

Hewlett Packard Enterprise

KFABRIC LUSTRE NETWORK DRIVER

Chris Horn, Ian Ziemba, Amith Abraham, Ron Gredvig May, 2023 Cray User Group 2023

OUTLINE

• Software Overview

- kfilnd
- kfabric/kfi_cxi
- Retry Handler
- kfilnd/kfabric/kfi_cxi features
- Serviceability & resiliency
- Diagnosing network trouble
- Future work

SOFTWARE OVERVIEW

- <u>kf</u>abr<u>ic</u> <u>Lustre</u> <u>n</u>etwork <u>d</u>river == kfilnd
 - Uses numeric LNet NIDs: 1@kfi, 2@kfi, ...
 - NID number == Destination Fabric Address (DFA)
 - Reflects group, switch and port numbers
 - Implements LND api (Ind_send, Ind_recv, etc.) using kfabric
 - Contributed to community Lustre 2.16
- kfabric
 - Connectionless and network-agnostic API used for RDMA in the kernel
 - Envisioned as common mid layer for multiple Upper Layer Protocols
 - Providers map kfabric API to lower-level network software/hardware
- kfi_cxi
 - kfabric provider for Cassini
 - optimized for LNet
- Retry Handler
 - Necessary because ordering is offloaded into the Cassini
 - Handles dropped packet retransmit and resource cleanup

SOFTWARE STACK

SOFTWARE STACK

KFILND/KFABRIC/KFI_CXI FEATURES

- Connectionless API
 - reliable unconnected datagram message endpoints
 - Single endpoint supports "connections" to many peers
 - Avoid teardown/setup of connections in the LND
- Per-CPT Cassini resources
 - Each CPT is allocated a set of Cassini resources
 - Decreases contention for network resources amongst CPUs
- Multi-Recv Buffers
 - Allows for efficient use of HW resources
 - Single large buffer can byte-pack multiple msgs vs. dedicated buffer for every message
- Target events for GETs
 - Both initiator and target receive completion event when bulk transfer completes
 - avoids additional completion message
- Efficient message protocol with offloaded tag matching
 - Enables kfilnd to post recv buffer for a specific transaction
 - Rather than posting a pool of buffers for all TNs

KFILND SERVICEABILITY CHALLENGE

- kfilnd NID number == Destination Fabric Address (DFA)
- DFAs change with re-cabling (including cable swap)
 - Can't swap while LNet is running
- New DFA == new LNet NID
 - On a Lustre server, new NIDs require writeconf (or lctl replace_nids)
 - MGS NID changes -> All clients must update /etc/fstab
 - LNet router gets a new NID it may invalidate routing table on other peers
 - Leverage multi-Ind (sockInd + kfiInd) + UDSP
 - Format filesystem, define routes, define fstab using only tcp NIDs
 - No DFAs in config log, route config, or /etc/fstab
 - LNet discovery uses sockInd, filesystem traffic uses kfilnd
- Lustre User Group (LUG) 2023 talk goes into detail
 - Overview of Kfabric Network Driver, resiliency, serviceability and User Defined Selection Policy
 - https://www.opensfs.org/events/lug-2023/

KFILND RESILIENCY ISSUES

- Handshake protocol/peer cache
 - kfilnd maintains peer cache to translate LNet NID to KFI address handle
 - Handshake performed on initial send:
 - Exchange rx_base and remote session key (scalable endpoints)
 - Negotiate version
 - Issue: Peers purged from cache on any transaction failure
 - Silent message loss when message received from purged peer
 - Sender needs to wait for timeout to detect loss
 - Solution is to save "stale" peer info set a flag to force handshake
 - Enhancement: Proactive handshake
 - Perform handshake if haven't spoken with peer in certain time frame
 - Protects against case where Server reboots and peer cache is wiped out
 - Issue: Multiple handshakes in flight
 - Prior cache management could result in multiple handshakes in flight to single peer
 - All fixed in COS 2.3.109 and later
- Improve handling of multiple peer failures
 - kfilnd throttling (COS 2.4.96+)
 - proactive cancel of TN on handshake failure (COS 2.4.94+)
 - Traffic class support (COS 2.4.96+)

DIAGNOSING NETWORK TROUBLE - LNET/KFILND

- Diagnostics
 - initiator/target stats track kfilnd transaction times
 - /sys/kernel/debug/kfilnd/*/{initiator,target}_stats
- LNet Health and Recovery
 - Inetctl net show -v 2 | grep -e 'nid|health value'
 - Inetctl peer show -v 2 | grep -e 'nid|health value'
 - Max value is 1000, lowest is 0
- Console messages:
 - LNet recovery ping errors in Lustre 2.12

[353991.533158] LNetError: 996:0:(lib-move.c:4001:lnet_handle_recovery_reply()) peer NI (2120@kfi) recovery failed with -110

- Inet_handle_recovery_reply() is very noisy
- Replaced by LNet recovery informational messages in latest HPE 2.15 and Lustre 2.16

[1034843.558106] LNet: 1 peer NIs in recovery (showing 1): 16@kfi [1035143.589781] LNet: 5 local NIs in recovery (showing 5): 1@kfi, 2@kfi, 3@kfi, 4@kfi, 5@kfi

- Show all NIDs in recovery
 - Inetctl debug recovery -I
 - Inetctl debug recovery -p

DIAGNOSING NETWORK TROUBLE - RETRY HANDLER

- Retry Handler (RH) can point you towards problem areas
- RH instance for every cassini interface
 - journalctl -u cxi_rh@cxi0; journalctl -u cxi_rh@cxi1 ... ;
- Lines that mention "nid=X"

Apr 27 09:11:19 s-lmo-gaz38a cxi_rh[760463]: RH: PCT timeout event (... nid=16, ...

- X is the DFA/numeric portion of LNet NID
- Good idea to have a way to map DFA to hostname for triage
- Expected vs. unexpected RH activity
 - If a Lustre server crashes, expect a lot of RH activity
 - A filesystem under high load may result in some RH activity
 - Resource busy NACK -> resend -> success

Apr 27 07:44:41 cassini-hosta cxi_rh[11672]: RH: PCT NACK event (... sct=2060, rc=RESOURCE_BUSY, nid=17, ...

. . .

Apr 27 07:44:41 cassini-hosta cxi_rh[11672]: RH: sct=2060 all retries issued Apr 27 07:44:41 cassini-hosta cxi_rh[11672]: RH: retry completed for sct=2060

FUTURE WORK

- kfilnd NID -> CPT optimization
 - LNet hashes NID to a CPT
 - Current algorithm optimized for IPv4 -> uneven distribution for kfilnd
 - New algorithm spreads kfilnd NIDs more evenly
 - Reduces contention, leverages more CPU, increases performance
- kfilnd workqueue (WQ) configuration
 - Existing WQ config causes contention
 - Reduce WQ priority from high to normal
 - Optimizing inflight work items per CPT CPUs
 - ~25% performance improvement in multi-client metadata
- IPv4 Support

THANK YOU

chris.horn@hpe.com

П

REAL WORLD EXAMPLES

- Customer reported
- Try to find a real world example of:
- <LNet/Lustre error messages>
- <RH log showing related activity>
- <The above pointed us to root cause X>

KFABRIC SCALABLE ENDPOINTS

• Scalable endpoints allow multiple tx/rx contexts to be opened against a single address.

