
Performance Study on CPU-based Machine
Learning with PyTorch

Smeet Chheda, Tony Curtis, Eva Siegmann, Barbara Chapman
IACS, Stony Brook University

Cray User Group Meeting 2023
Helsinki, Finland

1

Agenda
● Introduction
● Software Stack and Communications Setup
● oneDNN
● CPU, Compiler and BLAS Libraries
● Evaluation
● Power
● Conclusion
● Acknowledgements

2

Introduction: Machine Learning

● ML algorithms and models are being
continuously developed and deployed
in multiple places.

● PyTorch is a popular open source
machine learning library based on the
Torch library.

○ It provides fast tensor computations with gpu
acceleration and reverse-mode automatic
differentiation through autograd.

○ Easy to use.

3

Software Stack and Communications setup

4

Library Version
Python 3.8.2

Numpy 1.22.4

PyTorch 1.10.0

Torchvision 0.11.0

oneDNN 2.4.3

Horovod 0.24.3

Library versions are cloned from GitHub or downloaded from respective websites (Python,
PyPI) and kept consistent across all environments.

Cluster Compiler UCX MPI Interconnect

Ookami Fujitsu - Fujitsu MPI* Infiniband HDR
100

Ookami ARM / LLVM /
GNU

1.11.2 Open MPI
v4.1.2

Infiniband HDR
100

Stampede2 GNU - Intel MPI
v19.0.9

Intel Omni-Path
100Gb/s

*Fujitsu MPI is based on Open MPI v4.0.1

oneDNN

5

● oneAPI Deep Neural Network Library (oneDNN) is an open-source cross-platform performance
library of basic building blocks for deep learning applications.

● It includes highly vectorized and threaded building blocks for implementation of convolutional
neural networks (CNNs) and recurrent neural networks (RNNs) with C and C++ interfaces. This
project is created to help the DL community innovate on the Intel(R) processor family.

● PyTorch is built with oneDNN v2.4.3 support (formerly known as MKL-DNN)
○ Fujitsu achieved this by creating an aarch64 version of xbyak JIT assembler.
○ xbyak_aarch64 and xbyak_translator_aarch64 have been primarily developed to enable assembly

coding with full SVE support and porting oneDNN to aarch64.

CPU, Compiler and BLAS Libraries

6

Cluster CPU Compiler BLAS Library Compiler Flags
Ookami Fujitsu A64FX Fujitsu compiler v4.7 SSL2 -Nclang -Kfast -Knolargepage -lpthread

Ookami Fujitsu A64FX Arm v22.0.1 Arm Performance
Libraries v2022.0.1

-O3 -pthread -mcpu=a64fx -mtune=a64fx

Ookami Fujitsu A64FX GNU v11.2.0 OpenBLAS v0.3.19 -O3 -pthread -mcpu=a64fx -mtune=a64fx

Ookami Fujitsu A64FX LLVM v16.0.0 OpenBLAS v0.3.19 -O3 -pthread -mcpu=a64fx -mtune=a64fx

Rusty Intel Xeon Gold 6148
(40 cores)

GNU v10.3.0 OpenBLAS v0.3.19 -O3 -lpthread -mtune=skylake-avx512

Rusty Intel Xeon Gold 6148
(40 cores)

Intel Compiler
v2022.0.1

MKL v2022.0.1 -O3 -lpthread -mtune=skylake-avx512

Popeye Intel Xeon Platinum
8358 (64 cores)

Intel Compiler
v2022.0.1

MKL v2022.0.1 -O3 -lpthread -mtune=icelake-server

Stampede2 Intel Xeon Platinum
8160 (48 cores)

GNU v9.1.0 MKL v19.1.1 -O3 -lpthread -mtune=skylake-avx512

Evaluation: benchDNN

benchdnn is an extended and robust correctness verification and performance benchmarking tool for the
primitives provided by oneDNN.

● benchdnn itself is a harness for different primitive-specific drivers.

We evaluate the convolution driver in performance mode.

● Direction={forward with bias, backward with bias}

● Configuration={f32, u8s8s8} (f32 : 32 bit float, s8 : signed int8_t, u8 : unsigned uint8_t)

● Run configuration: OMP_NUM_THREADS=8

7

./benchdnn --DRIVER [COMMON-OPTIONS] [DRIVER-OPTIONS] PROBLEM-DESCRIPTION

Evaluation: benchDNN

8

Entry Description

mb Mini batch size

ic, oc Input and output channels

id, ih, iw Input depth, height and width

od, oh, ow Output depth, height and width

kd, kh, kw Kernel depth, height and width

sd, sh, sw Stride depth, height and width

pd, ph, pw Front, top and left padding

n Descriptor name

Evaluation: benchDNN (contd)

9

Blue and green bars represent runs on Intel Xeon Gold 6148.
Orange, Grey and Yellow bars represent runs on Fujitsu A64FX

AVX512 kernels perform better than SVE kernels

Evaluation: benchDNN (contd)

10

Yellow and light-blue bars represent runs on Intel Xeon Gold 6148.
Blue, Orange and Grey bars represent runs on Fujitsu A64FX

AVX512 kernels significantly outperform SVE kernels in some cases

Evaluation: benchDNN (contd)

11

Yellow and light-blue bars represent runs on Intel Xeon Gold 6148.
Black bar represents Intel compiler on Intel Xeon Platinum 8358 (Icelake)

Blue, Orange and Grey bars represent runs on Fujitsu A64FX
SVE kernels have better inference, however are no match for VNNI optimized kernels

Evaluation: Models used

● We evaluate the performance of 3 different
deep residual networks.

