
1

A Deep Dive into the Latest HPC Software
Axel Koehler | Principal Solutions Architect | NVIDIA

Cray User Group - Helsinki - May 10th 2023

2

• Programming the NVIDIA Platform

• Standard Language Parallelism

• Accelerated Libraries

• Arm Software Stack

Agenda

3NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

NVIDIA HPC Software
Major Initiatives

Seamless Acceleration
STDPAR, Tensor Cores, GH C2C

Scaling Up
Multi-GPU and Multi-Node Libraries

Domain Libraries
Quantum, Signal Processing, LQCD, etc

Arm Software
Compilers, Libraries, Ecosystem

4

Programming the NVIDIA
Platform

5

Programming The NVIDIA Platform

Accelerated Standard Languages Incremental Optimization Platform Specialization

Acceleration Libraries

C++ | Fortran | Python

Core Math Communication Data Analytics AI DSLs

GPU CPU InterconnectHardware

Libraries &
Frameworks

Languages &
Programming

Models

6

ISO C++

Accelerated Standard Languages
Parallel performance for wherever your code runs

std::transform(par, x, x+n, y,
y,[=](float x, float y){

return y + a*x;
}

);

import cunumeric as np
…
def saxpy(a, x, y):

y[:] += a*x

do concurrent (i = 1:n)
y(i) = y(i) + a*x(i)

enddo

ISO Fortran Python

CPU GPU

nvc++ -stdpar=multicore
nvfortran –stdpar=multicore

legate –cpus 16 saxpy.py

nvc++ -stdpar=gpu
nvfortran –stdpar=gpu
legate –gpus 1 saxpy.py

7

NVIDIA HPC SDK
Available at developer.nvidia.com/hpc-sdk, on NGC, via Spack, and in the Cloud

Develop for the NVIDIA Platform: GPU, CPU and Interconnect
Libraries | Accelerated C++ and Fortran | Directives | CUDA

x86_64 | Arm | OpenPOWER
7-8 Releases Per Year | Freely Available

Compilers

nvcc nvc

nvc++

nvfortran

Programming
Models

Standard C++ & Fortran

OpenACC & OpenMP

CUDA

Core
Libraries

libcu++

Thrust

CUB

Math
Libraries

cuBLAS cuTENSOR

cuSPARSE cuSOLVER

cuFFT cuRAND

Communication
Libraries

HPC-X

NVSHMEM

NCCL

DEVELOPMENT

Profilers

Nsight

Systems

Compute

Debugger

cuda-gdb

Host

Device

ANALYSIS

SHARP HCOLL

UCX SHMEM

MPI

8

Standard Language Parallelism

9

HPC Programming In ISO C++

C++23 And Beyond

Senders/Receivers

Ø Standardized mechanism for asynchrony in the
C++ standard library

Ø Simplify launching and managing parallel work
across CPUs and accelerators

Ø Preview Available Now

Linear Algebra
Ø C++ standard algorithms API to linear algebra

Ø Maps to vendor optimized BLAS libraries

Ø Preview Available Now

MDArray and SubMDSpan
Ø Expands the capabilities of C++23 MDSpan

Ø Preview Available Now

ISO is the place for portable concurrency and parallelism

C++17 & C++20

Parallel Algorithms

Ø Parallel and vector concurrency

Forward Progress Guarantees

Ø Extend the C++ execution model for accelerators

Memory Model Clarifications

Ø Extend the C++ memory model for accelerators

Ranges

Ø Simplifies iterating over a range of values

Scalable Synchronization Library

Ø Express thread synchronization that is portable
and scalable across CPUs and accelerators

Preview support coming to NVC++

std::mdspan

Ø HPC-oriented multi-dimensional array
abstractions.

Ø Preview Available Now

Range-Based Parallel Algorithms
Ø Improved multi-dimensional loops

Extended Floating Point Types
Ø First-class support for formats new and old:

std::float16_t/float64_t

10

M-AIA
Multi-physics simulation framework developed at the Institute of Aerodynamics, RWTH Aachen University

• Hierarchical grids, complex moving geometries

• Adaptive meshing, load balancing

• Numerical methods: FV, DG, LBM, FEM, Level-Set, ...

• Physics: aeroacoustics, combustion, biomedical, ...

• Developed by ~20 PhDs (Mech. Eng.), ~500k LOC++

• Programming model: MPI + ISO C++ parallelism

Decaying isotropic turbulence
400k fully-resolved particles

1 1,025

8,74

0

1

2

3

4

5

6

7

8

9

10

OpenMP @2x EPYC 7742 ISO C++ @2x EPYC 7742 ISO C++ @4x A100-40

Re
la

ti
ve

 S
pe

ed
-U

p

11

HPC Programming in ISO FORTRAN

Fortran 2018 Fortran 2023

Fortran Array Math Intrinsics
Ø Since NVFORTRAN 20.5

Ø Accelerated matmul, reshape, spread, …

DO CONCURRENT
Ø Since NVFORTRAN 20.11

Ø Auto-offload & multi-core with vectorization

Co-Arrays
Ø Not currently available

Ø Accelerated co-array images

DO CONCURRENT Reductions
Ø Since NVFORTRAN 21.11

Ø REDUCE subclause added

Ø Support for +, *, MIN, MAX, IAND, IOR, IEOR.

