the name of the Unix group that cor-
responds to the systems administrators of HPC systems at
NCCS. Note that this scheme makes finding crayex telemetry
information for any HPCM system within NCCS relatively
simple since replacing ’frontier’ with another system name
would yield a valid topic name with that information in it.

NCCS updated our topic naming conventions simultane-
ously with hardware and architecture updates of STREAM
and encountered a few data management issues. Streams were
updated with new names based on the new conventions by
creating new topics while retaining the same data pipeline
architecture. However, in a few cases some streams were recre-
ated with improper names and the data that was then stored
at the endpoint (in Elasticsearch indices) had to be re-indexed
into new, properly named indices. This can be a slow process,
so the lesson here is to ensure you have a few fail safes in



5

Topic Name Messages per second (avg) Messages per second (max) Bytes per second (avg) Bytes per second (max)
orion.lustre.rpc trace data 111 K 246 K 43 MiB 85.9 MiB
frontier.hpcm.crayex telemetry. 59.3 K 59.8 K 5.96 MiB 6.04 MiB
c5.hpcm.crayex telemetry 10.2 K 10.9 K 1.05 MiB 10.7 MiB
frontier.hpcm.HPCMLOG 9.48 K 16.5 K 3.68 MiB 6.75 MiB
f2.lustre.rpc trace data 5.54 K 18.7 K 1.83 MiB 5.07 MiB
infrastructure.system.metrics 4.83 K 5.79 K 3.36 MiB 3.39 MiB
summit.syslog.messages 2.16 K 9.66 K 945 KiB 3.07 MiB

TABLE I
THE TOP SEVEN STREAM PRODUCERS AS OF MAY 2023. OF STREAM’S 220 TOPICS, THESE SEVEN DOMINATE BOTH MESSAGE COUNT AND DATA

RATE OF ALL MESSAGES FLOWING THROUGH STREAM

place and have decided on a final naming convention before
moving forward with any changes to production pipelines.

B. Federated schema registries

As a centralized Kafka bus which absorbs many Kafka
buses, the various schema registries that match absorbed Kafka
buses must be made available to consumers. These schema
registries may be required in order to read the data, as
is the case with encoded messages. We considered a few
options for allowing consumers access to schema registries, the
most obvious being consuming the schema registry messages
from federated Kafka schema topics and storing them within
STREAM’s schema topic. Unfortunately, Kafka expects the
central schema registry topic to exist before spokes. This
is because encoded messages reference with registry index
they’re using. Rather than develop complex schema syncing
and message modification tools, we decided to proxy user re-
quests for topics that might have conflicting schemas between
federated Kafka instances.

C. Access Approval Workflow

A data access and distribution workflow is absolutely nec-
essary for maintaining data quality, integrity, confidentiality,
and ensuring appropriate use. Misuse and manipulation of
data, whether malicious or not, can lead to false, misleading,
or negative conclusions that may be damaging and lead to
costly mistakes and misunderstandings. Some of the diffi-
culties faced in developing and implementing an access and
distribution workflow lie in the disparate nature of the approval
process: data producers, data requesters (internal to ORNL and
external), security administrators, data service administrators
(i.e., our team) and legal reviewers work on different teams,
groups, or even facilities and have different requirements,
considerations, and constraints on the data. In order to alleviate
some of the strain of this process, we helped spearhead a Data
Resource Utilization Council (DRUC) to manage and track
data sharing and distribution. Within the DRUC, we developed
a standardized workflow and Jira ticketing project to track and
record progress of data sharing efforts.

D. Monitoring

The team monitors our Openshift pods and services using
Prometheus exporters and Grafana dashboards. In additon, we
have Nagios alerting set up to notify if we have significant
broker failure. During downtimes or instances in which we

experience signficant broker outages due to breaking changes
or updates, we disabled alerting in order to reduce workload
on the facilities operators that monitor the 24/7 Nagios alerting
system.

Monitoring data streams themselves is vital for ensuring the
integrity of the services STREAM offers. We currently monitor
our topics using Prometheus and Confluent Control Center.
Prometheus scrapes information such as broker health and
status, message count per topic, production and consumption
throughput, as well as production by broker. Control Center
also offers this view in addition to a GUI for quickly viewing
incoming messages.

E. Documentation of topics

Creating standardized documentation is difficult across
datasets that are managed and produced by different groups. It
is however, extremely important for adequate management and
sharing of data. Our documentation process is ongoing. We
decided to centralize our topic documentation in GitLab. While
it is still in progress, we are working on implementing a CI/CD
pipeline for managing and linting new topic documentation.
Additionally, we have created standardized templates for topic
documentation to allow for a more efficient and effective
documentation process. Each of these things help to address
a problem we have faced with incomplete, inconsistent, and
confusing documentation that was produced without a standard
template at different times or by different people.

F. Cleaning and purging unneeded data

Recent team efforts have been focused on analyzing and
understanding incoming data in order to improve not only
the efficiency and integrity of our services but to provide
suggestions to data producers about how to better use and
understand their data. One effort here is the identification
of data fields that either provide no useful information for
monitoring the system in question or contain null values. There
is measurable physical storage and processing power needed
for this data, so reducing the amount of resources needed to
process and keep unnecessary data is vitally important.