○ ResNet 34 (21.79M), ResNext 50-32x4d
(25.02M), Wide ResNet 101 (126.88M)

○ Easy to convert to block format and
therefore they can take advantage of
optimized oneDNN kernels.

● Other models in torchvision do not support block
formats at the moment

○ Unsupported operators for example,
concatenation

12

Image courtesy of He, Kaiming, et al. "Deep residual learning for image
recognition." Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016.

Evaluation: Single Node

● Task: Image Classification

● Dataset: Photo, Art Painting, Cartoon, Sketch (PACS*) -
4 domains, 7 classes, 9991 images

Training : 6101 images
Transforms : Resizing, Horizontal Flips, Color Jittering, Gray
scaling, tensor conversion, normalization

Evaluation : 3942 images
Transforms : Resizing, tensor conversion, normalization

● Model training & inference can be improved by using
different memory formats (NCHW default, NHWC,
nChw16c - mkldnn block format)

● Using TCMalloc for memory allocation.

13

Evaluation: Single Node

14

Training Time per Epoch (lower is better)

ARM and Fujitsu compiler binaries have similar performance for ResNet 34, however not in the
case of ResNext50-32x4d

Evaluation: Single Node

15

Training Time per Epoch (lower is better)

Evaluation: Single Node

16

Inference Throughput (higher is better)
High throughput observed for A64FX builds compared to Skylake for ResNet 34, strange performance

issue with ResNext 50-32x4d in Fujitsu compiler build

Evaluation: Single Node

17

Inference Throughput (higher is better)

Evaluation: Multi Node
● Dataset: CIFAR-10* - 10 classes, 60000

images

● Train batch size = 128 images

Training : 50,000 images
Transforms : Resizing, tensor conversion,
normalization

Evaluation : 10,000 images
Transforms : Resizing, tensor conversion,
normalization

● Process mapping achieved by --map-by flag

● Weak-scaling runs upto 128 nodes

18

Evaluation: Multi Node

19

Training Throughput (higher is better)

Better scaling observed on Stampede2 cluster

Evaluation: Multi Node

20

Training Throughput (higher is better)

Better scaling observed on Stampede2 cluster; ARM compiler build shows comparable results

Power: Setup and Disclaimer

● Multi node runs compared between Intel 8160 (Xeon Platinum) in Stampede2 and
Fujitsu A64FX in Ookami. We use the average power to train.

Power Measurement

● Ookami – Open XDMoD interface: Node power obtained from the IPMI DCMI Interface. Does
not include power usage from network switches, || filesystem and cooling.

● Stampede2 – Intel RAPL interface: Node power obtained by manually calculating the
difference in energy consumed per socket. Energy consumed since restart (or offset) found here -
/sys/devices/virtual/powercap/intel-rapl/intel-rapl:{0,1}/energy_uj

21

22

Power: Comparative Study

Training (images per second) throughput per Watt per Node
Higher is better

23

Power: Comparative Study

Training (images per second) throughput per Watt per Node
Higher is better

Conclusion

24

● A64FX processor can be used to scale ML workloads, and a tuned environment plays a crucial
role.

● Power measurements on Ookami are fairly consistent. Spikes are not observed
Power measurements on Skylake are dependent on Intel RAPL and have higher variability in
measurements.

● While A64FX in Ookami is not as performant as Skylake-X in Stampede2, the reported power
consumption is lower and overall the throughput per watt is generally higher for the A64FX
processor.

● 512 bit SVE optimized kernels perform comparably with AVX512 optimized kernels in benchDNN.
● The VNNI instructions of the extended AVX512 ISA show significant reduction in processing time.

Acknowledgments
The authors would like to thank Stony Brook Research Computing and Cyberinfrastructure, and the Institute for
Advanced Computational Science at Stony Brook University for access to the innovative high-performance Ookami
computing system, which was made possible by a 5M National Science Foundation grant (#1927880).

The software was tested, in part, on facilities run by the Scientific Computing Core of the Flatiron Institute.
The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for
providing HPC resources that have contributed to the research results reported within this paper.

The authors would like to thank the Ookami project and the community for their support. The authors also thank
Géraud Krawezik for providing access to compute resources and helpful discussions in setting up the environment at
the Flatiron Institute.

We thank the Stony Brook HPC team and XDMoD team at U. Buffalo for their support and help with understanding
power measurements.We thank Kent Milfield @ TACC for suggesting power calculations using reported energy
consumption in RAPL.

25

Thank you!

schheda@cs.stonybrook.edu

