

Hewlett Packard Enterprise

Helsinki, Finland

HPE CRAY PROGRAMMING ENVIRONMENT UPDATE

Barbara Chapman, Distinguished Technologist May 9, 2023

Introduction to HPE Cray Programming Environment (CPE)

Recent Features

What's Next?

Future Directions

HPE CRAY PROGRAMMING ENVIRONMENT

Essential toolset for HPC organizations developing HPC code in-house

Fully integrated software suite with compilers, tools, and libraries designed to increase programmer productivity, application scalability, and performance.

Complete toolchain For the whole application development process.	Holistic solution Unlike processor-specific tools, the suite enables software development for the full system (including CPUs, GPUs and interconnect) for the best performance.	Programmability Offering users intuitive behavior, automation of tasks and best performance for their applications with little effort.	Debugging • ccD • APT • STAT • GDB4HPC	Development •CCE •1/0, libsci, math •Cray MPI •DL
Scalability Improving performance of applications on systems of any size—up to Exascale deployments.	Complete Support HPE Pointnext Services support the whole suite, not just the tools we developed.	From HPC experts for HPC experts Developed for over 30 years in close interaction and contributions from our users.	• Performance t • Visualization 1 • Code Paralleliz	ools Tool Sation Tool

SLES15sp2 lisc. packages

HPE CRAY PROGRAMMING ENVIRONMENT

Comprehensive set of tools for developing, porting, debugging, and tuning of HPC applications on HPE & HPE Cray systems

Development		Debugging	Performance Analysis & Optimization	Setup & Runtime	
Programming Models HPE Cray MPI	Programming Languages C C++ Fortran	Comparative Debugger Compare two versions of an application	Performance Analysis Tool	Environment Setup Tool Enablement	
SHMEM OpenMP OpenACC (Fortran) AMD ROCm HIP NVIDIA CUDA	Python R Optimized Libraries	GDB for HPC Parallelized gdb for HPC	Whole program performance analysis, exposing wide set of indicators, identifying bottlenecks and automatically generating	(for Spack, CMake, EasyBuild, etc) Modules/Lmod	
UPC Fortran co-arrays Global Arrays	LibSci (BLAS) Valgrind for HPC LAPACK & ScaLAPACK Memory debugging at scale	suggestions to improve performance. Visualization Tool			
Chapel Programming Environments	LibSci_ACC Iterative Refinement Toolkit	Stack Trace Analysis Tool Stack tracing at scale	Complements text reports with summary of performance data in graphs and charts, allowing users to drill down and resolve	• HPE Cray EX	
Compiling Environment	FFTW	Sanitizers for HPC Detect memory and thread errors at scale	issues Code Parallelization Assistant Reveal hidden potential of an application via code restructuring	 HPE Apollo HPE Cray XD 	
GNU Intel Programming Environment AMD Programming Environment	I/O Libraries NetCDF HDF5	Tool for Abnormal Termination Processing Manage core files at scale		HPE ProLiant	
NVIDIA HPC SDK		TotalView DDT			

MAJOR ACCOMPLISHMENTS IN 2022

- HPE Cray MPI was used to achieve 1.102 Exaflop/s on ORNL's Frontier supercomputer!
 It's also the primary MPI implementation on several other major HPE EX systems: EuroHPC-CSC (LUMI, #3 on TOP500), NERSC (#8), CINES (#11), Pawsey (#15), ExxonMobil (#16)
 - Frontier TDS "Crusher" system claimed the #1 spot for the GREEN500 list (June 2022) also relies on HPE Cray MPI

INTEGRATED TOOLSET: SUPPORTING SCIENCE APPLICATIONS ON FRONTIER

ExaConstit: Open-source crystal-plasticity FEM code

- Exascale-ready open-source simulation
 - Part of Integrated Platform for Additive Manufacturing Simulation (IPAMS) suite
 - Directly incorporates microstructure evolution and effects of microstructure within AM process simulation.
- Developed in ECP project
- Point-to-point communication was unexpectedly slow
- *pat_report* showed excessive time in *hipMemcpy*
 - Changed to GPU-aware MPI, with little improvement
- pat_report -O acc_time showed the real culprit!
 - *PAT_RT_PERFCTR=_busy_0* showed the suspect had *MemUnitBusy* 94.1%
- Tuning (reforming?) the culprit improved overall runtime by 2.5x

WHAT'S NEW IN SUPPORTED PLATFORMS?

Target Architectures

- AMD Genoa, Milan-X; Intel Sapphire Rapids; Nvidia Grace (ARM)
- GPUs: AMD MI250X, Nvidia Ampere (A100)

WHAT'S NEW IN LANGUAGES AND COMPILERS?

