
Stress-free MPI
Stress Tests

Dr. Pascal Jahan Elahi, Craig Meyer
Pawsey Supercomputing Research Centre
CUG 23

2

Outline

• Why develop a new suite of MPI tests?
• Problems with MPI on Setonix, HPE Cray EX system

• How the tests are designed
• Some examples

• How can other centres and yourself make use of them?

• Lessons Learnt

MPI Stress Tests

3

Pawsey Supercomputing
Research Centre

• Headquarters located in Perth, Western
Australia

• Pawsey has a 20-year long history.

• Offers critical support to radioastronomy
research around the Square Kilometre Array
(SKA).

• The centre underwent a 70m capital refresh
financed by the Australian government.

• Currently employs over 60 staff.

• Houses the Setonix, a HPE Cray EX system,
which is the largest supercomputer in
Australia.

MPI Stress Tests

Pawsey

4

Setonix Phase-1, Phase-2
and MPI

• Setonix was deployed in two phases.

• Phase 1:
• 512 CPU compute nodes (2 AMD Milan CPUs)

• Mellanox NICs and libfabric 1.11.x
• Cray MPICH 8.1.14
• Passed acceptances tests of HPL, OSU Micro

Benchmarks (OMB), amongst others (e.g.,
single-node LAMMPS)

• Phase 2:
• 192 GPU compute nodes (4 MI250X GPUs),

1600 CPU compute nodes (2 AMD Milan CPUs)
• Cassini NICs and libfabric 1.15.x
• Cray MPICH 8.1.19

MPI Stress Tests

Setonix Phase-2

5

MPI Issues Encountered

• Despite passing acceptance tests, a number of researchers running more complex workflows
encountered issues during Setonix Phase-1

• These ranged from unexplained segfaults to hangs to unexpected memory usage to poor scaling.

The main issues can be categorised as

MPI Stress Tests

Delay-Hang Software with point-to-point (pt2pt) communication would hang if there was a long time-difference
between associated send and receives.

Memory Leaks Multi-node jobs were crashing with a variety of reported errors: bus errors; generic SLURM kill
errors; out-of- memory errors; xpmem or Open Fabrics Interface errors.

Poor Scaling Multi-node scaling of software with significant pt2pt communication did not scale well past two
nodes. Even a much older Cray XC system outperformed Setonix by factors of ≳5 when using ≳ 96
cores across multiple nodes.

Reduced Node Memory Available memory on idle nodes slowly decreased.

Large-comm Instability Crashes occurred when running jobs with pt2pt communication with large number of processes (≳
700). Additionally, hangs were observed when using asynchronous pt2pt communication with high
message counts.

6

Understanding MPI Issues

• Number of issues encountered by users. Not obvious what the underlying issues
were and whether they were all related.

• Not all workflows impacted but some key stakeholders could not run.
• We did NOT have a simple set of diagnostic-oriented MPI tests.
• MPI performance was measured using OSU Micro Benchmarks (OMB).
• However, these are not designed for debugging.
• OMB could pass when production codes would fail.

• Motivated by understanding these issues and realising there was a gap, we
developed a suite of MPI stress tests focused on
• MPI communication patterns seen in production code
• Providing diagnostic information

MPI Stress Tests

7MPI Stress Tests

8MPI Stress Tests

9

Stress-free MPI Stress tests

• Current bare-bones version available via
https://github.com/PawseySC/Refame-MPI-Stress-
Tests

• Current setup for
• SLURM batch scripts
• Cray Programming Environments
• Lmod modules
• Reframe >=3.10

• To deploy local will require updates.
• add systems, accounts, and some modifications

to reframe test related to system

MPI Stress Tests

https://github.com/PawseySC/refame-mpi-tests
https://github.com/PawseySC/refame-mpi-tests

10

Stress-free MPI Stress Tests

• Our tests are simple C++ codes that only use
c++14

• Covers a variety of MPI communication patterns
seen in production codes.

• Provide diagnostic information using simple
utilities like dmesg.