Ø Support for .AND., .OR., .EQV., .NEQV on LOGICAL values

ISO is the place for portable concurrency and parallelism

Preview support available now in NVFORTRAN

12

GAMESS
Computational Chemistry with Fortran Do Concurrent

• GAMESS is a popular Quantum Chemistry application.

• More than 40 years of development in Fortran and C

• MPI + OpenMP baseline code

• Hartree-Fock rewritten in Do Concurrent

1,0X
1,3X

3,9X

0,0X

0,5X

1,0X

1,5X

2,0X

2,5X

3,0X

3,5X

4,0X

4,5X

OpenMP (CPU) OpenMP (GPU) Do Concurrent
(GPU)

S
p

ee
d

-U
p

Fock Build

nvfortran 22.7, NVIDIA A100 GPU, AMD “Milan” CPU
* Courtesy of Melisa Alkan, Iowa State University. Not yet published.

!pre-sorting, screening

!$omp target teams distribute
parallel do &

!$omp shared() private()
do iquart = 1, ssdd_quarts
!recover shell index
ish=IDX(s_sh)
jsh=IDX(s_sh)
ksh=IDX(d_sh)
lsh=IDX(d_sh)
!compute ints
!digest ints

enddo
!$omp end target teams distribute

parallel do

!pre-sorting, screening

DO CONCURRENT (iquart=1::ssdd_quarts)&
SHARED() LOCAL()

!recover shell index
ish=IDX(s_sh)
jsh=IDX(s_sh)
ksh=IDX(d_sh)
lsh=IDX(d_sh)
!compute ints
!digest ints

enddo

13

cuNumeric
Automatic NumPy Acceleration and Scalability

for _ in range(iter):
un = u.copy()

vn = v.copy()
b = build_up_b(rho, dt, dx, dy, u, v)
p = pressure_poisson_periodic(b, nit, p, dx, dy)

…
Extracted from “CFD Python” course at https://github.com/barbagroup/CFDPython
Barba, Lorena A., and Forsyth, Gilbert F. (2018). CFD Python: the 12 steps to Navier-Stokes equations. Journal of
Open Source Education, 1(9), 21, https://doi.org/10.21105/jose.00021

cuNumeric transparently accelerates and scales existing Numpy
workloads

Program from the edge to the supercomputer in Python by
changing as little as 1 import line

Pass data between Legate libraries without worrying about
distribution or synchronization requirements

cuNumeric

13

GPU DPUGrace CPU

DGX SuperPodDGX

Run everywhere!

https://github.com/barbagroup/CFDPython
https://doi.org/10.21105/jose.00021

14

Behind the Curtain: Legate
Powerhouse of cuNumeric and all other Legate libraries

Le
ga

te

Accelerated domain libraries for excellent
single-accelerator performanceAccelerated Domain Libraries

Common runtime system for scalable
extraction of implicit parallelism

Runtime System for
Scalable & Portable Execution

Productivity and Composability Layer
Productivity layer that accelerates library
development

Vision: build an ecosystem of composasble and easy-to-use libraries

Legate
Pandas

cuNumeric
Legate
Sparse

. . .

15

Weak Scaling Performance

• No modifications required to scale the
benchmarks to a thousand GPUs

• Single GPU performance comparable to / better
than CuPy’s

Stencil
benchmark

16

Pure Python implementations of the benchmarks have competitive performance as PETSc, a state-of-the-art MPI-
based implementation

Interoperation Example
Weak scaling performance

SpMV Conjugate Gradient Solver

17

cuNumeric Beta Release
What’s packed in the release

• Coverage on ~60% NumPy API
• Advanced indexing

• Tensor contraction
• Multi-dimensional sorting
• 96% of ufuncs
• 80% of RNGs

• Ergonomics

Conda
packages

Jupyter &
Google Colab

18

Accelerated Computing Libraries

19

NVIDIA Math Libraries
Linear Algebra, FFT, RNG, and Basic Math

CUTLASScuBLAS cuSPARSE cuTENSOR cuSOLVER

cuRAND cuFFT Math APIAMGX

20

Multi GPU Multi-Node (MGMN) libraries
Enable Science At Scale

cuSOLVERMp cuFFTMp

• Linear solvers (LU, Cholesky, QR)
• Symmetric Eigenvalue Solver
• UCC support

• Hopper support
• Improved interop via NVSHMEM

21

Distributed Symmetric Eigenvalue Solver
State of the art performance

0

1000

2000

3000

4000

5000

6000

1x1 2x2 4x4 8x8 16x16 32x32

T
im

e
in

 s
ec

on
d

s

GPU count

Weak Scaling of PSYEVD vs ELPA

ELPA 1 cuSOLVERMp

call blacs_get
Call blacs_gridinit

call descinit

call pzheevd(,-1, ,-1)
call pzheevd

call blacs_gridexit
call blasc_exit

ScaLAPACK

cal_comm_create
cusolverMpCreate
cusolverMpCreateDeviceGrid

cusolverMpCreateMatrixDesc

cusolverMpSyevd_bufferSize
cusolverMpSyevd

cusolverMpDestroyMatrixDesc
cusolverMpDestroyGrid
cusolverMpDestroy
cal_comm_destroy

cuSOLVERMp

cuSOLVERMp library samples on github

Performance measured on NVIDIA A100 DGX Super POD
~32k x 32k, real fp64 input matrix per GPU