Parallel Programming Models and Language Features

- Full OpenMP 5.0 support along with major progress towards OpenMP 5.2; working toward OpenACC 3.3
- C/C++ continued tracking of LLVM CCE 16.0 with the integration of latest stable LLVM 16 release this month
- OpenMP interoperability support for GNU (CPU only) & Clang-based compilers (CPU, GPU)
- Starting Fortran 2023 language features
- Chapel 1.30 compiler generates NVIDIA and AMD GPU kernels for some foreach/forall loops *
- CPU sanitizers for C, C++, & Fortran
- DWARF5 Support

Performance Optimizations

- Optimized offload kernel launch and loop scheduling performance
- Relaxed locking and increased concurrency for multi-threaded use of GPU
- Tuned loop unrolling heuristic for AMD GPU targets
- Loop restructuring (not just GPU)
- Improved "omp parallel" performance
- SVE Support (Nvidia Grace)

WHAT'S NEW WITH SCIENTIFIC/3RD-PARTY LIBRARIES?

Scientific Libraries

Cray LibSci

• CPU dense linear algebra routines (full BLAS, LAPACK, ScaLAPACK implementations) optimized for new architectures, especially AMD Genoa

Cray LibSci_ACC

- Additional optimized hybrid CPU-GPU algorithms
- Extensive tuning for new target architectures
- Improved multimode support and tuning for distributed routines Cray FFTW
- Optimized kernels for AMD Genoa CPU targets

Data Libraries

HDF5, NetCDF, Parallel NetCDF built for AMD Genoa CPU and a range of different compilers

Cray LibSci DGEMM Performance versus Intel MKL AMD EPYC 9654 / 192 threads / 4 NPS

WHAT'S NEW IN DEBUGGING TOOLS?

Gdb4hpc features

- C++: complex templates, anonymous classes, anonymous namespace
- Conditional breakpoints and breakpoint counters
- Remote shell command
- Pipe the result of any command to a file or application
- Support for Kokkos::View and RAJA::View types
- Python mode; view program data with numpy or python libraries
- Run command to relaunch keeping breakpoints
- Direct access to Cuda commands
- Support for non MPI programs
- Extended tutorials

Other tool enhancements

- Ccdb: 5.0 with browser based UI
- ATP: slurm plugin now works in user space; no sysadmin work required
- Sanitizers4hpc: Cuda-memcheck
- Valgrind4hpc: enabled interactive debugging with gdb4hpc when an error is detected

CCDB 5.0

Run a full featured debugging GUI on your laptop even with limited bandwith

WHAT'S NEW IN PERFORMANCE TOOLS?

Performance Analysis Tool (PAT)

Improved support for GPUs

- Nvidia A100 performance counters
- Revised Nvidia V100 & A100 counter groups
- Specialized setup mechanics to support profiling of multiprocess applications Push/Pop Region API
- Improved support for Kokkos/Raja codes
- Made push/pop region API available in the default callstack mode
- This improves our Caliper support as well

Added detailed power reporting, breaking down power usage per node by CPU, GPU, memory

Python Profiling

• Reduced runtime overhead

CORRELATE ACTIVITY OF HOST AND DEVICES

WHAT'S NEW WITH MESSAGE PASSING?

New HPE Cray MPI Features

Cassini Counters and Network Timeout Feature MPIxlate – Application Binary Interface (ABI) Translator for MPI Programs Spawn / Connect / Accept Support on Slingshot-11 (Slurm and PBSPro/PALs) Support for GPU-NIC Async Stream Triggered Point-to-Point Operations Enhanced Slinghot-11 Traffic Class Interaction with WLMs

Key Optimizations

Collective Performance Improvements for MPI_Igatherv, MPI_Alltoall and MPI_Iallgather/MPI_Iallgatherv Support for > 2 GB message sizes for MPI_Igather, MPI_Scatter and MPI_Iscatter GPU Collective Performance Improvements for MPI_Allgather, MPI_Allreduce and MPI_Reduce_scatter_block Enabled GPU kernel-based optimizations by default for select collectives Optimized MPI_Graph_create (support for reorder flag)

Workload Management Enhancement

Enhanced Cray MPI Spack support for Nvidia, AMD and Intel compilers in CPE

CASSINI COUNTERS AND NETWORK TIMEOUT FEATURE

Slingshot-11 Network Timeout Events

Network Timeouts (link flaps) cause packets to be automatically re-issued May cause delays or sub-optimal performance (app dependent) MPI tracks network timeout events for each MPI job If network timeouts affected the job, MPI displays:

[MPICH Slingshot Network Summary: 6 network timeouts]

Cassini Counters

MPI collects and summarizes Cassini counter data for each job Helpful for optimizing MPI communication and debugging performance issues See MPICH_OFI_CXI_COUNTER_REPORT in man page for more options

