

Journey in slingshot HSN segmentation using VLANs

CUG2023 - Helsinki Chris Gamboni, CSCS May 11th, 2023

Table of Contents

- 1. CSCS Intro
- 2. Multitenancy and VLANs
- **3**. Use cases
- 4. Technical setup
- 5. Future work

CSCS Introduction

CSCS INTRO

ALPS is an HPE Cray EX with CSM and Slingshot 11

Currently running CSM 1.2 and Slingshot 2.0.1

Alps will be the new CSCS flagship HPC system (2023-2024)

CSCS Multitenancy and VLANs

CSCS Multitenancy and VLAN

- The goal of CSCS is to have a flexible way to create different platforms
 - with different IdP
 - on different networks
 - on different security zones

⇒ We need to segment slingshot network using VLANs

- VLAN tests started on Q1/2023, after the upgrade of slingshot to 2.0.1
 - First on PreAlps (Alps TDS), then on Alps
- Work in progress

CSCS Use cases

CSCS Use cases for multitenancy: use case 1

- CSCS platform
 - Most nodes will stay on the default network segment (VLAN1)
 - Many vClusters, but on the same VLAN and same security zone
 - Traditional HPC vClusters
 - Experimental vClusters
 - Storage , shared storage

CSCS Use cases for multitenancy: use case 2

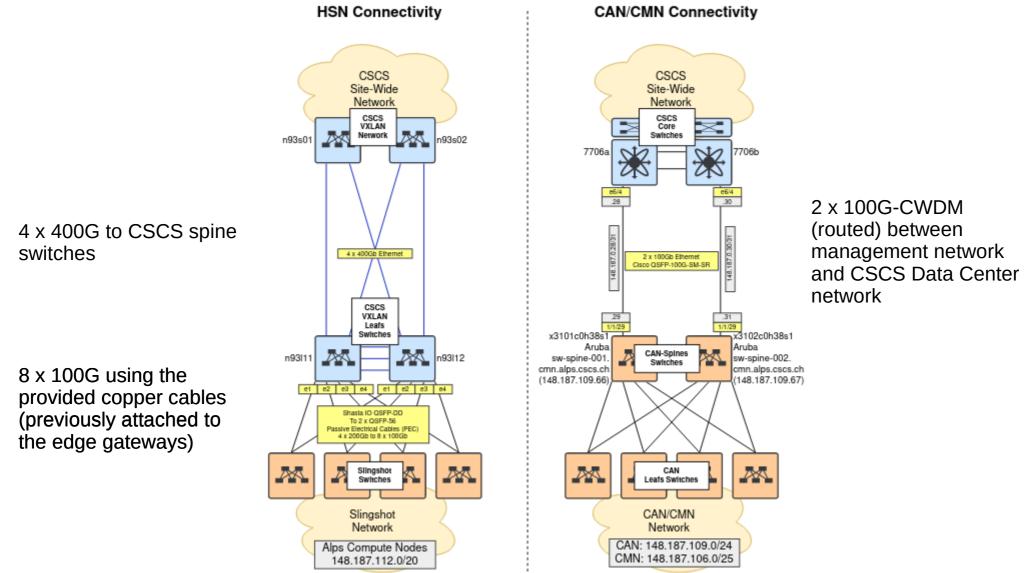
- Dedicated platform
 - Dedicated VLAN
 - CSCS network / address space
 - Some customers may need public IP address space
 - Note: All CSCS machines currently use public IP addresses on HSN
 - Different security zones
 - Dedicated storage
 - Separated from other vClusters or platform
 - IdP may be different from CSCS

CSCS Use cases for multitenancy: use case 3

Dedicated plaform for tenants on customer network

- Dedicated VLAN on customer network
- On customer IP Address space
- Customer IdP
- Dedicated storage
- Separated from other vClusters or platform

CSCS Technical setup


CSCS Data Center network (1)

- 2 x 100Gbit/s to INTERNET
- CSCS Data Center network with 400GbE VXLAN / EVPN
 - 2 spines with 64 ports 400GbE switches
 - Many leaf switches with 400/100 Gbit/s connections to spine switches
- ALPS slingshot network is currently connected with an MLAG of 8 x 100Gbit/s to CSCS Data Center network
- L3 on CSCS Data Center network
- Next steps:
 - INTERNET connection will be upgraded to 400Gbit/s
 - Double the spine switches: from 2 to 4 spine 64 port 400GbE switches
 - Increase the capacity between ALPS and CSCS Data Center network
 - From 800 Gbit/s to 1600 Gbit/s or more

CSCS Data Center network – HSN and CAN/CMN connections

CSCS Data Center network – HSN VLAN support

Slinghshot network is directly connected to CSCS Data Center network

- no dedicated "edge gateways"
- New VLANs have been created on CSCS Data Center network
- New SVIs (routed interfaces) on CSCS Data Center network
- Dedicated ACL (Access lists) for the new VLANs
- MLAG on CSCS DC network has been configured as 802.1q VLAN trunks

Slingshot fabric configuration

Add the new VLANs to the slingshot fabric manager

fmctl create vlans name=vlan337 status=ONLINE id=337 --raw | jq .

fmctl create vlans name=vlan396 status=ONLINE id=396 --raw | jq .