MPI Stress Tests

11

Design

MPI Stress Tests

Record Node State
(dmesg, free, etc)

Before

Run MPI Test

During

Record Node State
(dmesg, free, etc)
Compare to Before

After

Initial logging of
• MPI environment variables
• CPU binding
• process memory
• node memory.

Run rounds of MPI communication. Consists of
• Logging who talks to who
• Sample memory (process, node)
• Communicate. If asynchronous, also sample

memory between send and receives, report
between send and receives.

• Record time taken, generate statistics
(percentiles, min, max)

12

Design

MPI Stress Tests

Record Node State
(dmesg, free, etc)

Before

Run MPI Test

During

Record Node State
(dmesg, free, etc)
Compare to Before

After

Initial logging of
• MPI environment variables
• CPU binding
• process memory
• node memory.

Run rounds of MPI communication. Consists of
• Logging who talks to who
• Sample memory (process, node)
• Communicate. If asynchronous, also sample

memory between send and receives, report
between send and receives.

• Record time taken, generate statistics
(percentiles, min, max)

Collective:
• Synchronous, Asynchronous.
• Variable message size.
• Variable MPI Communicator size (starts small with 2

processes per communicator, up to entire comm world size

Available Communication Patterns
Point-to-Point:
• Synchronous, Asynchronous send, Asynchronous send & receive.
• Variable message size.
• Variable delay between send and receives
• Variable amount of the MPI comm world each rank

communicates with

13

Example C++ Source code: Testing a Delay

MPI Stress Tests

// Test a long delay between a send/receive. This can happen in real-time processing software
void MPITestLongDelay(int delay, int rootproc, int otherproc, int usesend)
{
MPI_Status status; MPI_Request request;
auto comm = MPI_COMM_WORLD; int NProcs; MPI_Comm_size(comm, &NProcs);
std::vector<double> data(1000); void * p1 = nullptr;
// sleep all processes but the immediate process that places a send
if (ThisProc != otherproc) sleep(delay);
// process that receives all messages
if (ThisProc == rootproc) {
for (auto iproc = 0; iproc < NProcs; iproc++) {
if (iproc == rootproc) continue;
LocalLogger(); // log memory, communication, etc
// receive message
mpi_err = MPI_Recv(&size, 1, MPI_UNSIGNED_LONG, iproc, 0, comm, &status);
LocalLogger(); // log info

}
}
// all other processes, including one without a delay sending
else {
LocalLogger(); // log info
// send message based on the usesend flag indicates how messages are sent, either blocking or non-blocking.
if (usesend == USESEND) mpi_err = MPI_Send(&size, 1, MPI_UNSIGNED_LONG, rootproc, 0, comm);
else if (usesend == USEISEND) {
mpi_err = MPI_Isend(&size, 1, MPI_UNSIGNED_LONG, rootproc, 0, comm, &request);
mpi_err = MPI_Wait(&request, &status);

}
LocalLogger(); // log info

}
}

14

Example Node State Script

MPI Stress Tests

#!/bin/bash

Get hosts to see what state they are in (this returns the host name of every process, not unique list of hosts)
hostnames=($(srun hostname))
Create logging directory which stores the dmesg output log files
logdir=logs/${SLURM_JOB_ID}
if [[! -d $logdir]]
then

mkdir -p $logdir
fi
Check node health via `dmesg` and node memory via `free`
hostnames=($(for hn in "${hostnames[@]}"; do echo "${hn}"; done | sort -u)) # Get unique nids
timestamp=$(date -Iseconds)
logfile=${logdir}/node-state.${h}.${timestamp}.job-${SLURM_JOB_ID}.txt
for h in ${hostnames[@]}
do

srun -w ${h} --nodes=1 --ntasks=1 --ntasks-per-node=1 --mem=1GB dmesg -T > ${logfile}
srun -w ${h} --nodes=1 --ntasks=1 --ntasks-per-node=1 --mem=1GB free -h >> ${logfile}
numerr=$(grep -aic "error" ${logdir}/node-state.${h}.${timestamp}.job-${SLURM_JOB_ID}.txt)
echo "There are $numerr errors in the dmesg output for node ${h}"