MPICH Slingshot CXI Counter Summary:								
Counter	Samples	Min	(/s)	Mean	(/s)	Max	(/s)	
atu_cache_evictions	34000	223236	1099.7	1298417	6396.1	4812004	23704.5	
atu_cache_hit_base_page_size_0	34000	14	0.1	585	2.9	3225	15.9	
<pre>atu_cache_hit_derivative1_page_size_0</pre>	34000	3567598279	17574375.8	3580464549	17637756.4	3586507556	17667524.9	
lpe_net_match_priority_0	34000	14292803	70407.9	16977380	83632.4	18460483	90938.3	
lpe_net_match_overflow_0	34000	3571835	17595.2	5055416	24903.5	7739576	38126.0	
lpe_net_match_request_0	34000	15	0.1	708	3.5	2861	14.1	
lpe_rndzv_puts_0	34000	11014704	54259.6	11014704	54259.6	11014704	54259.6	
lpe_rndzv_puts_offloaded_0	34000	5831837	28728.3	8447950	41615.5	10441812	51437.5	
hni_rx_paused_0	34000	17771789	87545.8	3166422790	15598141.8	12685217652	62488756.9	
hni_rx_paused_1	34000	32928226	162208.0	122307495	602500.0	1165354793	5740664.0	
hni_tx_paused_0	34000	2602	12.8	512934	2526.8	3246672	15993.5	

MPI TRANSLATION TOOL IN HPE CRAY PROGRAMMING ENVIRONMENT

MPIxlate is a new feature for HPE Cray MPI released in November 2022

Open MPI and HPE MPI are not ABI-compatible with MPICH-based MPIs MPIxlate transparently translates Open MPI ABI and HPE MPI ABI to MPICH ABI at runtime

Enables MPI applications compiled with Open MPI or HPE MPI to run with HPE Cray MPI

Specifications:

- Supports C and C++ Languages
- Supports CPUs and GPUs

Documentation (available via Quick Help, Man page & Command line)

WHAT'S NEXT FOR CPE?

Hardware support

AMD APU (MI300 A) Grace+Hopper (and H100 standalone) Intel GPU Support (MPI) Next-gen Slingshot

Flexible deployment

Changes in module environment Standalone components Development and runtime containers Spack binary cache support

DevOps and user support enhancement

Better and more accessible documentation Online tutorials

Improvements to testing procedures

WHAT'S NEXT FOR CPE?

CCE compilers and CSML

OpenACC 3.3 and OpenMP 5.2 features GPU-enabled DO CONCURRENT Generic GPU-enabled DWARF Further development of LibSci_ACC

MPI

Support for the MPI 4.0 Standard Support for Hardware-accelerated Collectives Select Non-blocking Collectives using Cassini Triggered Ops Thread-hot RMA Optimizations MPI RMA Communication using GPU-NIC Async Stream Triggered Ops

Debuggers, Performance Analysis and Optimization Tools

Improvements to user interfaces GPU PC sampling support for intra-kernel profiling

HPE CONTAINERIZED CRAY PROGRAMMING ENVIRONMENT

HPE—authored

HPE Added-value to 3rd party

MODULES

- Modules ensure that appropriate versions of libraries and tools are loaded
 - Usage can be opaque
 - Modifications in progress
 - More user-friendly module flow
 - Based on interactions with key customers

DOCUMENTATION

- DSMML
- Scientific and math libraries
- Debugging tools

TRAINING AND TUTORIALS

- CPE for scalable, portable application development
 - Introduction to development environment
 - Virtualized interface
 - Build systems managed in the backend
- Simplified selection of build tools
 - Compiler & version, platform
 - Target platform, capabilities, etc.
- Simplified build parameters
 - Debug, optimization, language features, sanitizers, etc.

- Selection of build hosts, tools & target platforms
 - Experiential learning for academics
 - Evaluation of migration & portability across platforms and compilers
 - Seamless triage & compiler capability verification

FUTURE OF COMPUTING: DIVERSITY AND INCLUSION

Applications?

- Workflows!
- Traditional simulation combined with AI

Platforms

- More integration on the node; customization via chiplets
- Specialized AI, Quantum devices integrated into HPC platform

Edge-to Exascale

- Development on laptops, on-prem systems, in Cloud
- Deployment across disparate resources

Programming languages and models

- Python, Julia, SYCL; DSLs? New languages?
- How will LLM transform the way we develop code??

Efficient execution

- Managing power and energy usage
- CPE aaS; dynamic program adaptation

HPE/CLASSIQ HYBRID HPC/QUANTUM COMPUTATION FLOW

Cray MPI

Job launched using HPE's Workload Manager

PROGRESSION OF POWER MANAGEMENT FUNCTIONALITY

THANK YOU

Barbara.Chapman@hpe.com

