
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

STREAM: A Scalable Federated HPC Telemetry Platform

Ryan Adamson, Tim Osborne, Rachel Palumbo, Corwin Lester

National Center for Computational Sciences (NCCS)

Oak Ridge National Laboratory (ORNL)

CUG 2023

Roadmap
1. Observations and Motivation
2. Design Requirements

3. Architecture

4. Lessons Learned

5. Future Work

33 Open slide master to edit

Observations and Some Motivation

1. Everyone wants to collect and access your data!

2. Collecting data can adversely affect performance

3. Providing data to consumers implies an endorsement of
support

4. Systems staff are the gatekeepers of system data

5. Best practices don’t really exist

6. AI/ML workloads and tools are becoming more prevalent

7. Systems staff don’t have data science skills

44 Open slide master to edit

Hardware and Application Monitoring

Eliminating Performance Bottlenecks

55 Open slide master to edit

Power, Water, Cooling Infrastructure Analytics

Understanding Infrastructure Efficiency

66 Open slide master to edit

Event Log Monitoring and Failure Analysis

Anti-Sulfur Resistors (ASR) were not
appropriately used in Titan GPUs

Silver-sulfide corrosion
"Flowers-of-Sulfur"

NVIDIA SXM – Location of a non-ASR

Insights into Component Failure

77 Open slide master to edit

The Data Engineering ‘Data Transformation Lifecycle’

Data
Collection

Exploratory
Data Analysis

(EDA)

Feature
Selection /

Engineering

Useful Data

• Treatment of Outliers / Missing Data
• Elimination of ‘Junk’ Fields
• Improvements to Overall Quality

• Identification of Data Sets
• Data Acquisition
• Monitoring

• Augmentation of Data
• Transformation of Fields
• Storage and Maintenance

• Reporting
• Analysis
• Model Training

88 Open slide master to edit

The Data Engineering ‘Data Transformation Lifecycle’

Data
Collection

Exploratory
Data Analysis

(EDA)

Feature
Selection /

Engineering

Useful Data

• Treatment of Outliers / Missing Data
• Elimination of ‘Junk’ Fields
• Improvements to Overall Quality

• Identification of Data Sets
• Data Acquisition
• Monitoring

• Augmentation of Data
• Transformation of Fields
• Storage and Maintenance

• Reporting
• Analysis
• Model Training

80% of data engineering
effort is spent in the ‘data
wrangling’ stages of the
lifecycle

99 Open slide master to edit

The Data Engineering ‘Data Transformation Lifecycle’

1010 Open slide master to edit

2019: NCCS Analytics and Monitoring ‘Platform’

1111 Open slide master to edit

2019: NCCS Analytics and Monitoring ‘Platform’
Look at all the siloed data pipelines! The complexity of a

‘data web’ grows with the number of unique edges, not with the
amount of data moving.

1212 Open slide master to edit

2019: Data Platform Observations

‘Scaling’ was no longer scaling
• Increased system complexity and changes to

systems and schemas over time made data
analytics incredibly manual

• We needed to replace batch processing and
enable stream processing where possible

• Traditional data sinks did not provide flexibility
of modern data warehouses for applications
users wanted to use

• A central data bus was necessary to
decouple opaque data pipeline sources and
sinks and provide O(n) scaling

New technologies made this possible
• Several scalable, robust, flexible message

busses were becoming mature

• Modern data warehouse designs and
search/analytics tools like Elastic were being
explored by various teams

• Data analytics tools were maturing and our
operations teams were becoming more
capable of slicing and dicing telemetry
streams

• Platform as a service (PaaS) had just been
deployed within NCCS and was reducing
administrative burden

1313 Open slide master to edit

STREAM Design Goals

1. Ease the burden of telemetry pipeline management @ OLCF

2. Be able to scale up with the deployment of new systems

3. Provide a centralized point of service for streaming data for all
NCCS programs

4. Provide a data-agnostic abstraction layer for data consumers

Roadmap
1. Observations and Motivation

2. Design Requirements
3. Architecture

4. Lessons Learned

5. Future Work

1515 Open slide master to edit

Ease the Data Burden

• We needed to assume operational responsibility for pipeline
stewardship
– Develop and enforce best practices and documentation
– Deploy and monitor pipelines
– Provide technical expertise for data producers and consumers

• We wanted to perform as much of the ‘80%’ of EDA and data
wrangling as is reasonable
– Additionally, develop data science and data engineering expertise
– Become data liaisons to broker insight about system behavior

1616 Open slide master to edit

Data Platform Strategy

Assume Operational
Responsibility for Data
• Use operational / SRE best

practices to provide data
assurance

• Reduce the ‘data
wrangling’ that scientific
end users have to do

• Be advocates for both
data producers and
consumers

• Inform institutional data
policy and help resolve
data ownership conflicts

Application Stack
Requirements
• Deliberately focus on ‘top

of stack’ to support
applications, platform
users, and data analysis

• Utilize PaaS for supporting
layers to minimize
complexity

• Cleanly and clearly define
data pipeline roles and
responsibilities between
consumers and producers

Virtualization

Hardware

Facility

Operating System

Container Runtime

App Infrastructure

Message Bus

1717 Open slide master to edit

Performance and Sizing

• The bottleneck with streaming telemetry platforms are not what
we’re typically used to in HPC!
– 20PB of telemetry data generated over 5 years is ~11TB / day
– This is roughly one gigabit ethernet link’s worth of pipe
– Fast disks and network connections are primarily for failover/recovery of

under-replicated partitions

• Consumer behavior drives decision making
– We expect consumers to usually be ‘caught up’. Incoming messages

will either be forwarded immediately or will most likely exist in
application memory or page cache

– “Data Lakes” are a consumer of STREAM: We don’t need big disks
here!