done

15

Example Reframe
import reframe as rfm
import reframe.utility.sanity as sn
Base MPI communications test class
class MPI_Comms_Base(rfm.RegressionTest):

def __init__(self, name, **kwargs):
set metadata, valid systems and PE.
…
Compilation
self.build_system = 'SingleSource'
self.build_system.cppflags = [‘…',]
self.prebuild_cmds = ['./copy.sh']
Output MPI environment variables
self.prerun_cmds = [

'export MPICH_ENV_DISPLAY=1’, 'export MPICH_MEMORY_REPORT=1',
'export MPICH_OFI_VERBOSE=1’, 'export FI_CXI_DEFAULT_VNI=$(od -

vAn -N4 -tu < /dev/urandom)',]
self.num_cpus_per_task = 1
self.keep_files = ['logs/*']
self.tags = {'MPI'}

Compile profile_util
@run_before('compile')
def compile_prof_util(self):

self.prebuild_cmds += ['cd profile_util', './build_cpu.sh',
'PROFILE_UTIL_DIR=$(pwd)', 'cd ../',]

defined functions to set account for billing, srun commands
…
Check node health pre- and post-job
@run_before('run')
def check_node_health(self):

self.prerun_cmds += ['./node_check.sh',]
self.postrun_cmds = ['./node_check.sh',]

Test passes if the end of the job is reached
@sanity_function
def assert_complete(self):

return sn.assert_found(r'Job completed at.+', self.stdout)

Point-to-point communication test
@rfm.simple_test
class Pt2Pt(MPI_Comms_Base):

def __init__(self, **kwargs):
super().__init__('Pt2Pt', **kwargs)
Metadata
…
Compilation – source and executable
self.sourcepath, self.executable = 'pt2pt.cpp', 'pt2pt.out’
Set the defaults of executable options
…
Set sbatch script directives
self.num_tasks_per_node = 24
self.num_tasks = self.num_nodes * self.num_tasks_per_node
Reference value when run with base conditions (one node, one task,

etc.)
self.ref_val = 2e6
Dictionary holding performance reference values
scaling_factor =
self.reference = {‘system': {'Average': (self.ref_val * scaling_factor,

None, 0.2)}, }

Parameters
num_nodes = parameter([1, 2, 4, 8])#, 16, 32])
Performance function for the recorded time statistics
@performance_function('us')
def extract_timing(self, kind='Average'):

if kind not in ('Average', 'Standard Deviation', 'Maximum', 'Minimum',
'IQR'):

raise ValueError(f'Illegal value in argument kind ({kind!r})')
Extract timing for redistribution phase with pt2pt communication
return sn.extractsingle(rf'@redistributeData.+{kind}\s=\s(\S+),.+',

self.stdout, 1, float)

MPI Stress Tests

16

Example Reframe Output

MPI Stress Tests

reframe -C settings.py -c ./reframe-mpi-tests/mpi/ -t MPI -r

==
SUMMARY OF FAILURES
--
FAILURE INFO for MemoryLeak_2_24
* Expanded name: MemoryLeak %num_nodes=2 %ntasks_per_node=24
* Description: Test memory sampling/reporting during MPI comms
* System partition: setonix:work
* Environment: PrgEnv-gnu
* Stage directory: …
* Node list: nid002422,nid002440
* Job type: batch job (id=1508167)
* Dependencies (conceptual): []
* Dependencies (actual): []
* Maintainers: ['Craig', 'Pascal Jahan Elahi']
* Failing phase: sanity
* Rerun with '-n MemoryLeak_2_24 -p PrgEnv-gnu --system setonix:work -r'
* Reason: sanity error

17

Revisit the Issues: What did we find and how did we find it?

MPI Stress Tests

Delay-Hang Software with point-to-point (pt2pt) communication would hang if
there was a long time-difference between associated send and
receives.