G. Data wrangling

As with cleaning and purging data, wrangling data into
a usable format is a nontrivial task. In some cases, this
means identifying when one topic contains too much disparate
information and needs to be separated into several different



6

topics or streams. Additionally, much of the data that we
encounter is produced by first generation systems, therefore
sensors, metrics, and telemetry data has not been standardized
into a universal format and may as we have found, change
throughout the lifetime of the data. This can cause significant
and unexpected errors. Having standards for data set at the
front end and good monitoring makes this aspect a little less
disruptive.

VI. FUTURE WORK

A. Automating Topic Creation and Access

As the number of topics and consumers continues to grow,
it has become increasingly important to develop mechanisms
that enable users to create and access topics efficiently. OLCF
has already implemented the Resource Allocation Tracking
System (RATS) to facilitate the creation and management of
projects and allocations for supercomputing resources. Plans
are underway to extend RATS for managing streaming re-
sources as well. Upon completion, users will be able to submit
topic creation and access requests through MyOLCF, the web-
based front end for RATS. The Analytics and Monitoring team
can then approve these requests, automatically creating the
required objects and permissions on the relevant services.

B. Training and Examples

With the ability to create and access streams independently,
users must be educated on how to effectively interface and
utilize services like Kafka and Elasticsearch. They will need
to learn how to properly deploy new producers and con-
sumers for streams. To assist users in this endeavor, we are
working on providing well-documented examples for popular
software libraries in multiple languages through MyOLCF.
This approach will ensure that the scientific and engineering-
focused audience can easily understand and apply the provided
information to enhance their streaming capabilities.

C. Data Exploration Tools

As streams become publicly available, users need the ability
to browse streams and examine data within them to uncover
practical applications for the stream’s data. MyOLCF will
offer a data dictionary displaying meta-information about each
stream, such as ownership, data fields present in each message,
and the meaning of those fields.

In addition, we are exploring tools for analyzing data within
a stream, such as incorporating a JupyterLab instance for run-
ning common data analytics libraries and statistics modules.
Of particular importance are tools that enable users to visually
create transformation and filtering pipelines, enhancing the
value and utility of the data.

D. Broadening Scope

With a scalable, secure, streaming ecosystem capable of
handling petabytes of storage alongside supercomputers, there
is immense potential to expand the system’s applications
beyond the computing systems within OLCF. ORNL boasts
powerful scientific instruments, such as the spallation neutron

source and isotope production facilities, which can benefit
from incorporating supercomputing into their processes. By
providing adequate software tooling, pipelines can process
streamed measurements, enabling experiments to run more
effectively and facilitating the identification of anomalies or
scientifically valuable data.

VII. CONCLUSION

STREAM is a scalable telemetry platform that centralizes
the myriad data streams within NCCS and federates CrayEX
HPCM Kafka message buses. It provides a center-wide view of
real-time information for systems administrators, center lead-
ership, and researchers that use system telemetry information
for data science and machine learning. The NCCS has learned
several important lessons during the deployment of STREAM
which are layed out in this paper. In the future, we hope
to move forward to democratize access to system telemetry
information and provide streaming message bus as a service
to OLCF customers.

VIII. ACKNOWLEDGEMENTS

This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Depart-
ment of Energy under Contract No. DE-AC05-00OR22725.

REFERENCES

[1] Oak ridge leadership computing facility. https://www.olcf.ornl.gov/.
[Online]. Available: https://www.olcf.ornl.gov/

[2] J. Dongarra and P. Luszczek, TOP500. Boston, MA: Springer US,
2011, pp. 2055–2057. [Online]. Available: https://doi.org/10.1007/978-0-
387-09766-4 157

[3] B. H. Park, S. Hukerikar, R. Adamson, and C. Engelmann, “Big data
meets hpc log analytics: Scalable approach to understanding systems
at extreme scale,” in 2017 IEEE International Conference on Cluster
Computing (CLUSTER), 2017, pp. 758–765.

[4] W. Shin, V. Oles, A. M. Karimi, J. A. Ellis, and F. Wang,
“Revealing power, energy and thermal dynamics of a 200pf pre-exascale
supercomputer,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, ser.
SC ’21. New York, NY, USA: Association for Computing Machinery,
2021. [Online]. Available: https://doi.org/10.1145/3458817.3476188

[5] For data scientists, janitor work is key hurdle
to insights. https://www.nytimes.com/2014/08/18/technology/for-big-
data-scientists-hurdle-to-insights-is-janitor-work.html. [Online]. Avail-
able: https://www.nytimes.com/2014/08/18/technology/for-big-data-
scientists-hurdle-to-insights-is-janitor-work.html

[6] M. Beck, “On the hourglass model,” Communications of the ACM, vol. 62,
07 2016.

[7] K. Agrawal, M. R. Fahey, R. McLay, and D. James, “User
environment tracking and problem detection with xalt,” in Proceedings
of the First International Workshop on HPC User Support Tools,
ser. HUST ’14. IEEE Press, 2014, p. 32–40. [Online]. Available:
https://doi.org/10.1109/HUST.2014.6