1.35x

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVERMp

22

cuSOLVERMp is coming to VASP
Up to 1.5x faster than ELPA

Coming soon in VASP!

• Enables running the largest
BSE calculation (576K) ever
computed by the VASP group

Current Features

• LU with and without pivoting

• Cholesky

New Features for Q1’23

• QR Factorization

• LU and Cholesky support for
multiple RHS

• Symmetric Eigensolver
• Up to 1.5x faster than ELPA

* Selene (DGX A100 80GB)

0

100

200

300

400

500

600

700

800

900

1000

128 256 512

TF
LO

P
s

of GPUs

Distributed Symmetric Eigensolver
Strong Scaling w/ 295K Matrix

ELPA cuSOLVERMp

Large-Scale BSE Calculations for Solar-Panel Materials in VASP on GPUs with cuSolverMp

https://www.nvidia.com/en-us/on-demand/session/SC2022-T-12/

23

cuFFTMp + GROMACS
Accelerating Molecular Dynamics

cuFFTMp

0

20

40

60

80

100

120

140

160

180

200

1 2 4 8 16

P
er

fo
rm

an
ce

 (n
s/

d
ay

)

Number of nodes (4 A100 GPUs per node)

STMV Strong Scaling (1M atoms)

No PME decomp or GPU direct comm GPU direct comm PME decomp & GP U direct comm

0

20

40

60

80

100

120

1 2 4 8 16 32 64

P
er

fo
rm

an
ce

 (n
s/

d
ay

)

Number of nodes (4 A100 GPUs per node)

BenchPEP-h Strong Scaling (12M atoms)

Performance measured on NVIDIA A100 DGX Super POD

Massively Improved Multi-node NVIDIA GPU Scalability with GROMACS

https://developer.nvidia.com/blog/massively-improved-multi-node-nvidia-gpu-scalability-with-gromacs/

24

Arm Software Stack

25

Grace Hopper Superchip
Programming Model and Applications for the Grace Hopper Superchip

Grace Hopper Superchip

GPU Hopper 96GB HBM3

GPU Memory
Bandwidth

4 TB/s

CPU 72 Arm Neoverse-V2 Cores

CPU Memory Up to 480GB LPDDR5X

CPU Memory
Bandwidth

Up to 500 GB/s

CPU to GPU
NVLink C2C

900GB/s, cache coherent

TDP 700W

26

27

28

29

ABINIT
Titanium 255 Atoms using the LOBPCG algorithm

30

Grace Software Ecosystem is Built on Standards
The NVIDIA platform builds on optimized software from the broad Arm software ecosystem

Arm Software Ecosystem (Armv8 SBSA)

The software ecosystem of 90% of Earth’s computing silicon

Optimized OSS or Vendor Software (Armv9)
Align with mainline commercial success (CSP, Neoverse, etc.)

NVIDIA Platform

Advancing the state-of-the-art standards
(stdpar, etc.)

Optimal
Executable

Optimized
Executable

Portable
Executable

Perform
ance

Portable, Optimized, Accelerated Executable

31

NVIDIA Performance Libraries (NVPL)
Math Libraries Optimized for Arm CPUs

NVIDIA Grace Superchip
144-core Arm Neoverse V2 cores in a Superchip

NVLink-C2C, 900 GB/s Bi-Directional BW
LPDDR5X With ECC, 1TB/s Memory BW

• Enable easy porting of HPC applications to NVIDIA
Grace CPU based platforms to achieve industry
leading performance and efficiency
• Standard interfaces (e.g., BLAS, FFTW)
• New interfaces (e.g., SPARSE, TENSOR)

• Early access in H2’2023

TENSOR

LAPACK

RNG

BLAS

SPARSE FFTW

SCALAPACKPBLAS

0%

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

10 0%

25 6 51 2 10 24 20 48 40 96
m=n=k

nvplBLAS DGEMM Efficiency

1 thread 8 thread s

72 th re ads

32

Programming the NVIDIA Platform
Unmatched Developer Flexibility

Peak PerformanceDirectives For
Existing Apps

Parallelism in
Standard Languages

Acceleration Libraries
(AI, Data Analytics, Algebra, Quantum, Communication)

On PCs

In the Public
Cloud

At the
Edge

On Prem

C++ | Fortran | Python

33