Poor Scaling Multi-node scaling of software with significant pt2pt communication
did not scale well past two nodes. Even a much older Cray XC system
outperformed Setonix by factors of ≳5 when using ≳ 96 cores across
multiple nodes.

Memory Leaks +
Reduced Node Memory

Multi-node jobs were crashing with a variety of reported errors: bus
errors; generic SLURM kill errors; out-of- memory errors; xpmem or
Open Fabrics Interface errors. Available memory on idle nodes
slowly decreased.

18

What did we find and how did we find it?

Delay-Hang

Crime Scene:
• showed up in multi-node pt2pt communication when communication was across nodes.
• Node state did not impact hang, only time and comm size.
• Receiving task would never receive the message, regardless of how it was sent.

Clues found by looking at verbose communication messages.

Lines of Evidence: pointed to libfabric since communication had to be across nodes.

MPI Stress Tests

Workaround: Can be resolved by using MPICH_OFI_STARTUP_CONNECT=1
Solution: Update to newer libfabric (and newer Cassini NICs) for bug fixes.

19

What did we find and how did we find it?

MPI Stress Tests

Poor Scaling

Crime Scene:
• showed up in multi-node pt2pt communication when communication was

across nodes. Collectives not impacted. Mostly limited to pt2pt where each
process communicated to almost all other processes.

• Significant jumps in time taken dependent on comm size, number of nodes
and how much communication each rank undertook.

Clues found by looking at statistics and different specific communication
patterns.

Lines of Evidence pointed to libfabric since communication had to be across
nodes and libfabric variable related to on-demand communication could
drastically improve performance.

Weak-scaling test of time taken to send fixed amount of
data across MPI ranks in a pt2pt fashion (MPI domain
decomposition and redistribution). Results are for 24
ranks per node to compare results with older Cray XC
system

Workaround: Partially resolved by using
MPICH_OFI_STARTUP_CONNECT=1
Solution: Update to newer libfabric and newer
Cassini NICs solved issue.

20

What did we find and how did we find it?

MPI Stress Tests

Memory Leaks (and Reduced Node Memory)

Crime Scene:
• showed up in multi-node communication when communication included inter-node communication.
• Process memory reasonable but node memory showed clear reduction in available memory during communication.
• Amount of memory consumed dependent on comm size.
• Errors occurred when the amount of available node memory not enough given memory consumed by process or beyond total

physical memory available on node.
• Jobs that completed would slowly reduce the amount of memory available on the node afterwards.
• Crashes not only left messages in kernel ring buffer that could involve the memory but could leave errors pertaining to HSN. In

this case, node unusable as all subsequent MPI jobs would crash upon initialization.

Evidence found by looking at kernel ring buffer messages and node memory state and memory used by process.

Lines of evidence pointed to libfabric since communication had to involve inter-node communication and memory consumed not
visible in user space.

Solution: Update to newer libfabric and newer Cassini NICs solved issue.

21

Even other uses

MPI Stress Tests

Segfaults when running internode MPI

Crime scene:
• Showed up after upgrade from Mellanox to Cassini NICs and newer libfabric.
• Segfault occurred for any MPI communication when communication was across nodes.
• Left nodes unable to MPI_Init afterwards, meaning no multi-node job would run.
• Crashes not only left messages in kernel ring buffer that could involve the memory but could leave errors

pertaining to HSN. In this case, node unusable as all subsequent MPI jobs would crash upon initialization.

Evidence found by looking at kernel ring buffer messages.

Lines of evidence pointed to incorrect network configuration after upgrade.

Solution: Fix configuration.

22

Lessons Learned

• We believe there is currently a gap in stress-testing MPI implementations on HPC systems

• Tests such as OMB good for benchmarking system, but can allow issues with the MPI
implementation to fall through the cracks undetected

• MPI tests that stress the system and use communication patterns replicating production
codes should be a part of HPC cluster test suites

• Detailed logging before, during, and after tests invaluable in detection and triage of
issues

MPI Stress Tests

Any Questions?