Enable VLAN support in the slingshot fabric manager

fmctl update topology-policies/template-policy fabricPropertyMap.vlanEnabled=true --raw | jq .

Slingshot Switch configuration (1)

```
Create a new JSON file for the new VLAN
```

```
{
    "nativeVlanId": "/fabric/vlans/337",
    "documentKind": "com:services:fabric:models:PortPolicyState",
    "documentSelfLink": "/fabric/port-policies/vlan-337",
    "allowedVlans": [
        "/fabric/vlans/337"
    ],
    "isUntaggedAllowed": true
}
```

Create a new port policy for the new VLAN

fmctl create port-policies --file 337.json --raw | jq .

Slingshot Switch configuration (2)

Create a new JSON file with 802.1q support for the MLAG

```
"state": "ONLINE",
"autoneg": true,
"speed": "BJ 100G",
"precode": "AUTO",
"mac": "02:00:00:00:00:00",
"loopback": "NONE",
"nativeVlanId": "/fabric/vlans/1",
"documentKind": "com:services:fabric:models:PortPolicyState",
"documentSelfLink": "/fabric/port-policies/cisco-vlan",
"allowedVlans": [
  "/fabric/vlans/1",
  "/fabric/vlans/337",
  "/fabric/vlans/396"
],
"isUntaggedAllowed": true
```

Create a new port policy for the new VLAN

fmctl create port-policies --file cisco-vlan.json --raw | jq .

Slingshot Switch configuration (3)

Apply the port policy to enable 802.1q support on MLAG interfaces

fmn-update-port-policy -n cisco-vlan,edge-policy-disable-autoneg,qos-ll_be_bd_et-ethernet-policy \$PORTS

Apply the new VLAN port policy to the desired switch port of the node

fmn-update-port-policy -n vlan-337,cassini-policy,qos-ll_be_bd_et-cassini-policy x1500c4r3j107p1

Nodes configuration (1)

All nodes start with a default IP configuration as described in the fabric template, even if the nodes are configured on a dedicated VLAN

Important: DVS is on nmn

Nodes configuration (2)

With an ansible script we do the following steps, for each node:

- Delete the current HSN IP Address(es)
- Delete the current IP rules
- Configure the new IP Address(es) on HSN interface(s)
- Configure the new IP rules
- Configure the correct IP routes, including the default gateway
- If needed: change the DNS server address

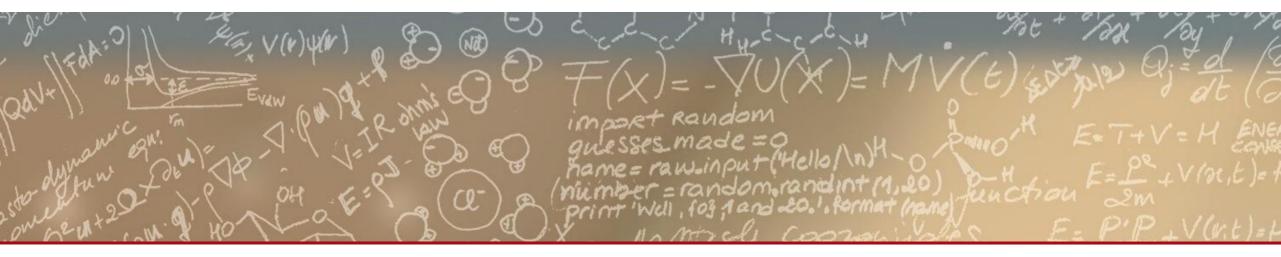
Challenges

- Nmn network is still fully open all nodes may talk to each other
 - Workaround/Solution will be based on a mix of:
 - ACLs on the nmn network switches to avoid traffic between nodes on the nmn network
 - Firewall on compute nodes (nmn interface)
- Shared storage access, routed via L3 CSCS Data Center Network
- DNS configuration for nodes on a different VLAN

Next steps

- ACL / FW for the management network
- Automate the VLAN configuration of the slingshot switches
 - Some manual configuration steps still needed, room for improvement
- Use a central configuration for nodes, VLANs, new IP addresses and other info
- VNI and QoS configuration
- Add some flexibility, for example to dinamically move nodes between VLANs

Many thanks to:


- Miguel Gila (CSCS)Jérôme Tissières (CSCS)
- Davide Tacchella (HPE)

Thank you for your attention.