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J), King Abdullah University of
Science and Technology

Shaheen Il supercomputer with Cray Slingshot interconnect
S&ten 25 HPE Cray EX
0, 8 $22 supercomputer cabinets Cray ClusterStor E1000 with

Expected to deliver over additional 50 PB of storage capacity
_ .100 Pflops/s _
- Operational by end of 2023

20x faster than Shaheenli
Accelerating research and developments
4,608 CPU compute nodes, AMD EPYC™  in energy, environment, food,
processors, "Genoa”, amounting to water and healthcare
- 2 = " 884,736 cores in the entire system
o B3 R ‘ 2/ 3rds of KAUST faculty use

oA 2,800 NVIDIA Grace computational modeling and
Hopper Superchips, simulation: “to outcompute is
tightly coupled CPU/GPU accelerators to outcompete™
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How do we reconcile this hostile environment with HPC scientific applications?
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Reshaping Linear Algebra for
Massively Parallel Architectures

Enhance user-productivity using layers of abstraction
Expose parallelism using fine-grained computations
Achieve scalability using asynchronous executions
Exploit data sparsity using low-rank approximations
Maintain code portability using standard basic blocks

Are you willing to redesign your algorithm?

One possible productive solution: Matricization
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l. Powering Seismic Redatuming w/ TLR-MVM

Seismic redatuming is an important technique to get
insights from the Earth’s subsurface.

This requires solving an inverse problem.
Traditionally, due to computational challenges, only
the adjoint is applied.

Some latest research show an alternative method to

improve the solution of inverse problems by using

an iterative solver, e.g., conjugate gradient iterative
solver. This comes at the cost of evaluating multiple
expensive MVM operations, as shown in the

following equations:

x=RUy: z(t,xp,xa)=F, ( /6 . R*(w,xB, XR)Fu,... (y(t,xB, xA))de) ,

Adapted from https://blog.sintef.com/sintefenergy/ccs/the-safety-of-co2-storage/

y = Rx: y(t7 XB; XA) = ’7:(4:,,}‘": </ R(w~ XB?XR)]:wmaz (l’(t?XR, XA))de) .
oD
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l. Powering Seismic Redatuming w/ TLR-MVM

We use tile low-rank matrix-vector multiplication (TLR-MVM) to address the complexity bottleneck.

A EmXn x vector
i i i E i l y vector
nb k
— A nb

. . b f '
Tile size: nb a single tile n Ubasis k{ V basis

Threshold €, tile rank: k
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Tile Dense
Matrix-Vector Multiplication
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2) Stack the bases

U bases V bases
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3) Calculate (per red part): . .
Yv=V.X =

V bases x
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4) Translate
Yv (V bases) to Yu (U bases)
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. Distance-Aware Reordering
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|. Distance-Aware Reordering

Receivers

Hilbert ordering
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Jointly developed between the
Society of Exploration Geophysicists
(SEG) and the European Association of
Geo- scientists and Engineers (EAGE)

Vp(gmsés)

* 3D Geological open model D...
e 3x5x%x2.3km3 2.25
1.62

e 217 X 120 sources I].00

e 177 X90 receivers
e 230 complex-valued frequency matrices of size 26040 X 15930




Checking the traces of 8 receivers

Accuracy Threshold: 1e-4

V. Numerical Accuracy

a) joint

0.0

0.5

1.54

2.0

Good

0.0

c) Inverse (n 5, acc=7e-4)

0.5
Bad 210/

1.5

2.0

0.0 d) True local reflectivity

0.5

Ground Truth 21§

1.5

2.0

2000 4000 6000 8000

#Rec

10000 12000 14000




TWT [s]

V. Numerical Accuracy

Full data Upgoing data

Velocity model

MDD data (NMO stack)
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Post-acquisition processing powered by TLR-MVM
o remove free-surface related effects
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Algorithms first!

Low-rank matrix approximations are key for solving challenging
scientific problems at scale

Reconciling HPC workloads with the hostile hardware

landscape
Steering Al-focused hardware for HPC scientific applications is

worth exploring (ISC23 paper presentation)
Exploiting cache size and leveraging its high bandwidth
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