Roadmap
1. Observations and Motivation

2. Design Requirements

3. Architecture
4. Lessons Learned

5. Future Work

1919 Open slide master to edit

STREAM Architecture in 2023 (Information View)

C5

Frontier

Miller / Fawbush

Kafka Connect

2020 Open slide master to edit

STREAM Architecture in 2023 (System View)

Producers Consumers

Producers and consumers
configure Kafka clients to

connect to a discovery service
using SASL auth and TLS

Grafana dashboards
monitor Kafka brokers and

topics while Confluent
Control Center is used to
examine topic specifics.

Auxiliary services like the
REST proxy, schema registry,
Kafka connect, and sidecars

do not require significant
resources

Roadmap
1. Observations and Motivation

2. Design Requirements

3. Architecture

4. Lessons Learned
5. Future Work

2222 Open slide master to edit

Data Platform Challenges

Sustainability
• Data sources will change

over time

• Systems will come and go
and technology will
change

• Technical debt can be
difficult to reduce once
accrued

• Once automation exists
for production and
consumption… good luck!

Documentation
• Data producers should, in

theory, be the best
equipped to answer
questions about data
sources

• Data consumers typically
don’t have enough
context to understand the
information they receive
through telemetry
pipelines

Performance /
Robustness
• Controlling types and sizes

of data can be
challenging – data
throughput tends to grow
over time

• Monitoring individual
topics can be difficult,
especially when a few key
topics dominate systems
engineer time

2323 Open slide master to edit

Lessons Learned – Access Control

Controlling Access
• We define a data ‘owner’ to be the

producer of data, and we give some
control over who can access
streaming messages.

• Data ‘consumers’ apply for access
and are granted individual topic
credentials based on need.

• The OLCF has an interest in reviewing
potential research outcomes and
discoveries
– Misinterpretation of information is quite

common!

Data Owner

Data RUC

Security

Legal / Privacy

Export Control

Publication

Access

2424 Open slide master to edit

Lessons Learned – Topic Naming

• Changes to topic names as well as
changes to client configuration is very
difficult to manage

• We developed a sustainable topic
naming scheme based on use cases

• NCCS uses a delimited topic name
‘tuple’ based on data source owner,
system name, the subsystem that
produces messages, and the specific
topic subject the topic is about

• Example:

stf002hpc.frontier.hpcm.crayex_telemetry

Topic Naming Source System Subsystem Topic Subject
frontier hpcm HPCMLOG

c5 SYSLOG

t5 crayex_alerts

miller crayex_telemetry

fawbush event_cooldev

ace hpcm_inventory

hpcm_inventory_dimm

log_iml

powerservice_operations

powerservice_rawpower

sensors_node

slurm_jobs

…

2525 Open slide master to edit

Lessons Learned – Schema Registries

• HPCM Kafka schema registries on
various systems may not be configured
in the same way
– The ordering of topics and versioning of

topics over time lead to different
schema definitions for the ‘same topic’
across systems

• OLCF developed a fairly simple flask
application to ‘proxy’ schema registry
access
– On client access to STREAM, schema

registry request is modified to connect to
HPCM schema registry of the system the
topic is produced from

There are many, many registries!

C5

Frontier

Miller / Fawbush

STREAM
Schema

Proxy

A user request for stf002.frontier.hpcm.crayex_telemetry is proxied as a
request to the Frontier schema registry service for the crayex_telemetry topic.

Roadmap
1. Observations and Motivation

2. Design Requirements

3. Architecture

4. Lessons Learned

5. Future Work

2727 Open slide master to edit

Future Work

• Automation of Topic Naming and Access
– End-user based access
– Ephemeral topics (Automated creation and deletion)

• Development of training and easy to use examples

• Automating EDA for topics and other data exploration tools

• Developing a common ‘schema’ or Entity Relationship
Diagram for HPC specific information

• Broadening scope to become a streaming I/O platform from
external data sources or to external data sinks

• Embracing lossy compression?

2828 Open slide master to edit

STREAM Summarized

Performance and
Scalability
• Our narrow waist design

has been very successful

• Apache Kafka is very
scalable and can operate
quite naturally in a
federated way (with one
or two caveats)

• Scalable units of STREAM
are topics and topic
partitions as well as
brokers

Lessons Learned
• Be sure to have deliberate

management strategies
for topic creation and
consumer/producer
access

• Lifting the data burden
from operations staff has
helped streamline data
access processes

• Documentation is never
quite good enough,
personal expertise is
required to understand
data streams

Future Work
• Automation of some

system management
functions will help pay
down technical debt

• Creation of and
standardizing on an ERD
within industry partners
and labs will help

• Automating some data
engineering steps to save
time for all users of a data
stream

29

Discussion

Acknowledgements:
This research used resources of the Oak Ridge Leadership Computing

Facility at the Oak Ridge National Laboratory, which is supported by the
Office of Science of the U.S. Department of Energy under Contract No.

DE-AC05-00OR22725.

